Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,624)

Search Parameters:
Keywords = finite element method (FEM) simulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 23835 KB  
Article
Simulation-Based Structural Optimization of Composite Hulls Under Slamming Loads: A Transferable Methodology for Resilient Offshore Applications
by Giovanni Maria Grasso, Ludovica Maria Oliveri and Ferdinando Chiacchio
J. Mar. Sci. Eng. 2026, 14(3), 254; https://doi.org/10.3390/jmse14030254 - 26 Jan 2026
Abstract
The growing demand for floating offshore structures calls for lightweight, impact-resilient, and sustainable design approaches. This study explores the optimization of composite fibree layup in a 30 m hull subjected to slamming-type hydrodynamic loads. Although based on a recreational vessel, the model serves [...] Read more.
The growing demand for floating offshore structures calls for lightweight, impact-resilient, and sustainable design approaches. This study explores the optimization of composite fibree layup in a 30 m hull subjected to slamming-type hydrodynamic loads. Although based on a recreational vessel, the model serves as a transferable case for offshore applications such as wave energy devices, offshore wind platforms, and floating PV systems. A finite element method (FEM) model was developed using shell elements and a sinusoidal time-dependent pressure to simulate slamming events on the wet surface of the hull. The response was evaluated under different fiber orientation schemes, aiming to reduce structural mass while maintaining stress levels within safety margins. Results showed that strategic layup optimization led to a measurable reduction in total material usage, without compromising structural integrity. These outcomes suggest multiple advantages, including an approximately 14% reduction in raw material demand, which in turn facilitates for potential downsizing of propulsion systems and transportation energy due to lighter structures. Such improvements contribute indirectly to reduced emissions and operational costs. The methodology presented offers a replicable approach to composite optimization under transient marine loads, with relevance for sustainable offshore structural design. Full article
Show Figures

Figure 1

24 pages, 8665 KB  
Article
Parameters Identification of Tire–Clay Contact Angle Based on Numerical Simulation
by Kaidi Wang, Yanhua Shen, Shudi Yang and Ruibin Cao
Machines 2026, 14(2), 139; https://doi.org/10.3390/machines14020139 - 25 Jan 2026
Abstract
The predictive accuracy of the Bekker–Wong model for wheel traction is highly dependent on the precision of the wheel–soil contact angle parameters. These parameters are typically identified through extensive and costly single wheel–soil tests, which are limited by poor experimental repeatability and site-specific [...] Read more.
The predictive accuracy of the Bekker–Wong model for wheel traction is highly dependent on the precision of the wheel–soil contact angle parameters. These parameters are typically identified through extensive and costly single wheel–soil tests, which are limited by poor experimental repeatability and site-specific constraints. This study proposes a method for obtaining contact angle parameters through numerical simulation. Firstly, a finite element model of an off-road tire is established. The Drucker–Prager (D-P) constitutive model parameters of clay under different moisture were calibrated by soil mechanical tests. And then the moist clay was modeled through the SPH algorithm. An FEM–SPH interaction model was developed to define the tire–moist clay interaction. Meanwhile, the tire–moist clay interaction model was verified by a single wheel–soil test device. To identify the empirical parameters of tire–soil interaction, numerical simulations were conducted for multiple operating conditions involving different slip ratios, soil moisture contents, and vertical loads. By processing the simulated wheel–soil contact characteristic images, the contact angles for each condition were extracted. Finally, the contact angle parameters in the Bekker–Wong model were identified. The empirical parameters were integrated into the Bekker–Wong model to predict traction. The results indicate that the maximum relative error of traction force between the prediction and experiment did not exceed 13.6%, which validated the reliability of the proposed method. Full article
15 pages, 3943 KB  
Article
Capture Radius of Rod-Shaped Matrix: Characteristics and Influencing Factors in Low-Intensity Gradient Magnetic Fields
by Hongliang Shang, Tiange Wang, Zhengchang Shen and Guoping Li
Minerals 2026, 16(1), 109; https://doi.org/10.3390/min16010109 - 21 Jan 2026
Viewed by 50
Abstract
In magnetic separation processes, the capture radius Rc of magnetic particles achieved by the magnetic matrix constitutes a critical parameter governing the separation efficiency and operational performance of magnetic separation equipment. Through a systematic study of the characteristics of Rc and [...] Read more.
In magnetic separation processes, the capture radius Rc of magnetic particles achieved by the magnetic matrix constitutes a critical parameter governing the separation efficiency and operational performance of magnetic separation equipment. Through a systematic study of the characteristics of Rc and the factors influencing it, the application capability of separation systems can be notably improved. To address the lack of systematic research on Rc under low magnetic field intensities (<0.6 T), a key gap compared to conventional high gradient magnetic separation (HGMS) operating at ≥0.6 T, the motion trajectories of magnetic particles adjacent to a rod-shaped matrix, as well as their final capture or repulsion behaviors, were observed via a high-speed camera. Concurrently, these processes were accurately reproduced using the finite element method (FEM). This study innovatively integrates experimental validation and FEM simulation, achieving mutual verification that single-method studies cannot provide. Based on the experimentally validated FEM model, the effects of magnetic field intensity H, rod-shaped matrix diameter Φ, magnetic particle diameter d, and fluid viscosity η on the motion of magnetic particles were methodically investigated. The velocity characteristics of particles at critical positions between the capture and repulsion zones were analyzed to determine the capture radius of the rod-shaped matrix under specified conditions. Drawing on the identified parametric effects, the developed capture radius prediction model fills the research gap in low-intensity HGMS and serves as a theoretical reference for optimizing both the spacing design of industrial-scale rod-shaped matrix arrays and their matching with relevant operating parameters, and the development of energy-efficient magnetic separation equipment. Full article
Show Figures

Graphical abstract

48 pages, 4095 KB  
Article
Enhanced Prediction of Rocking and Sliding of Rigid Blocks Using a Modified Semi-Analytical Approach and Optimized Finite Element Modeling
by Idowu Itiola
Buildings 2026, 16(2), 429; https://doi.org/10.3390/buildings16020429 - 20 Jan 2026
Viewed by 73
Abstract
Accurate prediction of the rocking and sliding response of free-standing rigid blocks under seismic excitation remains challenging, particularly in regimes where rocking and sliding are strongly coupled and motion mode transitions occur. This study presents a modified semi-analytical framework and an optimized Finite [...] Read more.
Accurate prediction of the rocking and sliding response of free-standing rigid blocks under seismic excitation remains challenging, particularly in regimes where rocking and sliding are strongly coupled and motion mode transitions occur. This study presents a modified semi-analytical framework and an optimized Finite Element Method (FEM) approach to investigate the nonlinear dynamics of rigid rectangular blocks subjected to initial angular displacements, assuming Coulomb friction and near-inelastic impacts. The proposed semi-analytical formulation explicitly captures the coupling between rocking and sliding motions, enabling systematic identification of rest, rocking, sliding, rocking–sliding, and free-flight response modes. Benchmark comparisons with Veeraraghavan’s classical model show overall agreement in limiting cases but reveal notable differences in intermediate regimes, where motion mode transitions are highly sensitive to friction coefficient and slenderness ratio. These discrepancies arise from the ability of the present formulation to resolve transitional rocking–sliding behavior that is not fully represented in uncoupled or limiting-case assumptions. Complementary FEM simulations employing both rigid and deformable body representations further elucidate the role of contact modeling and energy dissipation. While rigid-body FEM models offer computational efficiency, they exhibit localized penetration and residual bouncing due to contact enforcement limitations. In contrast, deformable FEM models more closely approximate near-inelastic collision behavior and dissipate impact energy more effectively, albeit at higher computational cost. The combined semi-analytical and FEM results provide a robust framework for interpreting motion mode transitions, quantifying contact and penetration effects, and defining the applicability limits of simplified rigid-body models. These findings offer practical guidance for selecting appropriate modeling strategies for seismic response assessment of free-standing rigid blocks. Full article
(This article belongs to the Special Issue Dynamic Response Analysis of Structures Under Wind and Seismic Loads)
Show Figures

Figure 1

25 pages, 7202 KB  
Article
Optimal Design of a Coaxial Magnetic Gear Considering Thermal Demagnetization and Structural Robustness for Torque Density Enhancement
by Tae-Kyu Ji and Soo-Whang Baek
Actuators 2026, 15(1), 59; https://doi.org/10.3390/act15010059 - 16 Jan 2026
Viewed by 246
Abstract
This study presents an optimal design combined with comprehensive multiphysics validation to enhance the torque density of a coaxial magnetic gear (CMG) incorporating an overhang structure. Four high non-integer gear-ratio CMG configurations exceeding 1:10 were designed using different pole-pair combinations, and three-dimensional finite [...] Read more.
This study presents an optimal design combined with comprehensive multiphysics validation to enhance the torque density of a coaxial magnetic gear (CMG) incorporating an overhang structure. Four high non-integer gear-ratio CMG configurations exceeding 1:10 were designed using different pole-pair combinations, and three-dimensional finite element method (3D FEM) was employed to accurately capture axial leakage flux and overhang-induced three-dimensional effects. Eight key geometric design variables were selected within non-saturating limits, and 150 sampling points were generated using an Optimal Latin Hypercube Design (OLHD). Multiple surrogate models were constructed and evaluated using the root-mean-square error (RMSE), and the Kriging model was selected for multi-objective optimization using a genetic algorithm. The optimized CMG with a 1:10.66 gear ratio achieved a 130.76% increase in average torque (65.75 Nm) and a 162.51% improvement in torque density (117.14 Nm/L) compared with the initial design. Harmonic analysis revealed a strengthened fundamental component and a reduction in total harmonic distortion, indicating improved waveform quality. To ensure the feasibility of the optimized design, comprehensive multiphysics analyses—including electromagnetic–thermal coupled simulation, high-temperature demagnetization analysis, and structural stress evaluation—were conducted. The results confirm that the proposed CMG design maintains adequate thermal stability, magnetic integrity, and mechanical robustness under rated operating conditions. These findings demonstrate that the proposed optimal design approach provides a reliable and effective means of enhancing the torque density of high gear-ratio CMGs, offering practical design guidance for electric mobility, robotics, and renewable energy applications. Full article
Show Figures

Figure 1

22 pages, 5031 KB  
Article
Data-Driven Prediction of Stress–Strain Fields Around Interacting Mining Excavations in Jointed Rock: A Comparative Study of Surrogate Models
by Anatoliy Protosenya and Alexey Ivanov
Mining 2026, 6(1), 4; https://doi.org/10.3390/mining6010004 - 16 Jan 2026
Viewed by 124
Abstract
Assessing the stress–strain state around interacting mining excavations using the finite element method (FEM) is computationally expensive for parametric studies. This study evaluates tabular machine-learning surrogate models for the rapid prediction of full stress–strain fields in fractured rock masses treated as an equivalent [...] Read more.
Assessing the stress–strain state around interacting mining excavations using the finite element method (FEM) is computationally expensive for parametric studies. This study evaluates tabular machine-learning surrogate models for the rapid prediction of full stress–strain fields in fractured rock masses treated as an equivalent continuum. A dataset of 1000 parametric FEM simulations using the elastoplastic generalized Hoek–Brown constitutive model was generated to train Random Forest, LightGBM, CatBoost, and Multilayer Perceptron (MLP) models based on geometric features. The results show that the best models achieve R2 scores of 0.96–0.97 for stress components and 0.99 for total displacements. LightGBM and CatBoost provide the optimal balance between accuracy and computational cost, offering speed-ups of 15 to 70 times compared to FEM. While Random Forest yields slightly higher accuracy, it is resource-intensive. Conversely, MLP is the fastest but less accurate. These findings demonstrate that data-driven surrogates can effectively replace repeated FEM simulations, enabling efficient parametric analysis and intelligent design optimization for mine workings. Full article
Show Figures

Graphical abstract

19 pages, 4270 KB  
Article
Adaptive Optimization of Non-Uniform Phased Array Speakers Using Particle Swarm Optimization for Enhanced Directivity Control
by Shangming Mei, Yihua Hu and Mohammad Nasr Esfahani
Modelling 2026, 7(1), 20; https://doi.org/10.3390/modelling7010020 - 15 Jan 2026
Viewed by 91
Abstract
Phased array speakers are often designed with uniform element spacing, which limits beam steering capability and sidelobe control under practical aperture and hardware constraints. This study presents an optimization-driven modelling framework for parametric array loudspeakers (PALs) that systematically links array layout synthesis with [...] Read more.
Phased array speakers are often designed with uniform element spacing, which limits beam steering capability and sidelobe control under practical aperture and hardware constraints. This study presents an optimization-driven modelling framework for parametric array loudspeakers (PALs) that systematically links array layout synthesis with high-fidelity directivity prediction, by combining a frequency-domain convolution model with a finite element method (FEM) pipeline. We formulate array layout synthesis as a constrained optimization problem and employ particle swarm optimization (PSO) to determine non-uniform element positions that suppress sidelobes while preserving mainlobe integrity across steering angles. By integrating linear acoustic field simulation with far-field directivity prediction, the framework serves as a computationally efficient surrogate model suitable for iterative design under non-ideal spacing conditions. Simulation results and laboratory measurements demonstrate that the optimized non-uniform arrays achieve consistently lower sidelobe levels and more concentrated mainlobes than conventional uniform configurations. These results validate the proposed framework as a practical and reproducible solution for steering-capable PAL design when the conventional λ/2 spacing constraint cannot be satisfied and establish a foundation for subsequent robustness and sensitivity analyses. Full article
(This article belongs to the Special Issue AI-Driven and Data-Driven Modelling in Acoustics and Vibration)
Show Figures

Graphical abstract

19 pages, 12656 KB  
Article
Automatic Detection of TiO2 Nanoparticles Using Dual-Coupled Microresonators and Deep Learning
by Andrés F. Calvo-Salcedo, Marin B. Marinov, Neil Guerrero González and Jose A. Jaramillo-Villegas
Technologies 2026, 14(1), 65; https://doi.org/10.3390/technologies14010065 - 15 Jan 2026
Viewed by 188
Abstract
The detection of titanium dioxide (TiO2) nanoparticles is a significant challenge due to their extensive industrial use and potential health and environmental impacts, which demand accurate, label-free approaches. This work presents an automatic detection system based on spectroscopy with optical [...] Read more.
The detection of titanium dioxide (TiO2) nanoparticles is a significant challenge due to their extensive industrial use and potential health and environmental impacts, which demand accurate, label-free approaches. This work presents an automatic detection system based on spectroscopy with optical frequency combs (OFC) in dual-coupled microresonators. The OFC generation was modeled through the Lugiato-Lefever equation, while propagation in distilled water containing TiO2 was simulated using the finite element method (FEM). The water–TiO2 mixture was described with the Yamaguchi model in a 5 × 5 mesh to represent non-uniform concentrations. From the norm of the electric field at a probe, a database of 11 classes (0–100%) with controlled Gaussian noise was constructed. A Transformer-based classifier was trained and compared with 1D-CNN and SVM under Monte Carlo validation (100 random 70/30 splits). The Transformer achieved 99.84 ± 0.01% accuracy with an inference time of 0.793 ± 0.05 s, while the 1D-CNN reached 99.64 ± 0.09% and the SVM 84.73 ± 1.48%. A repeatability test with 200 iterations confirmed deterministic DKS trajectories. The results demonstrate that combining dual-coupled microresonators, FEM, and Transformer architectures enables precise and efficient detection of TiO2 nanoparticles in aqueous solutions. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2025)
Show Figures

Figure 1

19 pages, 3563 KB  
Article
Numerical and Experimental Study of Laser Surface Modification Using a High-Power Fiber CW Laser
by Evaggelos Kaselouris, Alexandros Gosta, Efstathios Kamposos, Dionysios Rouchotas, George Vernardos, Helen Papadaki, Alexandros Skoulakis, Yannis Orphanos, Makis Bakarezos, Ioannis Fitilis, Nektarios A. Papadogiannis, Michael Tatarakis and Vasilis Dimitriou
Materials 2026, 19(2), 343; https://doi.org/10.3390/ma19020343 - 15 Jan 2026
Viewed by 234
Abstract
This work presents a combined numerical and experimental investigation into the laser machining of aluminum alloy Al 1050 H14 using a high-power Continuous Wave (CW) fiber laser. Advanced three-dimensional, coupled thermal–structural Finite Element Method (FEM) simulations are developed to model key laser–material interaction [...] Read more.
This work presents a combined numerical and experimental investigation into the laser machining of aluminum alloy Al 1050 H14 using a high-power Continuous Wave (CW) fiber laser. Advanced three-dimensional, coupled thermal–structural Finite Element Method (FEM) simulations are developed to model key laser–material interaction processes, including laser-induced plastic deformation, laser etching, and engraving. Cases for both static single-shot and dynamic linear scanning laser beams are investigated. The developed numerical models incorporate a Gaussian heat source and the Johnson–Cook constitutive model to capture elastoplastic, damage, and thermal effects. The simulation results, which provide detailed insights into temperature gradients, displacement fields, and stress–strain evolution, are rigorously validated against experimental data. The experiments are conducted on an integrated setup comprising a 2 kW TRUMPF CW fiber laser hosted on a 3-axis CNC milling machine, with diagnostics including thermal imaging, thermocouples, white-light interferometry, and strain gauges. The strong agreement between simulations and measurements confirms the predictive capability of the developed FEM framework. Overall, this research establishes a reliable computational approach for optimizing laser parameters, such as power, dwell time, and scanning speed, to achieve precise control in metal surface treatment and modification applications. Full article
(This article belongs to the Special Issue Fabrication of Advanced Materials)
Show Figures

Graphical abstract

24 pages, 4788 KB  
Article
An Excitation Modification Method for Predicting Subway-Induced Vibrations of Unopened Lines
by Fengyu Zhang, Peizhen Li, Gang Zong, Lepeng Yu, Jinping Yang and Peng Zhao
Buildings 2026, 16(2), 353; https://doi.org/10.3390/buildings16020353 - 15 Jan 2026
Viewed by 186
Abstract
Accurate prediction of subway-induced environmental vibrations for unopened lines remains a significant challenge due to the difficulty in determining appropriate excitation inputs. To address this issue, this study proposes an excitation modification method based on field measurements and numerical simulations. First, field measurements [...] Read more.
Accurate prediction of subway-induced environmental vibrations for unopened lines remains a significant challenge due to the difficulty in determining appropriate excitation inputs. To address this issue, this study proposes an excitation modification method based on field measurements and numerical simulations. First, field measurements were conducted on a subway line in Shanghai to analyze vibration propagation characteristics and validate a two-dimensional finite element model (FEM). Subsequently, based on the validated model, frequency-band excitation modification formulas were derived. Distinct from existing empirical approaches that often rely on simple statistical scaling, the proposed method utilizes parametric numerical analyses to determine frequency-dependent correction coefficients for four key parameters: tunnel burial depth, tunnel diameter, soil properties, and train speed. The reliability of the proposed method was verified through theoretical analysis and an engineering application. The results demonstrate that the proposed method improves prediction accuracy for tunnels in similar soft soil regions, reducing the prediction error from 10.1% to 5.2% in the engineering case study. Furthermore, parametric sensitivity analysis reveals that ground vibration levels generally decrease with increases in burial depth, tunnel diameter, and soil stiffness, while exhibiting an increase with train speed. This study improves the reliability of vibration prediction in the absence of direct measurements and provides a practical tool for early-stage design and vibration mitigation for unopened lines. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

11 pages, 2977 KB  
Article
Langasite (LGS) Surface Acoustic Wave (SAW) Pressure Sensor with Kovar Alloy Point-Force Packaging for High-Temperature Environments
by Yabing Ke, Ruoyu Zhang, Chen Fu, Jingting Luo, Zhengxi He and Zhiguang Deng
Sensors 2026, 26(2), 567; https://doi.org/10.3390/s26020567 - 14 Jan 2026
Viewed by 187
Abstract
Langasite (LGS)-based surface acoustic wave (SAW) sensors are promising for high-temperature pressure detection. However, their performance is limited by the low pressure sensitivity of conventional sealed-cavity packaging and temperature-induced measurement drift. To address these issues, this study introduces a novel LGS SAW pressure [...] Read more.
Langasite (LGS)-based surface acoustic wave (SAW) sensors are promising for high-temperature pressure detection. However, their performance is limited by the low pressure sensitivity of conventional sealed-cavity packaging and temperature-induced measurement drift. To address these issues, this study introduces a novel LGS SAW pressure sensor featuring two key innovations: a Kovar alloy point-force packaging structure to amplify pressure-induced LGS substrate deformation, enhancing sensitivity compared to traditional designs, and SAW resonators fabricated on an LGS (0°, 138.5°, 26.7°) cut, selected based on electromechanical simulations for its superior intrinsic pressure sensitivity and monotonic frequency–temperature response, effectively mitigating temperature interference on pressure measurements. Experimental characterizations show the resonator achieves a high Q-value of ~3000 at ~357 MHz. Tested under conditions of 250 °C and 0–0.4 MPa, the sensor exhibits a pressure sensitivity of 0.1866 MHz/MPa with a relative error of only 4.8% versus the finite element method (FEM)-simulated 0.196 MHz/MPa, demonstrating the proposed design’s effectiveness for accurate, stable pressure monitoring in harsh high-temperature environments such as turbine engines and high-temperature manufacturing lines. Full article
(This article belongs to the Special Issue Exploring the Sensing Potential of Acoustic Wave Devices)
Show Figures

Figure 1

11 pages, 2489 KB  
Proceeding Paper
Design and Verification of Computation Model of Side Flap of Wagon Series Rens
by Vladislav Maznichki, Svetoslav Slavchev, Stefan Krastev and Stancho Ivanov
Eng. Proc. 2026, 121(1), 9; https://doi.org/10.3390/engproc2025121009 - 13 Jan 2026
Viewed by 153
Abstract
Side flaps are critical structural components of flat freight wagons, directly affecting cargo safety during transportation and playing an essential role in loading and unloading operations. Over the years, their reliability has been well established, with standardized designs available in UIC technical datasheets. [...] Read more.
Side flaps are critical structural components of flat freight wagons, directly affecting cargo safety during transportation and playing an essential role in loading and unloading operations. Over the years, their reliability has been well established, with standardized designs available in UIC technical datasheets. Despite this standardization, the introduction of newly manufactured or redesigned components necessitates technological validation through Finite Element Method (FEM) simulations and/or physical testing. This requirement holds irrespective of whether the component in question adheres to existing standards or is a novel development. This study presents the creation and application of computational models for the structural sizing and strength assessment of side flaps for flat wagons. The models are verified through a series of physical tests conducted by a research team at the Technical University of Sofia. Full article
Show Figures

Figure 1

24 pages, 10601 KB  
Article
Measurement and Simulation Analysis of Noise and Vibration in a Combine Harvester Cab Based on Pivot Noise Transfer Function and Vibroacoustic Coupling Method
by Kuizhou Ji, Yaoming Li, Yanbin Liu and Hanhao Wang
Machines 2026, 14(1), 90; https://doi.org/10.3390/machines14010090 - 12 Jan 2026
Viewed by 141
Abstract
To address the pronounced issue of noise and vibration within the combine harvester cab, this study proposes a hybrid simulation and experimental validation approach that integrates the pivot noise transfer function (NTF) with a finite element method (FEM)-based vibroacoustic coupling analysis. A coupled [...] Read more.
To address the pronounced issue of noise and vibration within the combine harvester cab, this study proposes a hybrid simulation and experimental validation approach that integrates the pivot noise transfer function (NTF) with a finite element method (FEM)-based vibroacoustic coupling analysis. A coupled finite element model combining the cab structure and its internal acoustic cavity was developed, with the excitation path characteristics explicitly defined. The coupled interaction between structural and acoustic modes, along with its influence on noise transmission, was systematically examined. The analysis revealed a significant transmission peak near 18 Hz at critical pivot Point D under specific excitation directions, indicating strong directional sensitivity in the excitation–response relationship. Experimental validation showed that the discrepancy between simulated and measured responses, including the NTFs, remained within 15%, confirming the accuracy and applicability of the proposed method. This research offers a reliable analytical framework and practical reference for noise and vibration reduction in agricultural machinery cab design. Full article
(This article belongs to the Special Issue Advances in Noise and Vibrations for Machines: Second Edition)
Show Figures

Figure 1

33 pages, 4800 KB  
Review
Toward Integrated Computational Design: A Systematic Mapping of AAD–FEM Practices in Conceptual Structural Engineering
by Lars Olav Toppe, Villem Vaktskjold, Marcin Luczkowski, Francesco Mirko Massaro and Anders Rønnquist
Buildings 2026, 16(2), 271; https://doi.org/10.3390/buildings16020271 - 8 Jan 2026
Viewed by 252
Abstract
The early stages of structural design increasingly make use of computational tools that support rapid exploration, performance-informed decision-making, and closer interaction between design and engineering. This systematic mapping study examines how Algorithm-Aided Design (AAD) and the Finite Element Method (FEM) are applied and [...] Read more.
The early stages of structural design increasingly make use of computational tools that support rapid exploration, performance-informed decision-making, and closer interaction between design and engineering. This systematic mapping study examines how Algorithm-Aided Design (AAD) and the Finite Element Method (FEM) are applied and combined in conceptual design workflows. Based on a structured search across three academic databases and a coding scheme applied to 87 publications, the literature is mapped according to algorithmic strategies, FEM applications, element types, disciplinary domains, and levels of integration. The results show that algorithmic and predictive approaches are reported with increasing frequency after 2020, alongside growing use of surrogate models and optimisation routines. Linear-elastic analyses and shell- or beam-based models are frequently reported, particularly in civil engineering contexts, while nonlinear, dynamic, and solid-element analyses appear more prominently in mechanical domains. More tightly coupled AAD–FEM workflows become increasingly visible after 2021, reflecting a growing interest in real-time or near-real-time simulation feedback during early design exploration. At the same time, the literature highlights persistent challenges related to computational cost, fragmented toolchains, limited interoperability, and the relatively limited use of multiscale or advanced material models in conceptual design. Taken together, the findings suggest that continued progress toward more integrated AAD–FEM workflows is closely tied to advances in computational efficiency, improved data exchange and interoperability, and the development of more accessible design–analysis environments across disciplinary boundaries. Full article
Show Figures

Figure 1

23 pages, 65931 KB  
Article
Numerical Investigation of the Fatigue Behavior of Lattice Structures Under Compression–Compression Loading
by Matthias Greiner, Andreas Kappel, Marc Röder and Christian Mittelstedt
J. Compos. Sci. 2026, 10(1), 28; https://doi.org/10.3390/jcs10010028 - 7 Jan 2026
Viewed by 407
Abstract
Recent years have shown that additive manufacturing is able to significantly increase the potential for enhancing lightweight structural design. In particular, strut-based lattices have attracted considerable research interest due to their promising mechanical performance in lightweight engineering applications. While the quasi-static properties of [...] Read more.
Recent years have shown that additive manufacturing is able to significantly increase the potential for enhancing lightweight structural design. In particular, strut-based lattices have attracted considerable research interest due to their promising mechanical performance in lightweight engineering applications. While the quasi-static properties of such lattices are relatively well established, their fatigue behavior remains insufficiently understood. This work presents a numerical investigation of the fatigue life of laser powder bed-fused strut-based lattices using the finite element method (FEM). Periodic AlSi10Mg lattice structures with two different unit cells, bcc and f2ccz, and three different aspect ratios were analyzed under uniaxial compression–compression loading. The stress-life approach was used to model the fatigue failure of the representative unit cells in the high-cycle fatigue region. The numerical predictions were compared with experimental results, showing good agreement between simulations and physical tests. The findings highlighted that the fatigue response was primarily governed by aspect ratio, unit cell topology, bulk material properties, and mean stress imposed by the load ratio. Moreover, stress concentrations arising from notch effects in the nodal regions were identified as critical fatigue crack initiation sites. Full article
(This article belongs to the Special Issue Lattice Structures)
Show Figures

Figure 1

Back to TopTop