Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (366)

Search Parameters:
Keywords = fire line

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2348 KiB  
Article
Study on Smoke Flow and Temperature Distribution Patterns in Fires at Deeply Buried Subway Stations
by Huailin Yan, Heng Liu, Yongchang Zhao and Zirui Bian
Fire 2025, 8(8), 296; https://doi.org/10.3390/fire8080296 - 28 Jul 2025
Viewed by 309
Abstract
To enhance the fire safety protection level of deeply buried metro stations, this study conducted full-scale fire experiments based on Wulichong Station of Guiyang Metro Line 3. It systematically investigated the laws of smoke movement and temperature distribution under the coupled effects of [...] Read more.
To enhance the fire safety protection level of deeply buried metro stations, this study conducted full-scale fire experiments based on Wulichong Station of Guiyang Metro Line 3. It systematically investigated the laws of smoke movement and temperature distribution under the coupled effects of different fire source powers and smoke extraction system states. Through the set up of multiple sets of comparative test conditions, the study focused on analyzing the influence mechanism of the operation (on/off) of the smoke extraction system on smoke spread characteristics and temperature field distribution. The results indicate that under the condition where the smoke extraction system is turned off, the smoke exhibits typical stratified spread characteristics driven by thermal buoyancy, with the temperature rising significantly as the vertical height increases. When the smoke extraction system is activated, the horizontal airflow generated by mechanical smoke extraction significantly alters the flame morphology (with an inclination angle exceeding 45°), effectively extracting and discharging the hot smoke and leading to a more uniform temperature distribution within the space. Full article
(This article belongs to the Special Issue Advances in Fire Science and Fire Protection Engineering)
Show Figures

Figure 1

27 pages, 47905 KiB  
Article
FDS-Based Study on Fire Spread and Control in Modern Brick-Timber Architectural Heritage: A Case Study of Faculty House at a University in Changsha
by Simian Liu, Gaocheng Liang, Lei Shi, Ming Luo and Meizhen Long
Sustainability 2025, 17(15), 6773; https://doi.org/10.3390/su17156773 - 25 Jul 2025
Viewed by 378
Abstract
The modern Chinese architectural heritage combines sturdy Western materials with delicate Chinese styling, mainly adopting brick-timber structural systems that are highly vulnerable to fire damage. The study assesses the fire spread characteristics of the First Faculty House, a 20th-century architectural heritage located at [...] Read more.
The modern Chinese architectural heritage combines sturdy Western materials with delicate Chinese styling, mainly adopting brick-timber structural systems that are highly vulnerable to fire damage. The study assesses the fire spread characteristics of the First Faculty House, a 20th-century architectural heritage located at a university in China. The assessment is carried out by analyzing building materials, structural configuration, and fire load. By using FDS (Fire Dynamics Simulator (PyroSim version 2022)) and SketchUp software (version 2023) for architectural reconstruction and fire spread simulation, explores preventive measures to reduce fire risks. The result show that the total fire load of the building amounts to 1,976,246 MJ. After ignition, flashover occurs at 700 s, accompanied by a sharp increase in the heat release rate (HRR). The peak ceiling temperature reaches 750 °C. The roof trusses have critical structural weaknesses when approaching flashover conditions, indicating a high potential for collapse. Three targeted fire protection strategies are proposed in line with the heritage conservation principle of minimal visual and functional intervention: fire sprinkler systems, fire retardant coating, and fire barrier. Simulations of different strategies demonstrate their effectiveness in mitigating fire spread in elongated architectural heritages with enclosed ceiling-level ignition points. The efficacy hierarchy follows: fire sprinkler system > fire retardant coating > fire barrier. Additionally, because of chimney effect, for fire sources located above the ceiling and other hidden locations need to be warned in a timely manner to prevent the thermal plume from invading other sides of the ceiling through the access hole. This research can serve as a reference framework for other Modern Chinese Architectural Heritage to develop appropriate fire mitigation strategies and to provide a methodology for sustainable development of the Chinese architectural heritage. Full article
Show Figures

Figure 1

22 pages, 6286 KiB  
Article
Thermal Degradation and Flame Resistance Mechanism of Phosphorous-Based Flame Retardant of ABS Composites Used in 3D Printing Technology
by Rafał Oliwa, Katarzyna Bulanda and Mariusz Oleksy
Materials 2025, 18(13), 3202; https://doi.org/10.3390/ma18133202 - 7 Jul 2025
Viewed by 319
Abstract
As part of the work, polymer composites dedicated to rapid prototyping were developed, especially for 3D printing using the material extrusion technique. For this purpose, a polymer matrix was selected, which was an acrylonitrile-butadiene-styrene (ABS) terpolymer and a flame retardant, which was tetrakis [...] Read more.
As part of the work, polymer composites dedicated to rapid prototyping were developed, especially for 3D printing using the material extrusion technique. For this purpose, a polymer matrix was selected, which was an acrylonitrile-butadiene-styrene (ABS) terpolymer and a flame retardant, which was tetrakis (2,6-dimethylphenyl)-m-phenylenebisphosphate, commercially known as PX200. The effect of the presence and amount (5, 10, 15 and 20 wt.%) of the introduced additive on the rheological properties, structural properties, flammability (limiting oxygen index, LOI; UL94) and flame retardant properties (microcone calorimeter, MLC) of ABS-based composites was investigated. In addition, the mechanism of thermal degradation and flame resistance was investigated using thermogravimetric analysis, TGA and Fourier transform infrared spectroscopy, FT-IR of the residue after the MLC test. In the first part of the work, using the author’s technological line, filaments were obtained from unfilled ABS and its composites. Samples for testing were obtained by 3D printing in Fused Deposition Modeling (FDM) technology. In order to determine the quantitative and qualitative spread of fire and the effectiveness of the phosphorus flame retardant PX200 in the produced composites, the Maximum Average Rate of Heat Emission (MARHE); Fire Growth Rate Index (FIGRA); Fire Potential Index (FPI) and Flame Retardancy Index (FRI) were determined. Based on the obtained results, it was found that the aryl biphosphate used in this work exhibits activity in the gas phase, which was confirmed by quantitative assessment using data from a microcone calorimeter and non-residues after combustion and thermolysis at 700 °C. As a result, the flammability class did not change (HB40), and the LOI slightly increased to 20% for the composite with 20% flame retardant content. Moreover, this composite was characterized by the following flammability indices: pHRR = 482.9 kW/m2 (−40.3%), MARHE = 234 kW/m2 (−40.7%), FIGRA = 3.1 kW/m2·s (−56.3%), FPI = 0.061 m2·s/kW (+64.9%), FRI = 2.068 (+106.8%). Full article
(This article belongs to the Special Issue 3D Printing of Polymeric Materials)
Show Figures

Graphical abstract

17 pages, 4478 KiB  
Article
Numerical Study on Smoke Characteristics in Ultra-Long Tunnels with Multi-Train Fire Scenarios
by Jiaming Zhao, Cheng Zhang, Saiya Feng, Shiyi Chen, Guanhong He, Yanlong Li, Zhisheng Xu and Wenbin Wei
Fire 2025, 8(7), 265; https://doi.org/10.3390/fire8070265 - 3 Jul 2025
Viewed by 491
Abstract
Metropolitan city express line tunnels are fully enclosed and often span long distances between stations, allowing multiple trains within a single interval. Traditional segmented ventilation ensures only one train per section, but ultra-long tunnels with shaftless designs introduce new challenges under fire conditions. [...] Read more.
Metropolitan city express line tunnels are fully enclosed and often span long distances between stations, allowing multiple trains within a single interval. Traditional segmented ventilation ensures only one train per section, but ultra-long tunnels with shaftless designs introduce new challenges under fire conditions. This study investigates smoke behavior in an ultra-long inter-district tunnel during multi-train blockage scenarios. A numerical model evaluates the effects of train spacing, fire source location, and receding spacing on smoke back-layering, temperature distribution, and flow velocity. Results indicate that when train spacing exceeds 200 m and longitudinal wind speed is above 1.2 m/s, the impact of train spacing on smoke back-layering becomes negligible. Larger train spacing increases back-layering under constant wind speed, while higher wind speeds reduce it. Fire source location and evacuation spacing affect the extent and pattern of smoke spread and high-temperature zones, especially under reverse ventilation conditions. These findings provide quantitative insights into fire-induced smoke dynamics in ultra-long tunnels, offering theoretical support for optimizing ventilation control and evacuation strategies in urban express systems. Full article
(This article belongs to the Special Issue Advances in Fire Science and Fire Protection Engineering)
Show Figures

Figure 1

30 pages, 10507 KiB  
Article
Thermal Properties of Geopolymer Concretes with Lightweight Aggregates
by Agnieszka Przybek, Paulina Romańska, Kinga Korniejenko, Krzysztof Krajniak, Maria Hebdowska-Krupa and Michał Łach
Materials 2025, 18(13), 3150; https://doi.org/10.3390/ma18133150 - 3 Jul 2025
Cited by 1 | Viewed by 523
Abstract
Despite the availability of various materials for chimney applications, ongoing research seeks alternatives with improved thermal and chemical resistance. Geopolymers are a promising solution, exhibiting exceptional resistance to high temperatures, fire, and aggressive chemicals. This study investigates fly ash-based lightweight geopolymer concretes that [...] Read more.
Despite the availability of various materials for chimney applications, ongoing research seeks alternatives with improved thermal and chemical resistance. Geopolymers are a promising solution, exhibiting exceptional resistance to high temperatures, fire, and aggressive chemicals. This study investigates fly ash-based lightweight geopolymer concretes that incorporate expanded clay aggregate (E.C.A.), perlite (P), and foamed geopolymer aggregate (F.G.A.). The composites were designed to ensure a density below 1200 kg/m3, reducing overall weight while maintaining necessary performance. Aggregate content ranged from 60 to 75 wt.%. Physical (density, thickness, water absorption), mechanical (flexural and compressive strength), and thermal (conductivity, resistance) properties were evaluated. F.G.A. 60 achieved a 76.8% reduction in thermal conductivity (0.1708 vs. 0.7366 W/(m·K)) and a 140.4% increase in thermal resistance (0.1642 vs. 0.0683). The F.G.A./E.C.A./P 60 mixture showed the highest compressive strength (18.069 MPa), reaching 52.7% of the reference concrete’s strength, with a 32.3% lower density (1173.3 vs. 1735.0 kg/m3). Water absorption ranged from 4.9% (REF.) to 7.3% (F.G.A. 60). All samples, except F.G.A. 70 and F.G.A. 75, endured heating up to 800 °C. The F.G.A./E.C.A./P 60 composite demonstrated well-balanced performance: low thermal conductivity (0.2052 W/(m·K)), thermal resistance up to 1000 °C, flexural strength of 4.386 MPa, and compressive strength of 18.069 MPa. The results confirm that well-designed geopolymer lightweight concretes are suitable for chimney and flue pipe linings operating between 500 and 1000 °C and exposed to acidic condensates and aggressive chemicals. This study marks the initial phase of a broader project on geopolymer-based prefabricated chimney systems. Full article
(This article belongs to the Special Issue Advances in Function Geopolymer Materials—Second Edition)
Show Figures

Figure 1

29 pages, 7559 KiB  
Article
Finite Element Analysis of Flat Plate Structures in Fire
by Mohamed Hesien, Maged A. Youssef and Salah El-Fitiany
Fire 2025, 8(7), 252; https://doi.org/10.3390/fire8070252 - 27 Jun 2025
Viewed by 376
Abstract
Understanding the structural behaviour of flat plate systems during fire exposure is critical for ensuring the safety of occupants and emergency personnel. Flat slabs, a widely used structural system, undergo significant thermal deformations in fire, which increase demands on supporting columns and reduce [...] Read more.
Understanding the structural behaviour of flat plate systems during fire exposure is critical for ensuring the safety of occupants and emergency personnel. Flat slabs, a widely used structural system, undergo significant thermal deformations in fire, which increase demands on supporting columns and reduce the stiffness and strength of concrete and steel. While experimental fire tests have provided valuable data to understand the behaviour of isolated components of flat slabs, numerical analysis is the only route to comprehending the structural behaviour of full-scale flat plate structures during fire exposure. ABAQUS is commonly used for modelling reinforced concrete (RC) structures under fire, with two prevailing techniques: (1) solid element modelling for concrete and truss reinforcement and (2) shell element modelling with embedded steel layers and line-column elements. However, uncertainties remain regarding the influence of modelling parameters such as dilation angle and concrete tensile stress, and the impact of surface fire exposure has not been comprehensively studied. This study presents a novel contribution by conducting a detailed numerical investigation of a full-scale flat plate structure exposed to fire using both modelling approaches. The shell-element model was validated against experimental data and used to evaluate the effect of dilation angle and tensile strength assumptions. A unique aspect of this work is the assessment of fire exposure on different slab surfaces, including bottom, top, and both, which provides insights into slab deflections and column displacements under different surface fire exposure scenarios. The structure was then modelled using solid elements to systematically compare modelling techniques. The results highlight key differences between approaches and guide for selecting the most suitable modelling strategies for fire-exposed flat plate systems. Full article
(This article belongs to the Special Issue Performance-Based Design in Structural Fire Engineering, Volume III)
Show Figures

Figure 1

17 pages, 6780 KiB  
Article
A Metric Learning-Based Improved Oriented R-CNN for Wildfire Detection in Power Transmission Corridors
by Xiaole Wang, Bo Wang, Peng Luo, Leixiong Wang and Yurou Wu
Sensors 2025, 25(13), 3882; https://doi.org/10.3390/s25133882 - 22 Jun 2025
Viewed by 370
Abstract
Wildfire detection in power transmission corridors is essential for providing timely warnings and ensuring the safe and stable operation of power lines. However, this task faces significant challenges due to the large number of smoke-like samples in the background, the complex and diverse [...] Read more.
Wildfire detection in power transmission corridors is essential for providing timely warnings and ensuring the safe and stable operation of power lines. However, this task faces significant challenges due to the large number of smoke-like samples in the background, the complex and diverse target morphologies, and the difficulty of detecting small-scale smoke and flame objects. To address these issues, this paper proposed an improved Oriented R-CNN model enhanced with metric learning for wildfire detection in power transmission corridors. Specifically, a multi-center metric loss (MCM-Loss) module based on metric learning was introduced to enhance the model’s ability to differentiate features of similar targets, thereby improving the recognition accuracy in the presence of interference. Experimental results showed that the introduction of the MCM-Loss module increased the average precision (AP) for smoke targets by 2.7%. In addition, the group convolution-based network ResNeXt was adopted to replace the original backbone network ResNet, broadening the channel dimensions of the feature extraction network and enhancing the model’s capability to detect flame and smoke targets with diverse morphologies. This substitution led to a 0.6% improvement in mean average precision (mAP). Furthermore, an FPN-CARAFE module was designed by incorporating the content-aware up-sampling operator CARAFE, which improved multi-scale feature representation and significantly boosted performance in detecting small targets. In particular, the proposed FPN-CARAFE module improved the AP for fire targets by 8.1%. Experimental results demonstrated that the proposed model achieved superior performance in wildfire detection within power transmission corridors, achieving a mAP of 90.4% on the test dataset—an improvement of 6.4% over the baseline model. Compared with other commonly used object detection algorithms, the model developed in this study exhibited improved detection performance on the test dataset, offering research support for wildfire monitoring in power transmission corridors. Full article
(This article belongs to the Special Issue Object Detection and Recognition Based on Deep Learning)
Show Figures

Figure 1

14 pages, 3140 KiB  
Article
Human Stem Cell-Derived Neural Organoids for the Discovery of Antiseizure Agents
by Hamed Salmanzadeh and Robert F. Halliwell
Receptors 2025, 4(3), 12; https://doi.org/10.3390/receptors4030012 - 20 Jun 2025
Viewed by 640
Abstract
Background: The development of cerebral organoids created from human pluripotent stem cells in 3D culture may greatly improve the discovery of neuropsychiatric medicines. Methods: In the current study we differentiated neural organoids from a human pluripotent stem cell line in vitro, [...] Read more.
Background: The development of cerebral organoids created from human pluripotent stem cells in 3D culture may greatly improve the discovery of neuropsychiatric medicines. Methods: In the current study we differentiated neural organoids from a human pluripotent stem cell line in vitro, recorded the development of neurophysiological activity using multielectrode arrays (MEAs) and characterized the neuropharmacology of synaptic signaling over 8 months in vitro. In addition, we investigated the ability of these organoids to display epileptiform activity in response to a convulsant agent and the effects of antiseizure medicines to inhibit this abnormal activity. Results: Single and bursts of action potentials from individual neurons and network bursts were recorded on the MEA plates and significantly increased and became more complex from week 7 to week 30, consistent with neural network formation. Neural spiking was reduced by the Na channel blocker tetrodotoxin but increased by the inhibitor of KV7 potassium channels XE991, confirming the involvement of voltage-gated sodium and potassium channels in action potential activity. The GABA antagonists bicuculline and picrotoxin each increased the spike rate, consistent with inhibitory synaptic signaling. In contrast, the glutamate receptor antagonist kynurenic acid inhibited the spike rate, consistent with excitatory synaptic transmission in the organoids. The convulsant 4-aminopyridine increased spiking, bursts and synchronized firing, consistent with epileptiform activity in vitro. The anticonvulsants carbamazepine, ethosuximide and diazepam each inhibited this epileptiform neural activity. Conclusions: Together, our data demonstrate that neural organoids form inhibitory and excitatory synaptic circuits, generate epileptiform activity in response to a convulsant agent and detect the antiseizure properties of diverse antiepileptic drugs, supporting their value in drug discovery. Full article
Show Figures

Figure 1

21 pages, 3949 KiB  
Article
A Heuristic Algorithm for Locating Line-to-Line Faults in Photovoltaic Systems
by Jia-Zhang Jhan, Bo-Hong Li, Hsun-Tsung Chiu, Hong-Chan Chang and Cheng-Chien Kuo
Appl. Sci. 2025, 15(11), 6366; https://doi.org/10.3390/app15116366 - 5 Jun 2025
Viewed by 366
Abstract
Photovoltaic (PV) systems have experienced rapid global deployment. However, line-to-line short-circuit faults pose serious safety risks and can lead to significant power losses or fire hazards. While existing fault detection methods can identify fault types, they cannot precisely locate fault positions, resulting in [...] Read more.
Photovoltaic (PV) systems have experienced rapid global deployment. However, line-to-line short-circuit faults pose serious safety risks and can lead to significant power losses or fire hazards. While existing fault detection methods can identify fault types, they cannot precisely locate fault positions, resulting in time-consuming and costly maintenance. This paper proposes a heuristic algorithm for accurately locating such faults in PV arrays based on module group voltage measurements. The algorithm employs a two-phase approach: fault candidate marking and fault location determination, capable of handling both intra-string and cross-string faults. Simulation tests on a 21 × 2 PV array configuration demonstrate a 97.56% fault location success rate, reducing the troubleshooting scope to within a single-module group. The proposed method offers a simple, fast, and cost-effective solution for PV system maintenance, potentially saving significant labor costs and reducing system downtime. Full article
Show Figures

Figure 1

16 pages, 3942 KiB  
Article
Utilization of Coal Ash for Production of Refractory Bricks
by Saniya Kaskataevna Arinova, Svetlana Sergeevna Kvon, Vitaly Yurevich Kulikov, Aristotel Zeynullinovich Issagulov and Asem Erikovna Altynova
J. Compos. Sci. 2025, 9(6), 275; https://doi.org/10.3390/jcs9060275 - 29 May 2025
Viewed by 445
Abstract
Coal combustion generates significant volumes of ash, a technogenic by-product that poses a serious threat to regional environmental sustainability (environmental chemical contamination and air pollution). This study aims to assess the feasibility of utilizing this type of ash as a raw material component [...] Read more.
Coal combustion generates significant volumes of ash, a technogenic by-product that poses a serious threat to regional environmental sustainability (environmental chemical contamination and air pollution). This study aims to assess the feasibility of utilizing this type of ash as a raw material component in the fabrication of refractory bricks and to investigate the fundamental properties of the resulting experimental products. Ash was incorporated into the batch composition at concentrations ranging from 10% to 40% by weight, blended with clay and water, then shaped through pressing and subjected to firing at 1000 °C and 1100 °C in an air atmosphere for 2 h. After complete cooling, the samples were subjected to compressive strength testing. Samples containing 40 wt% coal ash exhibited insufficient compressive strength and were therefore excluded from subsequent investigations. For the remaining samples, apparent density, open porosity and slag resistance were determined. The microstructural characterization was performed, and the phase composition of the samples was analyzed. The results revealed that the phase composition of the experimental samples differs significantly from that of the reference sample (ShA-grade chamotte brick in accordance with GOST 390-96, currently used as lining in metallurgical furnaces across the country), exhibiting a higher mullite content and the absence of muscovite. A small amount of kaolinite was detected in the experimental samples even after a 2-h firing process. This observation may be attributed to the effect of kaolinite crystallinity on the transformation process from kaolinite to metakaolinite. The mechanical strength of the experimental samples meets the relevant standards, while slag resistance demonstrated an improvement of approximately 15%. Open porosity was found to decrease in the experimental samples. In addition, a change in the pore size distribution was observed. Notably, the proportion of pores larger than 10,000 nm was significantly reduced. These findings confirm the feasibility of incorporating coal ash as a viable raw material component in the formulation of refractory materials. Full article
Show Figures

Figure 1

17 pages, 4576 KiB  
Article
Experiment and Simulation on the Influence of Fire Radiation on the Evaporation of Liquefied Natural Gas
by Li Xiao, Fan Yang, Jing Tian, Wenqing Song and Cunyong Song
Processes 2025, 13(6), 1673; https://doi.org/10.3390/pr13061673 - 26 May 2025
Viewed by 672
Abstract
With the introduction of the “dual carbon” strategy, public attention to green energy has surged, leading to a notable increase in the demand for natural gas. Consequently, the storage and transportation of liquefied natural gas (LNG) have emerged as critical aspects to ensure [...] Read more.
With the introduction of the “dual carbon” strategy, public attention to green energy has surged, leading to a notable increase in the demand for natural gas. Consequently, the storage and transportation of liquefied natural gas (LNG) have emerged as critical aspects to ensure its safe and cost-effective utilization. For onshore LNG storage, LNG storage tanks play a pivotal role. However, in extreme scenarios such as fires, these tanks may be exposed to radiant heat, which not only jeopardizes their structural integrity but could also result in LNG leaks, triggering severe safety incidents and environmental disasters. Against this backdrop, this study delves into the evaporation characteristics of large-scale LNG storage tanks under fire radiation conditions. Given the unique properties of LNG and the similarity between the bubble-point lines and heat exchange curves of nitrogen and LNG, liquid nitrogen is employed as a substitute for LNG in experimental investigations to observe evaporation behaviors. Furthermore, the FLUENT 2022R1 software is utilized to conduct numerical simulations on a 160,000-cubic-meter LNG storage tank, aiming to model the intricate process of internal evaporation and the impact of environmental factors. The findings of this research aim to furnish a scientific basis for enhancing the storage safety of large-scale LNG storage tanks. Full article
(This article belongs to the Special Issue Multiphase Flow Process and Separation Technology)
Show Figures

Figure 1

39 pages, 13529 KiB  
Article
Intelligent Monitoring of BECS Conveyors via Vision and the IoT for Safety and Separation Efficiency
by Shohreh Kia and Benjamin Leiding
Appl. Sci. 2025, 15(11), 5891; https://doi.org/10.3390/app15115891 - 23 May 2025
Viewed by 712
Abstract
Conveyor belts are critical in various industries, particularly in the barrier eddy current separator systems used in recycling processes. However, hidden issues, such as belt misalignment, excessive heat that can lead to fire hazards, and the presence of sharp or irregularly shaped materials, [...] Read more.
Conveyor belts are critical in various industries, particularly in the barrier eddy current separator systems used in recycling processes. However, hidden issues, such as belt misalignment, excessive heat that can lead to fire hazards, and the presence of sharp or irregularly shaped materials, reduce operational efficiency and pose serious threats to the health and safety of personnel on the production floor. This study presents an intelligent monitoring and protection system for barrier eddy current separator conveyor belts designed to safeguard machinery and human workers simultaneously. In this system, a thermal camera continuously monitors the surface temperature of the conveyor belt, especially in the area above the magnetic drum—where unwanted ferromagnetic materials can lead to abnormal heating and potential fire risks. The system detects temperature anomalies in this critical zone. The early detection of these risks triggers audio–visual alerts and IoT-based warning messages that are sent to technicians, which is vital in preventing fire-related injuries and minimizing emergency response time. Simultaneously, a machine vision module autonomously detects and corrects belt misalignment, eliminating the need for manual intervention and reducing the risk of worker exposure to moving mechanical parts. Additionally, a line-scan camera integrated with the YOLOv11 AI model analyses the shape of materials on the conveyor belt, distinguishing between rounded and sharp-edged objects. This system enhances the accuracy of material separation and reduces the likelihood of injuries caused by the impact or ejection of sharp fragments during maintenance or handling. The YOLOv11n-seg model implemented in this system achieved a segmentation mask precision of 84.8 percent and a recall of 84.5 percent in industry evaluations. Based on this high segmentation accuracy and consistent detection of sharp particles, the system is expected to substantially reduce the frequency of sharp object collisions with the BECS conveyor belt, thereby minimizing mechanical wear and potential safety hazards. By integrating these intelligent capabilities into a compact, cost-effective solution suitable for real-world recycling environments, the proposed system contributes significantly to improving workplace safety and equipment longevity. This project demonstrates how digital transformation and artificial intelligence can play a pivotal role in advancing occupational health and safety in modern industrial production. Full article
Show Figures

Figure 1

16 pages, 6872 KiB  
Article
Eco-Friendly Removal and IoT-Based Monitoring of CO2 Emissions Released from Gasoline Engines Using a Novel Compact Nomex/Activated Carbon Sandwich Filter
by Saad S. M. Hassan, Nora R. G. Mohamed, Mohamed M. A. Saad, Yasser H. Ibrahim, Alia A. Elshakour and Mahmoud Abdelwahab Fathy
Polymers 2025, 17(11), 1447; https://doi.org/10.3390/polym17111447 - 23 May 2025
Viewed by 508
Abstract
A novel cost-effective, rapid, and eco-friendly method was described for the removal of carbon dioxide (CO2) from the gaseous emissions of gasoline engines. This involved the use of a sandwich filter (~10 cm diameter) made of a nonwoven poly (m [...] Read more.
A novel cost-effective, rapid, and eco-friendly method was described for the removal of carbon dioxide (CO2) from the gaseous emissions of gasoline engines. This involved the use of a sandwich filter (~10 cm diameter) made of a nonwoven poly (m-phenylene isophthalamide) (Nomex) fabric loaded with a thin layer of activated carbon. The optimized filter, with an activated carbon mass of 2.89 mg/cm2, a thickness of 4.8 mm, and an air permeability of 0.5 cm3/cm2/s, was tested. A simple homemade sampling device equipped with solid-state electrochemical sensors to monitor the concentration levels of CO2 before and after filtration of the emissions was utilized. The data were transmitted via a General Packet Radio Service (GPRS) link to an Internet of Things (IoT)-based gas monitoring system for remote management, and real-time data visualization. The proposed device achieved a 70 ± 3.4% CO2-removal efficiency within 7 min of operation. Characterization of the filter was conducted using a high-resolution scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and Brunauer–Emmett–Teller (BET) analysis. The effects of loaded activated carbon mass, fabric type, filter porosity, gaseous removal time, and adsorption kinetics were also examined. The proposed filter displayed several advantages, including simplicity, compactness, dry design, ease of regeneration, scalability, durability, low cost, and good efficiency. Heat resistance, fire retardancy, mechanical stability, and the ability to remove other gasoline combustion products such as CO, SOx, NOx, VOCs, and particulates were also offered. The filtration system enabled both in situ and on-line CO2 real-time continuous emission monitoring. Full article
(This article belongs to the Special Issue Polymers in Inorganic Chemistry: Synthesis and Applications)
Show Figures

Graphical abstract

14 pages, 2449 KiB  
Article
Evacuation Route Determination in Indoor Architectural Environments Based on Dynamic Fire Risk Assessment
by Jiaojiao Bai, Xikui Lv, Liangtao Nie and Mingjing Fang
Buildings 2025, 15(10), 1715; https://doi.org/10.3390/buildings15101715 - 19 May 2025
Viewed by 505
Abstract
The enclosed nature of indoor building spaces during fires creates complex fire environments and restricted evacuation routes, substantially elevating the risk of mass casualties. Traditional static evacuation routes not only overlook the complexity of fire scenarios but also fail to satisfy safety requirements [...] Read more.
The enclosed nature of indoor building spaces during fires creates complex fire environments and restricted evacuation routes, substantially elevating the risk of mass casualties. Traditional static evacuation routes not only overlook the complexity of fire scenarios but also fail to satisfy safety requirements for evacuation. To address this issue, this study proposes an enhanced A* algorithm to determine evacuation paths based on dynamic fire risk assessment. A dynamic fire risk assessment model is established using key fire environment parameters (e.g., temperature, visibility, and toxic gas concentration) and their corresponding personnel harm thresholds. This model quantifies fire risks within a discrete space. The A* algorithm is improved by integrating fire risk values and initial direction constraints into its heuristic function and path update strategy, thereby increasing the algorithm’s accuracy and efficiency. Using a subway station fire as a case study, the simulation results indicate that the improved algorithm can update evacuation paths in line with the dynamic evolution of fire risks. It also identifies evacuation routes by balancing fire risk, distance, and initial direction. This approach maintains the original path direction while substantially reducing path risk, achieving an approximate 70% reduction in individual evacuation path risk. This method can guide building fire safety design and the formulation of emergency evacuation plans. It also serves as a reference for path guidance during emergencies. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

19 pages, 18508 KiB  
Article
Lightweight Insulating Geopolymer/Phase-Change Materials Applied Using an Innovative Spray Method
by Agnieszka Przybek, Paulina Romańska, Jakub Piątkowski and Michał Łach
Appl. Sci. 2025, 15(10), 5481; https://doi.org/10.3390/app15105481 - 14 May 2025
Viewed by 627
Abstract
Foamed geopolymer materials are increasingly studied due to their inherent fire resistance. To date, these materials have primarily been produced by casting into moulds, with foaming occurring during mixing or within the moulds, shortly before setting. For practical applications, however, it is advantageous [...] Read more.
Foamed geopolymer materials are increasingly studied due to their inherent fire resistance. To date, these materials have primarily been produced by casting into moulds, with foaming occurring during mixing or within the moulds, shortly before setting. For practical applications, however, it is advantageous to apply these materials directly onto surfaces with complex geometries. Although several techniques for geopolymer spraying have been described in the literature, many exhibit limitations that restrict their practical implementation. This study presents a novel spraying technology developed on a dedicated process line, enabling in situ dosing of the foaming agent immediately before application. The system integrates infrared heating to ensure controlled curing of the geopolymer. This paper outlines the design of the process line and its core functionalities while presenting selected results of material tests conducted on the obtained geopolymer coatings. Tests performed on approximately 200 m2 of surface confirmed the functionality of the process. The thermal conductivity of the sprayed foams was about 0.07 W/m-K. The inclusion of a phase-change material (PCM) in the geopolymers further enhanced their ability to store and regulate thermal energy. The adhesion strength results, consistently exceeding 1 MPa across various substrates (steel, geopolymer, gypsum board), confirmed the practical suitability of the proposed solution. This was also demonstrated by the homogeneous foamed structure obtained. Full article
(This article belongs to the Special Issue Recent Progress and Future Directions in Building Materials)
Show Figures

Figure 1

Back to TopTop