Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (110)

Search Parameters:
Keywords = finger thickness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4156 KiB  
Article
Numerical and Experimental Study on Deposition Mechanism of Laser-Assisted Plasma-Sprayed Y2O3 Coating
by Hui Zou, Xutao Zhao, Bin Fu, Huabao Yang and Chengda Sun
Coatings 2025, 15(8), 904; https://doi.org/10.3390/coatings15080904 (registering DOI) - 2 Aug 2025
Viewed by 180
Abstract
Due to the limitations of high speed and short time in plasma-spraying experiments, this study established a simulation model of Y2O3 multi-particle deposition to discuss the influence of laser loading on coating-deposition behavior and performance. According to the simulation results, [...] Read more.
Due to the limitations of high speed and short time in plasma-spraying experiments, this study established a simulation model of Y2O3 multi-particle deposition to discuss the influence of laser loading on coating-deposition behavior and performance. According to the simulation results, the temperature of coating particles under laser loading displays a gradient distribution, with the surface having the highest temperature. The particles deposit on the substrate to form uniform pits of a certain depth. Plastic deformation causes maximum stress to occur at the edges of the pits and maximum strain to occur on the sidewall of the pits. The deposition region had both compressive and tensile stresses, and laser loading greatly reduced the tensile stresses’ magnitude while having less of an impact on the particle strains. Laser assistance promotes further melting of particles, reduces coating thickness, lowers coating porosity to 3.94%, increases hardness to 488 MPa, reduces maximum pore size from 68 µm to 32 µm, and causes particle sputtering to gradually evolve from being disc-shaped to being finger-shaped, creating cavities at the coating edges. The comparison between the surface morphology and the cross-section pores of the experimentally prepared coating verified the rationality and viability of the simulation work. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Figure 1

18 pages, 2110 KiB  
Article
Evaluation of HoloLens 2 for Hand Tracking and Kinematic Features Assessment
by Jessica Bertolasi, Nadia Vanessa Garcia-Hernandez, Mariacarla Memeo, Marta Guarischi and Monica Gori
Virtual Worlds 2025, 4(3), 31; https://doi.org/10.3390/virtualworlds4030031 - 3 Jul 2025
Viewed by 551
Abstract
The advent of mixed reality (MR) systems has revolutionized human–computer interactions by seamlessly integrating virtual elements with the real world. Devices like the HoloLens 2 (HL2) enable intuitive, hands-free interactions through advanced hand-tracking technology, making them valuable in fields such as education, healthcare, [...] Read more.
The advent of mixed reality (MR) systems has revolutionized human–computer interactions by seamlessly integrating virtual elements with the real world. Devices like the HoloLens 2 (HL2) enable intuitive, hands-free interactions through advanced hand-tracking technology, making them valuable in fields such as education, healthcare, engineering, and training simulations. However, despite the growing adoption of MR, there is a noticeable lack of comprehensive comparisons between the hand-tracking accuracy of the HL2 and high-precision benchmarks like motion capture systems. Such evaluations are essential to assess the reliability of MR interactions, identify potential tracking limitations, and improve the overall precision of hand-based input in immersive applications. This study aims to assess the accuracy of HL2 in tracking hand position and measuring kinematic hand parameters, including joint angles and lateral pinch span (distance between thumb and index fingertips), using its tracking data. To achieve this, the Vicon motion capture system (VM) was used as a gold-standard reference. Three tasks were designed: (1) finger tracing of a 2D pattern in 3D space, (2) grasping various common objects, and (3) lateral pinching of objects with varying sizes. Task 1 tests fingertip tracking, Task 2 evaluates joint angle accuracy, and Task 3 examines the accuracy of pinch span measurement. In all tasks, HL2 and VM simultaneously recorded hand positions and movements. The data captured in Task 1 were analyzed to evaluate HL2’s hand-tracking capabilities against VM. Finger rotation angles from Task 2 and lateral pinch span from Task 3 were then used to assess HL2’s accuracy compared to VM. The results indicate that the HL2 exhibits millimeter-level errors compared to Vicon’s tracking system in Task 1, spanning in a range from 2 mm to 4 mm, suggesting that HL2’s hand-tracking system demonstrates good accuracy. Additionally, the reconstructed grasping positions in Task 2 from both systems show a strong correlation and an average error of 5°, while in Task 3, the accuracy of the HL2 is comparable to that of VM, improving performance as the object thickness increases. Full article
Show Figures

Figure 1

14 pages, 990 KiB  
Article
Performance of Ultra-High-Frequency Ultrasound in the Evaluation of Skin Involvement in Systemic Sclerosis: A Cross-Sectional Pilot Study
by Olga Barbara Krammer, Martin Fleck, Boris Ehrenstein, Wolfgang Hartung and Florian Günther
Diagnostics 2025, 15(13), 1600; https://doi.org/10.3390/diagnostics15131600 - 24 Jun 2025
Viewed by 480
Abstract
Objective: The aim of this study was to assess the performance and feasibility of ultra-high-frequency ultrasound (UHF-US) in clinical practice for measuring skin thickness in patients with systemic sclerosis (SSc) compared to age- and sex-matched controls. Materials and Methods: A total [...] Read more.
Objective: The aim of this study was to assess the performance and feasibility of ultra-high-frequency ultrasound (UHF-US) in clinical practice for measuring skin thickness in patients with systemic sclerosis (SSc) compared to age- and sex-matched controls. Materials and Methods: A total of 14 patients with SSc and 14 healthy controls (HCs) were enrolled in the study. All subjects underwent US evaluation of the epidermis, dermis and cutis by three experts in the 17 sites of the modified Rodnan skin score (mRSS). All the sonographers were blinded to the mRSS, which was assessed by an experienced rheumatologist who was not involved in, and blinded to, the US assessment. Results: In comparison to HCs, dermal thickness was significantly higher in patients at six sites: the right (p < 0.001) and left (p = 0.001) finger; right (p = 0.027) and left (p = 0.048) hand; left foot (p = 0.010) and face (p < 0.001). The epidermal layer did not differ significantly. At all mRSS sites except for the chest, there were moderate to strong positive correlations between US-assessed dermal thickness and local mRSS. The interobserver reliability for all sites of the mRSS, with the exception of the face, was good to excellent (with an intraclass correlation coefficient [ICC] ranging from 0.724 to 0.939). Conclusions: These data support the use of UHF-US as an objective and reliable tool for the assessment of skin involvement in patients with SSc. Considering its feasibility in clinical practice, we suggest that US assessment of skin in patients with SSc should be restricted to the dermal layer of the fingers and hands, since they are the sites that skin fibrosis typically starts from. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

19 pages, 13305 KiB  
Article
Customized Pediatric Hand EXoskeleton for Activities of Daily Living (PHEX): Design, Development, and Characterization of an Innovative Finger Module
by Elisa D’Angelo, Gianmarco Latini, Alessandro Ceccarelli, Ludovica Nini, Nevio Luigi Tagliamonte, Loredana Zollo and Fabrizio Taffoni
Appl. Sci. 2025, 15(10), 5694; https://doi.org/10.3390/app15105694 - 20 May 2025
Viewed by 640
Abstract
Research on pediatric hand exoskeletons remains limited compared to that on devices for adults. This paper presents the design and experimental validation of a customizable pediatric finger module, part of a hand exoskeleton tailored to individual anatomical features. The module aims to assist [...] Read more.
Research on pediatric hand exoskeletons remains limited compared to that on devices for adults. This paper presents the design and experimental validation of a customizable pediatric finger module, part of a hand exoskeleton tailored to individual anatomical features. The module aims to assist finger flexion in children with mild spasticity during activities of daily living. A patient-specific design methodology was applied to the case of a 12-year-old child. The finger module integrates compliant dorsal structures and cable-driven transmission with rigid anchoring elements to balance flexibility and structural stability. Different geometries and thickness values were tested to optimize comfort and quantify mechanical performance. Additive manufacturing was adopted to enable rapid prototyping and easy replacement of parts. Tensile and bending tests were conducted to determine stiffness and cable travel. Results support the feasibility of the proposed finger module, offering empirical data for selection and sizing of the actuation system and paving the way for the advancement of new modular pediatric devices. Full article
(This article belongs to the Special Issue Emerging Technologies for Assistive Robotics)
Show Figures

Figure 1

22 pages, 9287 KiB  
Article
On the Feasibility of Adapting the LiVec Tactile Sensing Principle to Non-Planar Surfaces: A Thin, Flexible Tactile Sensor
by Olivia Leslie, David Córdova Bulens and Stephen J. Redmond
Sensors 2025, 25(8), 2544; https://doi.org/10.3390/s25082544 - 17 Apr 2025
Viewed by 564
Abstract
Tactile sensation across the whole hand, including the fingers and palm, is essential for manipulation and, therefore, is expected to be similarly useful for enabling dexterous robot manipulation. Tactile sensation would ideally be distributed (over large surface areas), have a high precision, and [...] Read more.
Tactile sensation across the whole hand, including the fingers and palm, is essential for manipulation and, therefore, is expected to be similarly useful for enabling dexterous robot manipulation. Tactile sensation would ideally be distributed (over large surface areas), have a high precision, and provide measurements in multiple axes, allowing for effective manipulation and interaction with objects of varying shapes, textures, friction, and compliance. Given the complex geometries and articulation of state-of-the-art robotic grippers and hands, they would benefit greatly from their surface being instrumented with a thin, curved, and/or flexible tactile sensor technology. However, the majority of current sensor technologies measure tactile information across a planar sensing surface or instrument-curved skin using relatively bulky camera-based approaches; proportionally in the literature, thin and flexible tactile sensor arrays are an under-explored topic. This paper, presents a thin, flexible, non-camera-based optical tactile sensor design as an investigation into the feasibility of adapting our novel LiVec sensing principle to curved and flexible surfaces. To implement the flexible sensor, flexible PCB technology is utilized in combination with other soft components. This proof-of-concept design eliminates rigid circuit boards, creating a sensor capable of providing localized 3D force and 3D displacement measurements across an array of sensing units in a small-thickness, non-camera-based optical tactile sensor skin covering a curved surface. The sensor consists of 16 sensing units arranged in a uniform 4 × 4 grid with an overall size of 30 mm × 30 mm × 7.2 mm in length, width, and depth, respectively. The sensor successfully estimated local XYZ forces and displacements in a curved configuration across all sixteen sensing units, the average force bias values (μ¯) were −1.04 mN, −0.32 mN, and −1.31 mN, and the average precision (SD¯) was 54.49 mN, 55.16 mN and 97.15 mN, for the X, Y, Z axes, respectively, the average displacement bias values (μ¯) were 1.58 μm, 0.29 μm, and −1.99 μm, and the average precision values (SD¯) were 221.61 μm, 247.74 μm, and 44.93 μm for the X, Y, and Z axes, respectively. This work provides crucial insights into the design and calibration of future curved LiVec sensors for robotic fingers and palms, making it highly suitable for enhancing dexterous robotic manipulation in complex, real-world environments. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

25 pages, 4669 KiB  
Article
Use of Reconstructed Pore Networks for Determination of Effective Transport Parameters of Commercial Ti-Felt PTLs
by Haashir Altaf, Tamara Miličic, Felix Faber, Tanja Vidaković-Koch, Evangelos Tsotsas and Nicole Vorhauer-Huget
Processes 2025, 13(4), 943; https://doi.org/10.3390/pr13040943 - 22 Mar 2025
Viewed by 753
Abstract
The efficiency of an electrolyzer is significantly influenced by mass, heat, and charge transport within its porous transport layer (PTL). The infeasibility of measuring them in-situ makes it challenging to study their influence experimentally, leading to the adoption of various modeling approaches. This [...] Read more.
The efficiency of an electrolyzer is significantly influenced by mass, heat, and charge transport within its porous transport layer (PTL). The infeasibility of measuring them in-situ makes it challenging to study their influence experimentally, leading to the adoption of various modeling approaches. This study applies pore network (PN) modeling to investigate mass transport properties and capillary invasion behavior in three commercial titanium felt PTLs commonly used in proton exchange membrane water electrolyzers (PEMWEs). One PTL has a graded structure. Reconstructed PNs were derived from microcomputed X-ray tomography (µ-CT) data, allowing for a detailed analysis of pore size distributions, absolute and relative permeabilities, capillary pressure curves, and residual liquid saturations. The results from the PN approach are compared to literature correlations. The absolute permeability of all PTLs is between 1.1 × 10−10 m2 and 1.5 × 10−10 m2, with good agreement between PNM results and predictions from the Jackson and James model and the Tomadakis and Sotirchos model, the two latter involving the fiber diameter as a model parameter. The graded PTL, with fiber diameters varying between 25 µm and 40 µm, showed the best agreement with literature correlations. However, the capillary pressure curves exhibited significant deviations from the Leverett and Brooks–Corey equations at low and high liquid saturations, emphasizing the limitations of these correlations. In addition, residual liquid saturation varied strongly with PTL structure. The thicker PTL with a slightly narrower pore size distribution, demonstrated a lower residual liquid saturation (19%) and a more homogeneous invasion compared to the graded PTL (64%), which exhibited significant gas fingering. The results suggest that higher gas saturation could enhance gas removal, with much higher relative permeabilities, despite the greater PTL thickness. In contrast, the graded PTL achieves the highest relative liquid permeability (~70%) while maintaining a relative gas permeability of ~30%. These findings highlight the impact of microstructure on invasion and transport properties and suggest PN modeling as a powerful tool for their study. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

11 pages, 2612 KiB  
Article
In the Era of Advanced Microsurgery, Is There Still a Place for Pedicled Abdominal Flaps? A Retrospective Analysis
by Marta Jagosz, Piotr Węgrzyn, Maja Smorąg, Patryk Ostrowski, Michał Bonczar, Michał Chęciński, Szymon Manasterski and Ahmed Elsaftawy
J. Clin. Med. 2025, 14(5), 1696; https://doi.org/10.3390/jcm14051696 - 3 Mar 2025
Cited by 1 | Viewed by 838
Abstract
Background: Upper extremity reconstruction poses a significant challenge due to the complex anatomical and functional requirements of the hand and forearm. While free flaps have become the gold standard, pedicled abdominal flaps remain a valuable alternative, especially in cases where microsurgical anastomosis [...] Read more.
Background: Upper extremity reconstruction poses a significant challenge due to the complex anatomical and functional requirements of the hand and forearm. While free flaps have become the gold standard, pedicled abdominal flaps remain a valuable alternative, especially in cases where microsurgical anastomosis is contraindicated or unfeasible. This study evaluates the efficacy and outcomes of free-style pedicled abdominal flaps in reconstructing complex upper limb defects. Methods: A retrospective review was conducted on 20 patients who underwent soft tissue reconstruction of the upper extremity using free-style pedicled abdominal flaps between January 2019 and June 2024. Patient demographics, injury mechanisms, flap design, postoperative complications, and clinical outcomes were analyzed. Flap design was customized to defect size and location, utilizing single, double, triple, and tunneled flap configurations where necessary. Results: Stable soft tissue coverage was achieved in all cases without the need for additional free flap procedures. Complications included surgical site infections (n = 2), marginal necrosis (n = 2), partial flap necrosis (n = 2), and complete necrosis (n = 2), with no cases requiring free flap conversion. Long-term follow-up revealed no finger stiffness or loss of hand function. Donor site morbidity was minimal, with only one case requiring a split-thickness skin graft for closure. Conclusions: Despite advancements in microsurgical techniques, free-style pedicled abdominal flaps remain a vital reconstructive option for upper limb defects, particularly in patients with complex, large, or circumferential injuries. Their versatility, reliable vascularity, and ability to conform to various defect shapes underscore their enduring relevance in modern reconstructive surgery. Full article
Show Figures

Figure 1

12 pages, 3548 KiB  
Article
A Coaxial Triboelectric Fiber Sensor for Human Motion Recognition and Rehabilitation via Machine Learning
by Qicheng Ding, Aamir Rasheed, Haonan Zhang, Sara Ajmal, Ghulam Dastgeer, Kamoladdin Saidov, Olim Ruzimuradov, Shavkat Mamatkulov, Wen He and Peihong Wang
Nanoenergy Adv. 2024, 4(4), 355-366; https://doi.org/10.3390/nanoenergyadv4040022 - 4 Dec 2024
Viewed by 1505
Abstract
This work presents the fabrication of a coaxial fiber triboelectric sensor (CFTES) designed for efficient energy harvesting and gesture detection in wearable electronics. The CFTES was fabricated using a facile one-step wet-spinning approach, with PVDF-HFP/CNTs/Carbon black as the conductive electrode and PVDF-HFP/MoS2 [...] Read more.
This work presents the fabrication of a coaxial fiber triboelectric sensor (CFTES) designed for efficient energy harvesting and gesture detection in wearable electronics. The CFTES was fabricated using a facile one-step wet-spinning approach, with PVDF-HFP/CNTs/Carbon black as the conductive electrode and PVDF-HFP/MoS2 as the triboelectric layer. The incorporation of 1T phase MoS2 into the PVDF-HFP matrix significantly improves the sensor’s output owing to its electron capture capabilities. The sensor’s performance was carefully optimized by varying the weight percentage of MoS2, the thickness of the fiber core, and the CNT ratio. The optimized CFTES, with a core thickness of 156 µm and 0.6 wt% MoS2, achieved a stable output voltage of ~8.2 V at a frequency of 4 Hz and 10 N applied force, exhibiting remarkable robustness over 3600 s. Furthermore, the CFTES effectively detects human finger gestures, with machine learning algorithms further enhancing its accuracy. This innovative sensor offers a sustainable solution for energy transformation and has promising applications in smart portable power sources and wearable electronic devices. Full article
Show Figures

Figure 1

16 pages, 5893 KiB  
Article
Development of Rehabilitation Glove: Soft Robot Approach
by Tomislav Bazina, Marko Kladarić, Ervin Kamenar and Goran Gregov
Actuators 2024, 13(12), 472; https://doi.org/10.3390/act13120472 - 22 Nov 2024
Cited by 1 | Viewed by 1953
Abstract
This study describes the design, simulation, and development process of a rehabilitation glove driven by soft pneumatic actuators. A new, innovative finger soft actuator design has been developed through detailed kinematic and workspace analysis of anatomical fingers and their actuators. The actuator design [...] Read more.
This study describes the design, simulation, and development process of a rehabilitation glove driven by soft pneumatic actuators. A new, innovative finger soft actuator design has been developed through detailed kinematic and workspace analysis of anatomical fingers and their actuators. The actuator design combines cylindrical and ribbed geometries with a reinforcing element—a thicker, less extensible structure—resulting in an asymmetric cylindrical bellow actuator driven by positive pressure. The performance of the newly designed actuator for the rehabilitation glove was validated through numerical simulation in open-source software. The simulation results indicate actuators’ compatibility with human finger trajectories. Additionally, a rehabilitation glove was 3D-printed from soft materials, and the actuator’s flexibility and airtightness were analyzed across different wall thicknesses. The 0.8 mm wall thickness and thermoplastic polyurethane (TPU) material were chosen for the final design. Experiments confirmed a strong linear relationship between bending angle and pressure variations, as well as joint elongation and pressure changes. Next, pseudo-rigid kinematic models were developed for the index and little finger soft actuators, based solely on pressure and link lengths. The workspace of the soft actuator, derived through forward kinematics, was visually compared to that of the anatomical finger and experimentally recorded data. Finally, an ergonomic assessment of the complete rehabilitation glove in interaction with the human hand was conducted. Full article
(This article belongs to the Special Issue Modelling and Motion Control of Soft Robots)
Show Figures

Figure 1

21 pages, 11089 KiB  
Article
Acoustoelectric Effect due to an In-Depth Inhomogeneous Conductivity Change in ZnO/Fused Silica Substrates
by Cinzia Caliendo, Massimiliano Benetti, Domenico Cannatà and Farouk Laidoudi
Sensors 2024, 24(19), 6399; https://doi.org/10.3390/s24196399 - 2 Oct 2024
Viewed by 1048
Abstract
The acoustoelectric (AE) effect induced by the absorption of ultraviolet (UV) light at 365 nm in piezoelectric ZnO films was theoretically and experimentally studied. c-ZnO films 4.0 µm thick were grown by the RF reactive magnetron sputtering technique onto fused silica substrates at [...] Read more.
The acoustoelectric (AE) effect induced by the absorption of ultraviolet (UV) light at 365 nm in piezoelectric ZnO films was theoretically and experimentally studied. c-ZnO films 4.0 µm thick were grown by the RF reactive magnetron sputtering technique onto fused silica substrates at 200 °C. A surface acoustic wave (SAW) delay line was fabricated with two split-finger Al interdigital transducers (IDTs) photolithographically implemented onto the ZnO-free surface to excite and reveal the propagation of the fundamental Rayleigh wave and its third harmonic at about 39 and 104 MHz. A small area of a few square millimeters on the surface of the ZnO layer, in between the two IDTs, was illuminated by UV light at different light power values (from about 10 mW up to 1.2 W) through the back surface of the SiO2 substrate, which is optically transparent. The UV absorption caused a change of the ZnO electrical conductivity, which in turn affected the velocity and insertion loss (IL) of the two waves. It was experimentally observed that the phase velocity of the fundamental and third harmonic waves decreased with an increase in the UV power, while the IL vs. UV power behavior differed at large UV power values: the Rayleigh wave underwent a single peak in attenuation, while its third harmonic underwent a further peak. A two-dimensional finite element study was performed to simulate the waves IL and phase velocity vs. the ZnO electrical conductivity, under the assumption that the ZnO layer conductivity undergoes an in-depth inhomogeneous change according to an exponential decay law, with a penetration depth of 325 nm. The theoretical results predicted single- and double-peak IL behavior for the fundamental and harmonic wave due to volume conductivity changes, as opposed to the AE effect induced by surface conductivity changes for which a single-peak IL behavior is expected. The phenomena predicted by the theoretical models were confirmed by the experimental results. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

14 pages, 3908 KiB  
Article
Experimental and Theoretical Analysis of Rayleigh and Leaky-Sezawa Waves Propagating in ZnO/Fused Silica Substrates
by Cinzia Caliendo, Massimiliano Benetti, Domenico Cannatà, Farouk Laidoudi and Gaetana Petrone
Micromachines 2024, 15(8), 974; https://doi.org/10.3390/mi15080974 - 29 Jul 2024
Cited by 3 | Viewed by 1532
Abstract
Piezoelectric c-axis oriented zinc oxide (ZnO) thin films, from 1.8 up to 6.6 µm thick, have been grown by the radio frequency magnetron sputtering technique onto fused silica substrates. A delay line consisting of two interdigital transducers (IDTs) with wavelength λ = 80 [...] Read more.
Piezoelectric c-axis oriented zinc oxide (ZnO) thin films, from 1.8 up to 6.6 µm thick, have been grown by the radio frequency magnetron sputtering technique onto fused silica substrates. A delay line consisting of two interdigital transducers (IDTs) with wavelength λ = 80 µm was photolithographically implemented onto the surface of the ZnO layers. Due to the IDTs’ split-finger configuration and metallization ratio (0.5), the propagation of the fundamental, third, and ninth harmonic Rayleigh waves is excited; also, three leaky surface acoustic waves (SAWs) were detected travelling at a velocity close to that of the longitudinal bulk wave in SiO2. The acoustic waves’ propagation in ZnO/fused silica was simulated by using the 2D finite-element method (FEM) technique to identify the nature of the experimentally detected waves. It turned out that, in addition to the fundamental and harmonic Rayleigh waves, high-frequency leaky surface waves are also excited by the harmonic wavelengths; such modes are identified as Sezawa waves under the cut-off, hereafter named leaky Sezawa (LS). The velocities of all the modes was found to be in good agreement with the theoretically calculated values. The existence of a low-loss region in the attenuation vs. layer thickness curve for the Sezawa wave below the cut-off was theoretically predicted and experimentally assessed. Full article
(This article belongs to the Special Issue Novel Surface and Bulk Acoustic Wave Devices)
Show Figures

Figure 1

14 pages, 5773 KiB  
Article
Integrated Metagenomic and Metabolomics Profiling Reveals Key Gut Microbiota and Metabolites Associated with Weaning Stress in Piglets
by Xianrui Zheng, Liming Xu, Qingqing Tang, Kunpeng Shi, Ziyang Wang, Lisha Shi, Yueyun Ding, Zongjun Yin and Xiaodong Zhang
Genes 2024, 15(8), 970; https://doi.org/10.3390/genes15080970 - 23 Jul 2024
Cited by 3 | Viewed by 2084
Abstract
(1) Background: Weaning is a challenging and stressful event in the pig’s life, which disrupts physiological balance and induces oxidative stress. Microbiota play a significant role during the weaning process in piglets. Therefore, this study aimed to investigate key gut microbiota and metabolites [...] Read more.
(1) Background: Weaning is a challenging and stressful event in the pig’s life, which disrupts physiological balance and induces oxidative stress. Microbiota play a significant role during the weaning process in piglets. Therefore, this study aimed to investigate key gut microbiota and metabolites associated with weaning stress in piglets. (2) Methods: A total of ten newborn piglet littermates were randomly assigned to two groups: S (suckling normally) and W (weaned at 21 d; all euthanized at 23 d). Specimens of the cecum were dehydrated with ethanol, cleared with xylene, embedded in paraffin, and cut into 4 mm thick serial sections. After deparaffinization, the sections were stained with hematoxylin and eosin (H&E) for morphometric analysis. Cecal metagenomic and liver LC-MS-based metabolomics were employed in this study. Statistical comparisons were performed by a two-tailed Student’s t-test, and p < 0.05 indicated statistical significance. (3) Results: The results showed that weaning led to intestinal morphological damage in piglets. The intestinal villi of suckling piglets were intact, closely arranged in an orderly manner, and finger-shaped, with clear contours of columnar epithelial cells. In contrast, the intestines of weaned piglets showed villous atrophy and shedding, as well as mucosal bleeding. Metagenomics and metabolomics analyses showed significant differences in composition and function between suckling and weaned piglets. The W piglets showed a decrease and increase in the relative abundance of Bacteroidetes and Proteobacteria (p < 0.05), respectively. The core cecal flora in W piglets were Campylobacter and Clostridium, while those in S piglets were Prevotella and Lactobacillus. At the phylum level, the relative abundance of Bacteroidetes significantly decreased (p < 0.05) in weaned piglets, while Proteobacteria significantly increased (p < 0.05). Significant inter-group differences were observed in pathways and glycoside hydrolases in databases, such as the KEGG and CAZymes, including fructose and mannose metabolism, salmonella infection, antifolate resistance, GH135, GH16, GH32, and GH84. We identified 757 differential metabolites between the groups through metabolomic analyses—350 upregulated and 407 downregulated (screened in positive ion mode). In negative ion mode, 541 differential metabolites were identified, with 270 upregulated and 271 downregulated. Major differential metabolites included glycerophospholipids, histidine, nitrogen metabolism, glycine, serine, threonine, β-alanine, and primary bile acid biosynthesis. The significant differences in glycine, serine, and threonine metabolites may be potentially related to dysbiosis caused by weaning stress. Taken together, the identification of microbiome and metabolome signatures of suckling and weaned piglets has paved the way for developing health-promoting nutritional strategies, focusing on enhancing bacterial metabolite production in early life stages. Full article
(This article belongs to the Special Issue Advances in Pig Genetics and Breeding)
Show Figures

Figure 1

19 pages, 4026 KiB  
Article
Effect of Viscosity and Air Gap within the Spinneret on the Morphology and Mechanical Properties of Hollow-Fiber Polymer Membranes for Separation Performance
by Sirisak Seansukato, Sathish Kumar Ramachandran, Sivamesh Lamlong, Wirach Taweepreda and Gangasalam Arthanareeswaran
Polymers 2024, 16(14), 2090; https://doi.org/10.3390/polym16142090 - 22 Jul 2024
Cited by 2 | Viewed by 1775
Abstract
Hollow-fiber membranes for nanofiltration were prepared from the blending of Poly (ethylene glycol) (PEG) with Poly (vinyl chloride) (PVC) with different PEG molecular weights (400 and 4000 g/mol) and PVC via a dry/wet spinning process. In the spinning process, the effects of air [...] Read more.
Hollow-fiber membranes for nanofiltration were prepared from the blending of Poly (ethylene glycol) (PEG) with Poly (vinyl chloride) (PVC) with different PEG molecular weights (400 and 4000 g/mol) and PVC via a dry/wet spinning process. In the spinning process, the effects of air gap, wind-up speed, dope extrusion rate, and bore extrusion rate were examined. In addition, the different lengths of the center tube, which acted as the inner-side fiber diameter during the preparation of hollow-fiber membranes, were studied. This research was investigated in order to observe the morphological, dielectric, and dynamic mechanical thermal properties to identify a suitable preparation of a hollow-fiber membrane for feasible applications. The morphology of the PVC-580 blended PEG-400 5 weight percent hollow-fiber membrane was seen to have a dense skin on both the inner and outer fiber surface, along with a suitable dope viscosity. Moreover, it offered finger-like substructures that could provide a high applicable feed-stream permeability and selectivity. Finger-like substructures were present on the near inner fiber surface at the controlled center-tube length of 0.3 cm, more so than at the center tube of 1 cm. This was because the solvent and non-solvent in the lumen tube exchanged more quickly than they did in the coagulant bath. The effect of the wind-up speed during the spinning process was significantly influenced by an affordable hollow fiber that can be indicated by the drawing ratio (λ). It was found that the drawing ratio of 3.3 showed a thickness thinner than 2.6 and 2.0, respectively. In summary, a controlled wind-up speed, an acceptable dope viscosity, and—most importantly—an agglomerated time resulted in membrane preparation. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

22 pages, 9271 KiB  
Article
Structural Design and Control Performance Study of Flexible Finger Mechanisms for Robot End Effectors
by Yeming Zhang, Kai Wang, Maolin Cai, Yan Shi, Sanpeng Gong, Hui Zhang and Pengyun Zhang
Actuators 2024, 13(7), 271; https://doi.org/10.3390/act13070271 - 18 Jul 2024
Cited by 1 | Viewed by 1704
Abstract
Most traditional rigid grippers can cause damage to the surface of objects in actual production processes and are susceptible to factors such as different shapes, sizes, materials, and positions of the product. This article studies a flexible finger for flexible grippers, more commonly [...] Read more.
Most traditional rigid grippers can cause damage to the surface of objects in actual production processes and are susceptible to factors such as different shapes, sizes, materials, and positions of the product. This article studies a flexible finger for flexible grippers, more commonly described as PneuNet, designs the structure of the finger, discusses the processing and manufacturing methods of the flexible finger, and prepares a physical model. The influence of structural parameters such as the thickness of the flexible finger and the angle of the air chamber on the bending performance of the finger was analyzed using the Abaqus simulation tool. An RBF-PID control algorithm was used to stabilize the internal air pressure of the flexible fingers. A flexible finger stabilization experimental platform was built to test the ultimate pressure, ultimate bending angle, and end contact force of the fingers, and the simulation results were experimentally verified. The results show that when the thickness of the flexible finger is 2 mm and the air chamber angle is 0 deg, the maximum bending angle of the flexible finger can reach about 136.3°. Under the same air pressure, the bending angle is inversely correlated with the air chamber angle and finger thickness. The experimental error of the bending angle does not exceed 3%, which is consistent with the simulation results as a whole. When the thickness is 2 mm, the maximum end contact force can reach about 1.32 N, and the end contact force decreases with the increase in the air chamber angle. The RBF-PID control algorithm used has improved response speed and a better control effect compared to traditional PID control algorithms. This article provides a clear reference for the application of flexible fingers and flexible grippers, and this research method can be applied to the analysis and design optimization of other soft brakes. Full article
(This article belongs to the Special Issue Advancement in the Design and Control of Robotic Grippers)
Show Figures

Figure 1

10 pages, 1229 KiB  
Article
Skin Ultrasound Assessment of Patients with Systemic Scleroderma—An Observational Study
by Camelia Palici, Paulina Lucia Ciurea, Cristina Elena Bita, Andreea Lili Barbulescu, Alesandra Florescu, Anca Emanuela Musetescu, Florentin Vreju and Stefan Cristian Dinescu
J. Pers. Med. 2024, 14(7), 734; https://doi.org/10.3390/jpm14070734 - 8 Jul 2024
Viewed by 1636
Abstract
This study aims to analyze the changes in dermal thickness in patients with systemic scleroderma (SSc) in comparison with normal skin and also compare clinical forms with diffuse and limited cutaneous involvement. The study group consisted of female patients diagnosed with SSc with [...] Read more.
This study aims to analyze the changes in dermal thickness in patients with systemic scleroderma (SSc) in comparison with normal skin and also compare clinical forms with diffuse and limited cutaneous involvement. The study group consisted of female patients diagnosed with SSc with a disease history not exceeding 5 years. The areas of interest for ultrasound examination included the proximal phalanx of the third finger, the second intermetacarpal space, and the extension surface of the lower third of the forearm. The study included 20 patients diagnosed with SSc and 14 controls. SSc patients were subdivided into two subgroups based on the clinical form. Compared to the control group, patients with SSc had higher mean measurements in all three skin areas, with statistically significant differences in the hand and forearm areas. Patients with diffuse SSc displayed, on average, higher skin thickness compared to limited SSc in all skin areas examined, with a statistically significant difference only in the forearm area. Based on disease manifestations, significant differences were observed only with regard to the presence of pulmonary hypertension in the diffuse SSc group. In conclusion, skin ultrasound is a useful and accessible imaging method for diagnosing and quantifying dermal fibrosis in systemic scleroderma. Full article
(This article belongs to the Section Clinical Medicine, Cell, and Organism Physiology)
Show Figures

Figure 1

Back to TopTop