Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = fine woody fuels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 8467 KiB  
Article
Quality Enhancement of Torrefied Biopellets Prepared by Unused Forest Biomass and Wood Chip Residues in Pulp Mills
by Tae-Gyeong Lee, Chul-Hwan Kim, Hyeong-Hun Park, Ju-Hyun Park, Min-Sik Park and Jae-Sang Lee
Appl. Sci. 2024, 14(20), 9398; https://doi.org/10.3390/app14209398 - 15 Oct 2024
Cited by 3 | Viewed by 1382
Abstract
The effects of torrefaction of the biopellets made from hardwood chip residue (HW), camellia oilseed cake (CO), and pruning remnants of the toothache tree (TA) and mulberry tree (MT) were evaluated. Torrefaction of the biopellets reduced the volatile matter content of biopellets by [...] Read more.
The effects of torrefaction of the biopellets made from hardwood chip residue (HW), camellia oilseed cake (CO), and pruning remnants of the toothache tree (TA) and mulberry tree (MT) were evaluated. Torrefaction of the biopellets reduced the volatile matter content of biopellets by 18–58% and increased their heating value by 18–58% without negatively impacting durability or fines content. Torrefaction also reduced the initial ignition time of biopellets by 50–59% and prolonged their combustion duration by 15–24%. Regardless of the type of feedstock, all biopellets exhibited mass yields in the range of 60–80% and energy yields ranging from 80–95%. The novelty of this study lies in the application of torrefaction to already-formed biopellets, which enhances pellet quality without the need for binders, and the use of unused forest biomass and wood chip residue from pulp mills. The use of unused forest biomass and wood chip residue from pulp mills for biopellet production not only provides a sustainable and efficient method for waste utilization but also contributes to environmental conservation by reducing the reliance on fossil fuels. Overall, the torrefaction of biopellets represents a promising technology for producing high-quality solid biofuel from a variety of woody biomass feedstocks without compromising pelletizing efficiency. Full article
(This article belongs to the Section Applied Industrial Technologies)
Show Figures

Figure 1

20 pages, 6679 KiB  
Article
Characterization of Wildland Fuels Based on Topography and Forest Attributes in North-Central Appalachia
by Ziyu Dong and Roger A. Williams
Fire 2024, 7(4), 145; https://doi.org/10.3390/fire7040145 - 17 Apr 2024
Cited by 2 | Viewed by 1655
Abstract
Forest ecosystem attributes and their spatial variation across the landscape have the potential to subsequently influence variations in fire behavior. Understanding this variation is critical to fire managers in their ability to predict fire behavior and rate of spread. However, a fine-scale description [...] Read more.
Forest ecosystem attributes and their spatial variation across the landscape have the potential to subsequently influence variations in fire behavior. Understanding this variation is critical to fire managers in their ability to predict fire behavior and rate of spread. However, a fine-scale description of fuel patterns and their relationship with overstory and understory attributes for north-central Appalachia is lacking due to the complicated quantification of variations in topography, forest attributes, and their interactions. To better understand the fire environment in north-central Appalachia and provide a comprehensive evaluation based on fine-scale topography, ninety-four plots were established across different aspects and slope positions within an oak–hickory forest located in southeast Ohio, USA, which historically fell within fire regime group I with a fire return interval ranging from 7 to 26 years. The data collected from these plots were analyzed by four components of the fire environment, which include the overstory, understory, shrub and herbaceous layers, surface fuels, and fuel conditions. The results reveal that fuel bed composition changed across aspects and slope position, and it is a primary factor that influences the environment where fire occurs. Specifically, the oak fuel load was highest on south-facing slopes and in upper slope positions, while maple fuel loads were similar across all aspects and slope positions. Oak and maple basal areas were the most significant factors in predicting the oak and maple fuel load, respectively. In the shrub and undergrowth layers, woody plant coverage was higher in upper slope positions compared to lower slope positions. Overstory canopy closure displayed a significant negative correlation with understory trees/ha and woody plant variables. The findings in this study can provide a better understanding of fine-scale fuel bed and vegetation characteristics, which can subsequently feed into fire behavior modeling research in north-central Appalachia based on the different characterizations of the fire environment by landscape position. Full article
Show Figures

Figure 1

38 pages, 5526 KiB  
Review
Insights into Properties of Biomass Energy Pellets Made from Mixtures of Woody and Non-Woody Biomass: A Meta-Analysis
by Rajitha Lakshan Rupasinghe, Priyan Perera, Rangika Bandara, Hiran Amarasekera and Richard Vlosky
Energies 2024, 17(1), 54; https://doi.org/10.3390/en17010054 - 21 Dec 2023
Cited by 14 | Viewed by 4039
Abstract
There is a widespread global shift toward renewable energy sources, where the emphasis is on enhancing the utilization of renewable energy due to the rising costs associated with fossil fuels. In this light, biomass pellets made from woody and non-woody biomass and blends [...] Read more.
There is a widespread global shift toward renewable energy sources, where the emphasis is on enhancing the utilization of renewable energy due to the rising costs associated with fossil fuels. In this light, biomass pellets made from woody and non-woody biomass and blends have gained increased attention. Extensive research has been conducted globally to enhance the quality of biomass pellets and to explore the potential to combine woody biomass with other non-woody forms of biomass in biomass pellet production. The heterogeneity of the raw materials used and resulting properties of the biomass pellets have led to the establishment of internationally recognized benchmarks such as the International Organization for Standardization (ISO) 17225 standard to regulate pellet quality. In this article, the key mechanical, physical, chemical, and energy properties of pellets made of different non-woody herbaceous biomass are investigated, and the available test values for such properties of the pellets were meta-analyzed. A comparison of the properties of these pellets with the relevant standards was also performed. A meta-analysis of studies on biomass pellet production was conducted via a comprehensive Systematic Literature Review (SLR). The SLR focuses on determining and analyzing the average values for the key physical properties of biomass pellets using woody biomass as a component in concert with other biomass materials. In addition, the optimal range of mixtures of woody and non-woody biomass was reviewed to produce biomass pellets with potential acceptance in the marketplace. The majority of studies included in the SLR concentrate on pellets made from a mixture of biomass materials. The results show that the average values for wood/non-wood mixtures such as pellet diameter, pellet length, moisture content, ash content, fine particle content, gross calorific value, and bulk density were found to adhere to the ISO standards. However, the average mechanical durability fell short of meeting the requirements of the standards. Additional comparisons were nitrogen, sulfur, volatile matter, and fixed carbon content. The findings in this meta-analysis could be useful in directing future research focused on producing high-quality and efficient biomass pellets derived from biomass blends and mixtures. Full article
(This article belongs to the Special Issue Sustainable Energy from Biomass and Waste)
Show Figures

Figure 1

27 pages, 25124 KiB  
Article
Delineating and Reconstructing 3D Forest Fuel Components and Volumes with Terrestrial Laser Scanning
by Zhouxin Xi, Laura Chasmer and Chris Hopkinson
Remote Sens. 2023, 15(19), 4778; https://doi.org/10.3390/rs15194778 - 30 Sep 2023
Cited by 13 | Viewed by 3325
Abstract
Predictive accuracy in wildland fire behavior is contingent on a thorough understanding of the 3D fuel distribution. However, this task is complicated by the complex nature of fuel forms and the associated constraints in sampling and quantification. In this study, twelve terrestrial laser [...] Read more.
Predictive accuracy in wildland fire behavior is contingent on a thorough understanding of the 3D fuel distribution. However, this task is complicated by the complex nature of fuel forms and the associated constraints in sampling and quantification. In this study, twelve terrestrial laser scanning (TLS) plot scans were sampled within the mountain pine beetle-impacted forests of Jasper National Park, Canada. The TLS point clouds were delineated into eight classes, namely individual-tree stems, branches, foliage, downed woody logs, sapling stems, below-canopy branches, grass layer, and ground-surface points using a transformer-based deep learning classifier. The fine-scale 3D architecture of trees and branches was reconstructed using a quantitative structural model (QSM) based on the multi-class components from the previous step, with volume attributes extracted and analyzed at the branch, tree, and plot levels. The classification accuracy was evaluated by partially validating the results through field measurements of tree height, diameter-at-breast height (DBH), and live crown base height (LCBH). The extraction and reconstruction of 3D wood components enable advanced fuel characterization with high heterogeneity. The existence of ladder trees was found to increase the vertical overlap of volumes between tree branches and below-canopy branches from 8.4% to 10.8%. Full article
(This article belongs to the Special Issue 3D Point Clouds in Forest Remote Sensing III)
Show Figures

Figure 1

19 pages, 4417 KiB  
Article
Wildfire Effects on Rangeland Health in Three Thermo-Mediterranean Vegetation Types in a Small Islet of Eastern Aegean Sea
by Zoi M. Parissi, Apostolos P. Kyriazopoulos, Theodora Apostolia Drakopoulou, Georgios Korakis and Eleni M. Abraham
Land 2023, 12(7), 1413; https://doi.org/10.3390/land12071413 - 14 Jul 2023
Cited by 2 | Viewed by 2101
Abstract
Sclerophyllous scrub formations, the main vegetation type in many islands of the Aegean area, provide many goods and services to humans, such as biodiversity, soil protection, and forage for livestock and wildlife. Dominant shrub species of sclerophyllous formations are well adapted to dry [...] Read more.
Sclerophyllous scrub formations, the main vegetation type in many islands of the Aegean area, provide many goods and services to humans, such as biodiversity, soil protection, and forage for livestock and wildlife. Dominant shrub species of sclerophyllous formations are well adapted to dry season conditions due to various anatomical and physiological mechanisms. As a result, their biomass acts as very flammable, fine fuel, and consequently, wildfires are very common in these ecosystems. Wildfire effects on vegetation and biodiversity in the Mediterranean basin have been studied, and the results are diverse, depending mainly on the vegetation type and frequency of fires. Additionally, post-fire vegetation establishment and structure are critical factors for the implementation of grazing management. The aim of this study was to evaluate the effects of wildfire on species composition, floristic diversity, forage quality, and rangeland health indices related to ecosystem stability and function in three thermo-Mediterranean vegetation types: (1) Sarcopoterium spinosum low formations, (2) low formations of Cistus creticus, and (3) low formations of Cistus creticus in abandoned terraces. The research was conducted on the Oinousses islet, which is located northeast of Chios Island, in May 2013 (one year after the fire). Vegetation sampling was performed along five transects placed in recently burned and adjacent unburned sites of each vegetation type. The plant cover was measured, while the floristic composition, diversity, evenness, and dominance indices were determined for the vegetation data. Additionally, the forage quality was determined in terms of crude protein (CP) and fiber content. The vegetation cover was significantly lower, and the floristic diversity was significantly higher in burned areas in comparison to those in the unburned areas. Woody species, followed by grasses and forbs, dominated in both the burned and unburned areas. However, the percentage of woody species was significantly decreased in the burned areas of Sarcopoterium spinosum and Cistus creticus low formations. On the other hand, the percentage of grasses, forbs, and legumes increased in all cases except in Cistus creticus terraces. The lowest value of the Jaccard Index of similarity between the burned and unburned sites (beta diversity) was observed for Cistus creticus, indicating the effect of fire on the species composition of this vegetation type. The forage quality was found to be improved in all the burned areas, especially in those dominated by Cistus creticus. Finally, fire has a positive impact on the ecosystem’s functions, mainly for Sarcopoterium spinosum low formations. Full article
Show Figures

Figure 1

20 pages, 5921 KiB  
Article
Coarse Woody Debris and Carbon Stocks in Pine Forests after 50 Years of Recovery from Harvesting in Northeastern California
by Jianwei Zhang, Deborah S. Page-Dumroese, Martin F. Jurgensen, Matt Busse and Kim G. Mattson
Forests 2023, 14(3), 623; https://doi.org/10.3390/f14030623 - 20 Mar 2023
Cited by 3 | Viewed by 2091
Abstract
The long-term effects of harvesting on stand carbon (C) pools were assessed in a dry, interior pine-dominated forest at the Blacks Mountain Experimental Forest in northeastern California. Six 8-hectacre plots, established in 1938–1943, were treated as either an uncut control or a heavy-cut [...] Read more.
The long-term effects of harvesting on stand carbon (C) pools were assessed in a dry, interior pine-dominated forest at the Blacks Mountain Experimental Forest in northeastern California. Six 8-hectacre plots, established in 1938–1943, were treated as either an uncut control or a heavy-cut harvest (three-quarters of the stand volume removed). Response variables included C pools in overstory tree and shrub, coarse woody debris (CWD), forest floor, mineral soil (to 30 cm depth), cubicle brown root fragments of wood, fine roots, and ectomycorrhizal root tips. CWD was further classified as intact wood or more highly decayed brown rot or white rot types. CWD nutrient stocks (N, P, K, Ca, and Mg) and soil N content were also measured. In 1992, 50 years after harvest, total ecosystem C was 188 and 204 Mg C ha−1 in the harvest and control treatments or 8% lower (p = 0.02) in the harvest stands. There were changes in the distributions of C pools between the treatments. After 50 years of recovery, most C pools showed statistically non-significant and essentially no change in C pool size from harvests. Notable reductions in C with harvests were declines of 43% in CWD including standing snags (p = 0.09) and a decline of 9% of live tree C (p = 0.35). Increases in C pools after harvest were in a 3-fold build-up of fragmented brown cubicle rot (p = 0.26) and an 11% increase in soil C (p = 0.19). We observed strong evidence of C transfers from CWD to soil C pools with two- to three-fold higher soil C and N concentrations beneath CWD compared to other cover types, and lower CWD pools associated with elevated cubicle brown rot are elevated soil C in the harvests. Our results showed that while harvest effects were subtle after 50 years of regrowth, CWD may play an important role in storing and transferring ecosystem C to soils during recovery from harvesting in these dry, eastside pine forests of California. This poses a tradeoff for managers to choose between keeping CWD for its contribution to C sequestration and its removal as the hazardous fuels. Full article
(This article belongs to the Special Issue Aboveground and Belowground Interaction and Forest Carbon Cycling)
Show Figures

Figure 1

22 pages, 18099 KiB  
Article
Remotely Sensed Fine-Fuel Changes from Wildfire and Prescribed Fire in a Semi-Arid Grassland
by Adam G. Wells, Seth M. Munson, Steven E. Sesnie and Miguel L. Villarreal
Fire 2021, 4(4), 84; https://doi.org/10.3390/fire4040084 - 11 Nov 2021
Cited by 11 | Viewed by 4978 | Correction
Abstract
The spread of flammable invasive grasses, woody plant encroachment, and enhanced aridity have interacted in many grasslands globally to increase wildfire activity and risk to valued assets. Annual variation in the abundance and distribution of fine-fuel present challenges to land managers implementing prescribed [...] Read more.
The spread of flammable invasive grasses, woody plant encroachment, and enhanced aridity have interacted in many grasslands globally to increase wildfire activity and risk to valued assets. Annual variation in the abundance and distribution of fine-fuel present challenges to land managers implementing prescribed burns and mitigating wildfire, although methods to produce high-resolution fuel estimates are still under development. To further understand how prescribed fire and wildfire influence fine-fuels in a semi-arid grassland invaded by non-native perennial grasses, we combined high-resolution Sentinel-2A imagery with in situ vegetation data and machine learning to estimate yearly fine-fuel loads from 2015 to 2020. The resulting model of fine-fuel corresponded to field-based validation measurements taken in the first (R2 = 0.52, RMSE = 218 kg/ha) and last year (R2 = 0.63, RMSE = 196 kg/ha) of this 6-year study. Serial prediction of the fine-fuel model allowed for an assessment of the effect of prescribed fire (average reduction of −80 kg/ha 1-year post fire) and wildfire (−260 kg/ha 1-year post fire) on fuel conditions. Post-fire fine-fuel loads were significantly lower than in unburned control areas sampled just outside fire perimeters from 2015 to 2020 across all fires (t = 1.67, p < 0.0001); however, fine-fuel recovery occurred within 3–5 years, depending upon burn and climate conditions. When coupled with detailed fuels data from field measurements, Sentinel-2A imagery provided a means for evaluating grassland fine-fuels at yearly time steps and shows high potential for extended monitoring of dryland fuels. Our approach provides land managers with a systematic analysis of the effects of fire management treatments on fine-fuel conditions and provides an accurate, updateable, and expandable solution for mapping fine-fuels over yearly time steps across drylands throughout the world. Full article
Show Figures

Figure 1

16 pages, 3732 KiB  
Article
Long-Term Effects of Fuel Reduction Treatments on Surface Fuel Loading in the Blue Mountains of Oregon
by Kat E. Morici and John D. Bailey
Forests 2021, 12(10), 1306; https://doi.org/10.3390/f12101306 - 25 Sep 2021
Cited by 8 | Viewed by 3225
Abstract
Fire exclusion and a lengthening fire season has resulted in an era of megafires. Fuel reduction treatments in forested ecosystems are designed to guard against future extreme wildfire behavior. Treatments create a heterogenous landscape and facilitate ecosystem function and resilience in fire-adapted forests [...] Read more.
Fire exclusion and a lengthening fire season has resulted in an era of megafires. Fuel reduction treatments in forested ecosystems are designed to guard against future extreme wildfire behavior. Treatments create a heterogenous landscape and facilitate ecosystem function and resilience in fire-adapted forests of the western United States. Despite widespread recognition that repeated fuel treatments are needed to maintain desired stand characteristics over time, few field studies have evaluated treatment longevity. The Blue Mountains Fire and Fire Surrogate site in northeastern Oregon presented an opportunity to investigate woody fuel loading 15–17 years after four treatments: mechanical thin, prescribed burn, both thin and burn, and no treatment control. The principal findings were: (1) fine fuel load 15 years post-burn remained slightly below pre-treatment values; (2) rotten coarse fuel load was reduced post-burn, but sound coarse fuel was not altered by any active treatment; and (3) total woody fuel load 15–17 years post-treatment was similar to pre-treatment values. Understanding surface fuel loading is essential for predicting fire behavior. Overall, the effects of fuel reduction treatments on woody surface fuels were transitory in dry mixed conifer forests. Frequent maintenance treatments are recommended to protect values at risk in areas with high fire hazards. Quantifying the persistence of changes in forest conditions aids in the planning and analysis of future fuel treatments, along with scheduling maintenance of existing treated areas. Full article
Show Figures

Figure 1

20 pages, 14294 KiB  
Article
Non-Destructive Fuel Volume Measurements Can Estimate Fine-Scale Biomass across Surface Fuel Types in a Frequently Burned Ecosystem
by Quinn A. Hiers, E. Louise Loudermilk, Christie M. Hawley, J. Kevin Hiers, Scott Pokswinski, Chad M. Hoffman and Joseph J. O’Brien
Fire 2021, 4(3), 36; https://doi.org/10.3390/fire4030036 - 14 Jul 2021
Cited by 5 | Viewed by 3366
Abstract
Measuring wildland fuels is at the core of fire science, but many established field methods are not useful for ecosystems characterized by complex surface vegetation. A recently developed sub-meter 3D method applied to southeastern U.S. longleaf pine (Pinus palustris) communities captures [...] Read more.
Measuring wildland fuels is at the core of fire science, but many established field methods are not useful for ecosystems characterized by complex surface vegetation. A recently developed sub-meter 3D method applied to southeastern U.S. longleaf pine (Pinus palustris) communities captures critical heterogeneity, but similar to any destructive sampling measurement, it relies on separate plots for calculating loading and consumption. In this study, we investigated how bulk density differed by 10-cm height increments among three dominant fuel types, tested predictions of consumption based on fuel type, height, and volume, and compared this with other field measurements. The bulk density changed with height for the herbaceous and woody litter fuels (p < 0.001), but live woody litter was consistent across heights (p > 0.05). Our models predicted mass well based on volume and height for herbaceous (RSE = 0.00911) and woody litter (RSE = 0.0123), while only volume was used for live woody (R2 = 0.44). These were used to estimate consumption based on our volume-mass predictions, linked pre- and post-fire plots by fuel type, and showed similar results for herbaceous and woody litter when compared to paired plots. This study illustrates an important non-destructive alternative to calculating mass and estimating fuel consumption across vertical volume distributions at fine scales. Full article
(This article belongs to the Special Issue Advances in the Measurement of Fuels and Fuel Properties)
Show Figures

Figure 1

15 pages, 3071 KiB  
Article
Assessing Biomass Removal and Woody Debris in Whole-Tree Harvesting System: Are the Recommended Levels of Residues Ensured?
by Abdelwahab Bessaad, Isabelle Bilger and Nathalie Korboulewsky
Forests 2021, 12(6), 807; https://doi.org/10.3390/f12060807 - 18 Jun 2021
Cited by 20 | Viewed by 4007
Abstract
Forest biomass is a sustainable source of renewable energy and a valuable alternative to finite fossil fuels. However, its overharvesting may lead to soil nutrient depletion and threaten future stand productivity, as well as affect the habitat for biodiversity. This paper provides quantitative [...] Read more.
Forest biomass is a sustainable source of renewable energy and a valuable alternative to finite fossil fuels. However, its overharvesting may lead to soil nutrient depletion and threaten future stand productivity, as well as affect the habitat for biodiversity. This paper provides quantitative data on biomass removal, fine woody debris [d ≤ 7 cm], and coarse woody debris [d > 7 cm] left on the forest floor in whole tree harvesting systems. Using tree allometric equations and inventory field methods for woody debris estimation, we assessed biomass removal on nine fuelwood harvesting sites in Central France, as well as fine and coarse woody debris left on the sites. The aboveground biomass estimates showed a high variability between the studied sites, it varied between 118 and 519 Mg ha−1. However, less variability was found among sites managed as coppice-with-standards 174 ± 56 Mg ha−1. Exported biomass was 107 ± 42 Mg ha−1 on average, including 35 ± 9% of fine wood. The amounts of both fine and coarse woody debris left on sites were generally less than 10% of the total harvested biomass in 2/3 of the studied sites. These amounts are lower than the minimum retention levels recommended by the sustainable forest biomass harvesting guidelines. Therefore, more technical effort and additional management measures should be taken to ensure more woody debris, especially in poor forest soils and thus, to guarantee a sustainable biomass harvesting. Full article
Show Figures

Figure 1

19 pages, 20632 KiB  
Article
Instantaneous Pre-Fire Biomass and Fuel Load Measurements from Multi-Spectral UAS Mapping in Southern African Savannas
by Tom Eames, Jeremy Russell-Smith, Cameron Yates, Andrew Edwards, Roland Vernooij, Natasha Ribeiro, Franziska Steinbruch and Guido R. van der Werf
Fire 2021, 4(1), 2; https://doi.org/10.3390/fire4010002 - 14 Jan 2021
Cited by 12 | Viewed by 4540
Abstract
Landscape fires are substantial sources of (greenhouse) gases and aerosols. Fires in savanna landscapes represent more than half of global fire carbon emissions. Quantifying emissions from fires relies on accurate burned area, fuel load and burning efficiency data. Of these, fuel load remains [...] Read more.
Landscape fires are substantial sources of (greenhouse) gases and aerosols. Fires in savanna landscapes represent more than half of global fire carbon emissions. Quantifying emissions from fires relies on accurate burned area, fuel load and burning efficiency data. Of these, fuel load remains the source of the largest uncertainty. In this study, we used high spatial resolution images from an Unmanned Aircraft System (UAS) mounted multispectral camera, in combination with meteorological data from the ERA-5 land dataset, to model instantaneous pre-fire above-ground biomass. We constrained our model with ground measurements taken in two locations in savanna-dominated regions in Southern Africa, one low-rainfall region (660 mm year1) in the North-West District (Ngamiland), Botswana, and one high-rainfall region (940 mm year1) in Niassa Province (northern Mozambique). We found that for fine surface fuel classes (live grass and dead plant litter), the model was able to reproduce measured Above-Ground Biomass (AGB) (R2 of 0.91 and 0.77 for live grass and total fine fuel, respectively) across both low and high rainfall areas. The model was less successful in representing other classes, e.g., woody debris, but in the regions considered, these are less relevant to biomass burning and make smaller contributions to total AGB. Full article
Show Figures

Figure 1

10 pages, 2900 KiB  
Communication
Chronosequence of Fuel Loading and Fuel Depth Following Forest Rehabilitation Frill Treatment of Tanoak to Release Douglas-Fir: A Case Study from Northern California
by Raven M. Krieger, Brian E. Wall, Cody W. Kidd and John-Pascal Berrill
Forests 2020, 11(6), 691; https://doi.org/10.3390/f11060691 - 18 Jun 2020
Viewed by 2695
Abstract
There is concern that forest management activities such as chemical thinning may increase hazardous fuel loading and therefore increase risk of stand-replacing wildfire. Chemical thinning, often accomplished by frill treatment of unwanted trees, leaves trees standing dead for a time before they fall [...] Read more.
There is concern that forest management activities such as chemical thinning may increase hazardous fuel loading and therefore increase risk of stand-replacing wildfire. Chemical thinning, often accomplished by frill treatment of unwanted trees, leaves trees standing dead for a time before they fall and become surface fuels. In coastal northern California, frill treatment is used as a forest rehabilitation treatment that removes tanoak (Notholithocarpus densiflorus) to release merchantable conifers from excessive competition. We studied fuel bed depth and fuel loading after frill treatment of tanoak along a 16-year chronosequence that substituted space for time. The total depth of fuel bed was separated into woody fuels, litter, and duff. The height of each layer was variable and greatest on average in post-treatment year 5 after treated tanoak had begun to break apart and fall. Initially, the evergreen tanoak trees retained their foliage for at least a year after treatment. Five years after treatment, many tanoak had fallen and transitioned to become fine- and coarse woody debris. After 11 years, the larger pieces of down wood were mostly classified as rotten. After 16 years, the fuel loading appeared roughly equivalent to pre-treatment levels, however we did not explicitly test for differences due to potential confounding between time and multiple factors such as inter-annual climate variations and site attributes. Nevertheless, our data provide some insight into changes in surface fuel characteristics due to rehabilitation treatments. These data can be used as inputs for fire behavior modeling to generate indicative predictions of fire effects such as fire severity and how these change over time since treatment. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

14 pages, 2416 KiB  
Article
Carbonaceous Aerosol Emitted from Biofuel Household Stove Combustion in South China
by Xuefang Sang-Arlt, Haoxiang Fu, Yinan Zhang, Xiang Ding, Xinming Wang, Yanan Zhou, Lilin Zou, Georg F. Zellmer and Guenter Engling
Atmosphere 2020, 11(1), 112; https://doi.org/10.3390/atmos11010112 - 17 Jan 2020
Cited by 7 | Viewed by 4011
Abstract
Near-source measurements of smoke emissions from household stove combustion in a rural area of South China were conducted with 7 typical biomass fuels. Particulate matter samples (both PM10 and PM2.5) were analyzed for their carbonaceous components, including organic and elemental [...] Read more.
Near-source measurements of smoke emissions from household stove combustion in a rural area of South China were conducted with 7 typical biomass fuels. Particulate matter samples (both PM10 and PM2.5) were analyzed for their carbonaceous components, including organic and elemental carbon (OC, EC) as well as levoglucosan (molecular tracer of biomass burning), employing thermal-optical and GC-MS analysis. The OC and EC content in PM2.5 and PM10 smoke particles derived from the various types of vegetation showed different patterns with the smallest values observed for straw type fuels. The OC/EC ratios in PM2.5 and PM10 showed an order of straw > hardwood > bamboo > softwood. Mass concentrations of particulate matter emitted from rice straw burning were highest with 12.23 ± 0.87 mg/m3 (PM10) and 9.31 ± 0.81 mg/m3 (PM2.5), while the mass ratios (LG/PM and OC/PM) were lowest among the 7 fuels, indicating that particle emissions from straw burning were higher than those from woody fuels, using similar burning conditions. The levoglucosan emission ratios were rather high and this single most abundant organic species was mainly present in the fine particle mode. Linear correlation analysis showed a strong relationship between levoglucosan and EC emissions. Full article
(This article belongs to the Special Issue Ambient Aerosol Measurements in Different Environments)
Show Figures

Figure 1

24 pages, 4429 KiB  
Article
The Effect of Surface Fire in Savannah Systems in the Kruger National Park (KNP), South Africa, on the Backscatter of C-Band Sentinel-1 Images
by Renaud Mathieu, Russell Main, David P. Roy, Laven Naidoo and Hannah Yang
Fire 2019, 2(3), 37; https://doi.org/10.3390/fire2030037 - 27 Jun 2019
Cited by 14 | Viewed by 7246
Abstract
Savannahs are mixed woody-grass communities where low-intensity surface fires are common, affecting mostly the grass layer and rarely damaging trees. We investigated the effect of surface fires in a savannah system in the Kruger National Park, South Africa, on the backscatter of synthetic [...] Read more.
Savannahs are mixed woody-grass communities where low-intensity surface fires are common, affecting mostly the grass layer and rarely damaging trees. We investigated the effect of surface fires in a savannah system in the Kruger National Park, South Africa, on the backscatter of synthetic aperture radar (SAR) C-band Sentinel-1A images. Pre-fire and post-fire dual polarized (VH, VV) C-band backscatter values were examined for 30 burn events. For all events, a systematic backscatter decrease from pre-fire to post-fire conditions was observed, with mean backscatter decreases of 1.61 dB and 0.99 dB for VH and VV, respectively. A total of 90% and 75% of the burn events showed a decrease in VH and VV backscatter greater than 0.43 dB, the overall absolute radiometric of Sentinel-1A products. The VH data were, overall, 1.7 times more sensitive to surface fire effects than the VV data. C-band data are likely sensitive to a reduction in grass biomass typical of surface fires, as well as in grass/soil moisture levels. Early season fires had higher backscatter decreases due to greater early season moisture conditions. For region with more than 30% woody cover, the effect of fire on the C-band backscatter was reduced. Denser woody communities tend to produce lower grass fuel load and less intense surface fires, and limit the penetration of C-band microwaves to the ground where most savannah fires and associated effects occur. This research provides evidence that C-band space-borne SAR is sensitive to the effects of surface-level fires in southern African savannahs. The unique availability of frequent and spatially detailed C-band data from the Sentinel-1 SAR constellation provide new opportunities for burned area mapping and systematic monitoring in savannahs systems, for instance, for fine-scale fire propagation studies. Full article
(This article belongs to the Special Issue Remote Sensing of Fire and Its Impact on Land and Atmosphere)
Show Figures

Figure 1

19 pages, 1497 KiB  
Article
Ponderosa Pine Regeneration, Wildland Fuels Management, and Habitat Conservation: Identifying Trade-Offs Following Wildfire
by Victoria M. Donovan, Caleb P. Roberts, Carissa L. Wonkka, David A. Wedin and Dirac Twidwell
Forests 2019, 10(3), 286; https://doi.org/10.3390/f10030286 - 22 Mar 2019
Cited by 7 | Viewed by 4893
Abstract
Increasing wildfires in western North American conifer forests have led to debates surrounding the application of post-fire management practices. There is a lack of consensus on whether (and to what extent) post-fire management assists or hinders managers in achieving goals, particularly in under-studied [...] Read more.
Increasing wildfires in western North American conifer forests have led to debates surrounding the application of post-fire management practices. There is a lack of consensus on whether (and to what extent) post-fire management assists or hinders managers in achieving goals, particularly in under-studied regions like eastern ponderosa pine forests. This makes it difficult for forest managers to balance among competing interests. We contrast structural and community characteristics across unburned ponderosa pine forest, severely burned ponderosa pine forest, and severely burned ponderosa pine forest treated with post-fire management with respect to three management objectives: ponderosa pine regeneration, wildland fuels control, and habitat conservation. Ponderosa pine saplings were more abundant in treated burned sites than untreated burned sites, suggesting increases in tree regeneration following tree planting; however, natural regeneration was evident in both unburned and untreated burned sites. Wildland fuels management greatly reduced snags and coarse woody debris in treated burned sites. Understory cover measurements revealed bare ground and fine woody debris were more strongly associated with untreated burned sites, and greater levels of forbs and grass were more strongly associated with treated burned sites. Wildlife habitat was greatly reduced following post-fire treatments. There were no tree cavities in treated burned sites, whereas untreated burned sites had an average of 27 ± 7.68 cavities per hectare. Correspondingly, we found almost double the avian species richness in untreated burned sites compared to treated burned sites (22 species versus 12 species). Unburned forests and untreated burned areas had the same species richness, but hosted unique avian communities. Our results indicate conflicting outcomes with respect to management objectives, most evident in the clear costs to habitat conservation following post-fire management application. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

Back to TopTop