Carbonaceous Aerosol Emitted from Biofuel Household Stove Combustion in South China
Abstract
:1. Introduction
2. Experiments
2.1. Sampling
2.2. Quality Assurance and Quality Control (QA/QC)
2.3. Elemental Analysis
2.4. OC/EC Analysis
2.5. GC-MS Analysis
3. Results and Discussions
3.1. OC and EC Content in Smoke Aerosols
3.2. OC/EC Ratios
3.3. Levoglucosan Content
3.4. LG/OC and LG/EC Ratios
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pandis, S.N.; Harley, R.A.; Cass, G.R.; Seinfeld, J.H. Secondary organic aerosol formation and transport. Atmos. Environ. 1992, 26, 2269–2282. [Google Scholar] [CrossRef]
- Turpin, B.J.; Huntzicker, J.J. Identification of secondary organic aerosol episodes and quantification of primary and secondary organic aerosol concentrations during SCAQS. Atmos. Environ. 1995, 29, 3527–3544. [Google Scholar] [CrossRef]
- Gundel, L.A.; Guyot-Sionnest, N.S.; Novakov, T. A study of the interaction of NO2 with carbon Particles. Aerosol Sci. Technol. 1989, 10, 343–351. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; Deangelo, B.J.; Flanner, M.G.; Ghan, S.; Karcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Ruedy, R.; Lacis, A.; Oinas, V. Global warming in the twenty-first century: An alternative scenario. Proc. Natl. Acad. Sci. USA 2000, 97, 9875–9880. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, M.Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 2001, 409, 695–697. [Google Scholar] [CrossRef]
- Engling, G.; Gelencser, A. Atmospheric Brown Clouds: From Local Air Pollution to Climate Change. Elements 2010, 6, 223–228. [Google Scholar] [CrossRef]
- Laskin, A.; Laskin, J.; Nizkorodov, S.A. Chemistry of Atmospheric Brown Carbon. Chem. Rev. 2015, 115, 4335–4382. [Google Scholar] [CrossRef] [Green Version]
- Bonvalot, L.; Tuna, T.; Fagault, Y.; Jaffrezo, J.L.; Jacob, V.; Chevrier, F.; Bard, E. Estimating contributions from biomass burning, fossil fuel combustion, and biogenic carbon to carbonaceous aerosols in the Valley of Chamonix: A dual approach based on radiocarbon and levoglucosan. Atmos. Chem. Phys. 2016, 16, 13753–13772. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.I.; Park, R.J.; Woo, J.H.; Han, Y.J.; Yi, S.M. Source contributions to carbonaceous aerosol concentrations in Korea. Atmos. Environ. 2011, 45, 1116–1125. [Google Scholar] [CrossRef]
- Cui, H.; Mao, P.; Zhao, Y.; Nielsen, C.P.; Zhang, J. Patterns in atmospheric carbonaceous aerosols in China: Emission estimates and observed concentrations. Atmos. Chem. Phys. 2015, 15, 8657–8678. [Google Scholar] [CrossRef] [Green Version]
- Demirbas, A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog. Energy Combust. Sci. 2005, 31, 171–192. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Engling, G.; Lin, C.Y.; Chou, C.C.K.; Lung, S.C.C.; Chang, S.Y.; Fan, S.J.; Chan, C.Y.; Zhang, Y.H. Chemical speciation, transport and contribution of biomass burning smoke to ambient aerosol in Guangzhou, a mega city of China. Atmos. Environ. 2010, 44, 3187–3195. [Google Scholar] [CrossRef]
- Tian, H.Z.; Zhao, D.; Wang, Y. Emission inventories of atmospheric pollutants discharged from biomass burning in China. Acta Sci. Circumst. 2011, 31, 349–357. [Google Scholar]
- Sergejewa, A.S. Chemie des Holzes und der Cellulose; Theodor Steinkopff Verlag: Dresden, Germany, 1959. [Google Scholar]
- Petterson, R.C. The chemical compostion of wood. In Chemistry of Solid Wood; Rowell, R., Ed.; American Chemical Society: Washington, DC, USA, 1984; pp. 57–126. [Google Scholar]
- Fraser, M.P.; Lakshmanan, K. Using levoglucosan as a molecular marker for the long-range transport of biomass combustion aerosols. Environ. Sci. Technol. 2000, 34, 4560–4564. [Google Scholar] [CrossRef]
- Hennigan, C.J.; Sullivan, A.P.; Collett, J.L.; Robinson, A.L. Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals. Geophys. Res. Lett. 2010, 37, L09806. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, D.; Tilgner, A.; Iinuma, Y.; Herrmann, H. Atmospheric Stability of Levoglucosan: A Detailed Laboratory and Modeling Study. Environ. Sci. Technol. 2010, 44, 694–699. [Google Scholar] [CrossRef]
- Lai, C.Y.; Liu, Y.C.; Ma, J.Z.; Ma, Q.X.; He, H. Degradation kinetics of levoglucosan initiated by hydroxyl radical under different environmental conditions. Atmos. Environ. 2014, 91, 32–39. [Google Scholar] [CrossRef]
- Mochida, M.; Kawamura, K.; Fu, P.Q.; Takemura, T. Seasonal variation of levoglucosan in aerosols over the western North Pacific and its assessment as a biomass-burning tracer. Atmos. Environ. 2010, 44, 3511–3518. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.I.; Wu, P.L.; Hsu, Y.T.; Yang, C.R. Anhydrosugar and sugar alcohol organic markers associated with carboxylic acids in particulate matter from incense burning. Atmos. Environ. 2010, 44, 3708–3718. [Google Scholar] [CrossRef]
- Hou, X.M.; Zhuang, G.S.; Lin, Y.F.; Li, J.; Jiang, Y.L.; Fu, J.S. Emission of fine organic aerosol from traditional charcoal broiling in China. J. Atmos. Chem. 2008, 61, 119–131. [Google Scholar] [CrossRef]
- Calvo, A.I.; Martins, V.; Nunes, T.; Duarte, M.; Pont, V.; Castro, A.; Fraile, R.; Tarelho, L.; Alves, C. Residential wood combustion in two domestic devices: Relationship of different parameters throughout the combustion cycle. Atmos. Environ. 2015, 116, 72–82. [Google Scholar] [CrossRef]
- Gonçalves, C.; Alves, C.; Fernandes, A.P.; Monteiro, C.; Tarelho, L.; Evtyugina, M.; Pio, C. Organic compounds in PM emitted from fireplace and woodstove 2.5 combustion of typical Portuguese wood species. Atmos. Environ. 2011, 45, 4533–4545. [Google Scholar] [CrossRef] [Green Version]
- Vicente, E.D.; Duarte, M.A.; Tarelho, L.A.C.; Nunes, T.F.; Amato, F.; Querol, X.; Colombi, C.; Gianelle, V.; Alves, C.A. Particulate and gaseous emissions from the combustion of different biofuels in a pellet stove. Atmos. Environ. 2015, 120, 15–27. [Google Scholar] [CrossRef]
- Ni, H.Y.; Han, Y.M.; Cao, J.; Chen, L.W.A.; Tian, J.; Wang, X.L.; Chow, J.C.; Watson, J.G.; Wang, Q.Y.; Wang, P.; et al. Emission characteristics of carbonaceous particles and trace gases from open burning of crop residues in China. Atmos. Environ. 2015, 123, 399–406. [Google Scholar] [CrossRef]
- Lai, A.M.; Carter, E.; Shan, M.; Ni, K.; Clark, S.; Ezzati, M.; Wiedinmyer, C.; Yang, X.; Baumgartner, J.; Schauer, J.J. Chemical composition and source apportionment of ambient, household, and personal exposures to PM2.5 in communities using biomass stoves in rural China. Sci. Total Environ. 2019, 646, 309–319. [Google Scholar] [CrossRef]
- Zhang, J.; Smith, K.R.; Ma, Y.; Ye, S.; Jiang, F.; Qi, W.; Liu, P.; Khalil, M.A.K.; Rasmussen, R.A.; Thorneloe, S.A. Greenhouse gases and other airborne pollutants from household stoves in China: A database for emission factors. Atmos. Environ. 2000, 34, 4537–4549. [Google Scholar] [CrossRef] [Green Version]
- Li, X.H.; Duan, L.; Wang, S.X.; Duan, J.C.; Guo, X.M.; Yi, H.H.; Hu, J.N.; Li, C.; Hao, J.M. Emission characteristics of particulate matter from rural household biofuel combustion in China. Energy Fuel 2007, 21, 845–851. [Google Scholar] [CrossRef]
- Alves, C.A.; Duarte, M.; Nunes, T.; Moreira, R.; Rocha, S. Carbonaceous particles emitted from cooking activities in Portugal. Glob. NEST J. 2014, 16, 411–419. [Google Scholar]
- Vicente, E.D.; Duarte, M.A.; Calvo, A.I.; Nunes, T.F.; Tarelho, L.A.C.; Custódio, D.; Colombi, C.; Gianelle, V.; Sanchez de la Campa, A.; Alves, C.A. Influence of operating conditions on chemical composition of particulate matter emissions from residential combustion. Atmos. Environ. 2015, 166, 92–100. [Google Scholar] [CrossRef]
- Li, X.H.; Wang, S.X.; Duan, L.; Hao, J.M. Characterization of non-methane hydrocarbons emitted from open burning of wheat straw and corn stover in China. Environ. Res. Lett. 2009, 4, 044015. [Google Scholar] [CrossRef]
- Wu, X.; Vu, T.V.; Shi, Z.; Harrison, R.M.; Liu, D.; Cen, K. Characterization and source apportionment of carbonaceous PM2.5 particles in China—A review. Atmos. Environ. 2018, 189, 187–212. [Google Scholar] [CrossRef]
- McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef]
- Wiinikka, H. High Temperature Aerosol Formation and Emission Minimisation during Combustion of Wood Pellets. Ph.D. Thesis, Lulea University of Technology, Piteå, Sweden, 2005. [Google Scholar]
- Novakov, T.; Andreae, M.O.; Gabriel, R.; Kirchstetter, T.W.; Mayol-Bracero, O.L.; Ramanathan, V. Origin of carbonaceous aerosols over the tropical Indian Ocean: Biomass burning or fossil fuels? Geophys. Res. Lett. 2000, 27, 4061–4064. [Google Scholar] [CrossRef]
- Pio, C.; Cerqueira, M.; Harrison, R.M.; Nunes, T.; Mirante, F.; Alves, C.; Oliveira, C.; de la Campa, A.S.; Artinano, B.; Matos, M. OC/EC ratio observations in Europe: Re-thinking the approach for apportionment between primary and secondary organic carbon. Atmos. Environ. 2011, 45, 6121–6132. [Google Scholar] [CrossRef]
- Popovicheva, O.B.; Kozlov, V.S.; Engling, G.; Diapouli, E.; Persiantseva, N.M.; Timofeev, M.A.; Fan, T.S.; Saraga, D.; Eleftheriadis, K. Small-Scale Study of Siberian Biomass Burning: I. Smoke Microstructure. Aerosol Air Qual. Res. 2015, 15, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Srinivas, B.; Sarin, M.M. PM2.5, EC and OC in atmospheric outflow from the Indo-Gangetic Plain: Temporal variability and aerosol organic carbon-to-organic mass conversion factor. Sci. Total Environ. 2014, 487, 196–205. [Google Scholar] [CrossRef]
- Oros, D.R.; Simoneit, B.R.T. Identification and emission factors of molecular tracers in organic aerosols from biomass burning Part 1. temperate climate conifers. Appl. Geochem. 2001, 16, 1513–1544. [Google Scholar] [CrossRef]
- Oros, D.R.; Mazurek, M.A.; Baham, J.E.; Simoneit, B.R.T. Organic tracers from wild fire residues in soils and rain/river wash-out. Water Air Soil Pollut. 2002, 137, 203–233. [Google Scholar] [CrossRef]
- Oros, D.R.; bin Abas, M.R.; Omar, N.Y.M.J.; Rahman, N.A.; Simoneit, B.R.T. Identification and emission factors of molecular tracers in organic aerosols from biomass burning: Part 3. Grasses. Appl. Geochem. 2006, 21, 919–940. [Google Scholar] [CrossRef]
- Neusüß, C.; Gnauk, T.; Plewka, A.; Herrmann, H.; Quinn, P.K. Carbonaceous aerosol over the Indian Ocean: OC/EC fractions and selected specifications from size-segregated onboard samples. J. Geophys. Res. 2002, 107, INX2 30-1–INX2 30-13. [Google Scholar] [CrossRef]
- Rogge, W.F.; Hildemann, L.M.; Mazurek, M.A.; Cass, G.R. Sources of fine organic aerosol. 4. Particulate abrasion products from leaf surfaces of urban plants. Environ. Sci. Technol. 1993, 27, 2700–2711. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Shao, M.; Zhang, Y.H.; Zeng, L.M.; He, L.Y.; Zhu, B.; Wei, Y.J.; Zhu, X.L. Source profiles of particulate organic matters emitted from cereal straw burnings. J. Environ. Sci. 2007, 19, 167–175. [Google Scholar] [CrossRef]
- Simoneit, B.R.T.; Rogge, W.F.; Mazurek, M.A.; Standley, L.J.; Hildemann, L.M.; Cass, G.R. Lignin pyrolysis products, lignans, and resin acids as specific tracers of plant classes in emissions from biomass combustion. Environ. Sci. Technol. 1993, 27, 2533–2541. [Google Scholar] [CrossRef]
- Simoneit, B.R.T.; Schauer, J.J.; Nolte, C.G.; Oros, D.R.; Elias, V.O.; Fraser, M.P.; Rogge, W.F.; Cass, G.R. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos. Environ. 1999, 33, 173–182. [Google Scholar] [CrossRef]
- Simoneit, B.R.T.; Rogge, W.F.; Lang, Q.; Jaffé, R. Molecular characterization of smoke from campfire burning of pine wood (Pinus elliottii). Chemosphere Glob. Chang. Sci. 2000, 2, 107–122. [Google Scholar] [CrossRef]
- Fine, P.M.; Cass, G.R.; Simoneit, B.R.T. Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the northeastern United States. Environ. Sci. Technol. 2001, 35, 2665–2675. [Google Scholar] [CrossRef]
- Simoneit, B.R.T.; Didyk, B.M. The lipid and resin composition of Laretia compacta Phil. from the andes of Chile. Zeitschrift fuer Naturforschung C 1999, 54, 309–313. [Google Scholar] [CrossRef]
- Engling, G.; Lee, J.J.; Tsai, Y.W.; Lung, S.C.; Chou, C.K.; Chan, C.Y. Size-resolved anhydrosugar composition in smoke aerosol from controlled field burning of rice straw. Aerosol Sci. Technol. 2009, 43, 662–672. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Gao, J.; Engling, G.; Tao, J.; Chai, F.H.; Zhang, L.M.; Zhang, R.J.; Sang, X.F.; Chan, C.Y.; Lin, Z.J.; et al. Characteristics and applications of size-segregated biomass burning tracers in China’s Pearl River Delta region. Atmos. Environ. 2015, 102, 290–301. [Google Scholar] [CrossRef]
- Shafizadeh, F. The Chemistry of Pyrolysis and Combustion. In Chemistry of Solid Wood; Rowell, R., Ed.; Advances in Chemistry: Washington, DC, USA, 1984; Volume 207, pp. 489–529. [Google Scholar]
- Engling, G.; Lee, J.J.; Sie, H.J.; Wu, Y.C.; Yet-Pole, I. Anhydrosugar characteristics in biomass smoke aerosol-case study of environmental influence on particle-size of rice straw burning aerosol. J. Aerosol Sci. 2013, 56, 2–14. [Google Scholar] [CrossRef]
- Zdrahal, Z.; Oliveira, J.; Vermeylen, R.; Claeys, M.; Maenhaut, W. Improved method for quantifying levoglucosan and related monosaccharide anhydrides in atmospheric aerosols and application to samples from urban and tropical locations. Environ. Sci. Technol. 2002, 36, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Puxbaum, H.; Caseiro, A.; Sanchez-Ochoa, A.; Kasper-Giebl, A.; Claeys, M.; Gelencser, A.; Legrand, M.; Preunkert, S.; Pio, C. Levoglucosan levels at background sites in Europe for assessing the impact of biomass combustion on the European aerosol background. J. Geophys. Res. 2007, 112, D23S05. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Kawamura, K.; Kunwar, B. Effect of biomass burning over the western North Pacific Rim: Wintertime maxima of anhydrosugars in ambient aerosols from Okinawa. Atmos. Chem. Phys. 2015, 15, 1959–1973. [Google Scholar] [CrossRef]
- Li, Q.; Wang, N.; Barbante, C.; Kang, S.; Yao, P.; Wan, X.; Barbaro, E.; del Carmen Villoslada Hidalgo, M.; Gambaro, A.; Li, C.; et al. Levels and spatial distributions of levoglucosan and dissolved organic carbon in snowpits over the Tibetan Plateau glaciers. Sci. Total Environ. 2018, 612, 1340–1347. [Google Scholar] [CrossRef] [PubMed]
- Mkoma, S.L.; Kawamura, K.; Fu, P.Q. Contributions of biomass/biofuel burning to organic aerosols and particulate matter in Tanzania, East Africa, based on analyses of ionic species, organic and elemental carbon, levoglucosan and mannosan. Atmos. Chem. Phys. 2013, 13, 10325–10338. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, G.; Zhang, Q.; Li, J.; Wu, C.; Jiang, W.; Zhu, T.; Zeng, L. Molecular characteristics and diurnal variations of organic aerosols at a rural site in the North China Plain with implications for the influence of regional biomass burning. Atmos. Chem. Phys. 2019, 19, 10481–10496. [Google Scholar] [CrossRef] [Green Version]
- Hays, M.D.; Fine, P.M.; Geron, C.D.; Kleeman, M.J.; Gullett, B.K. Open burning of agricultural biomass: Physical and chemical properties of particle-phase emissions. Atmos. Environ. 2005, 39, 6747–6764. [Google Scholar] [CrossRef]
- Jenkins, B.M.; Jones, A.D.; Turn, S.Q.; Williams, R.B. Emission factors for polycyclic aromatic hydrocarbons from biomass burning. Environ. Sci. Technol. 1996, 30, 2462–2469. [Google Scholar] [CrossRef]
- Sheesley, R.J.; Schauer, J.J.; Chowdhury, Z.; Cass, G.R.; Simoneit, B.R.T. Characterization of organic aerosols emitted from the combustion of biomass indigenous to South Asia. J. Geophys. Res. 2003, 108, 4285. [Google Scholar] [CrossRef] [Green Version]
- Reinhardt, E.D.; Keane, R.E.; Calkin, D.E.; Cohen, J.D. Objectives and considerations for wildland fuel treatment in forested ecosystems of the interior western United States. For. Ecol. Manag. 2008, 256, 1997–2006. [Google Scholar] [CrossRef]
- Lee, J.J.; Engling, G.; Lung, S.C.; Lee, K.Y. Particle size characteristics of levoglucosan in ambient aerosols from rice straw burning. Atmos. Environ. 2008, 42, 8300–8308. [Google Scholar] [CrossRef]
- Sullivan, A.P.; Holden, A.S.; Patterson, L.A.; McMeeking, G.R.; Kreidenweis, S.M.; Malm, W.C.; Hao, W.M.; Wold, C.E.; Collett, J.L. A method for smoke marker measurements and its potential application for determining the contribution of biomass burning from wildfires and prescribed fires to ambient PM2.5 organic carbon. J. Geophys. Res. 2008, 113, D22302. [Google Scholar] [CrossRef]
Name | Latin Name | Family | Vegetation Classification | Biofuel Classification | C (%) | H (%) | N (%) | C/N |
---|---|---|---|---|---|---|---|---|
Tamarind | Tamarindus indica | Fabaceae | Woody plant | Hard wood | 44.22 | 6.36 | 0.13 | 344.39 |
Chinese guger tree | Schima superba Gardn | Theaceae | Woody plant | Hard wood | 45.02 | 6.45 | 0.13 | 338.50 |
Chinese fir | Pinaceae | Pinaceae | Woody plant | Softwood | 47.14 | 6.50 | 0.11 | 416.34 |
Chinese red pine | pinus Massoniana lamb | Pinaceae | Woody plant | Softwood | 46.71 | 6.52 | 0.07 | 714.60 |
Bamboo | Bamboo | Poaceae | Woody plant | − | 45.67 | 6.37 | 0.31 | 145.63 |
Rice straw | Oryza glaberrima | Poaceae | Herb | Straw | 38.73 | 5.64 | 0.77 | 50.58 |
Peanut straw | Arachis hypogaea | Fabaceae | Herb | Straw | 39.40 | 5.91 | 1.10 | 35.95 |
Biofuel Classification | Biofuel Species | PM | Sample Numbers (n) | OC (mg/mg) | EC (mg/mg) | TC (mg/mg) | OC/EC |
---|---|---|---|---|---|---|---|
Hard wood | Tamarind | PM2.5 | 5 | 0.58 ± 0.09 | 0.04 ± 0.02 | 0.63 ± 0.10 | 15.4 ± 3.35 |
PM10 | 5 | 0.30 ± 0.16 | 0.03 ± 0.01 | 0.33 ± 0.16 | 10.2 ± 6.59 | ||
Chinese guger tree | PM2.5 | 7 | 0.30 ± 0.12 | 0.05 ± 0.01 | 0.35 ± 0.11 | 6.73 ± 2.73 | |
PM10 | 5 | 0.22 ± 0.10 | 0.09 ± 0.01 | 0.31 ± 0.26 | 5.73 ± 4.36 | ||
Softwood | China fir | PM2.5 | 5 | 0.36 ± 0.32 | 0.17 ± 0.04 | 0.53 ± 0.32 | 1.64 ± 1.41 |
PM10 | 4 | 0.14 ± 0.054 | 0.14 ± 0.012 | 0.28 ± 0.066 | 0.55 ± 0.53 | ||
Chinese red pine | PM2.5 | 3 | 0.35 ± 0.07 | 0.10 ± 0.04 | 0.44 ± 0.07 | 3.91 ± 3.00 | |
PM10 | 3 | 0.15 ± 0.06 | 0.10 ± 0.02 | 0.25 ± 0.08 | 1.45 ± 0.36 | ||
Straw | Rice straw | PM2.5 | 5 | 0.25 ± 0.06 | 0.01 ± 0.01 | 0.26 ± 0.06 | 20.0 ± 5.70 |
PM10 | 4 | 0.30 ± 0.07 | 0.02 ± 0.01 | 0.32 ± 0.30 | 18.5 ± 5.40 | ||
Peanut straw | PM2.5 | 2 | 0.22 ± 0.02 | 0.02 ± 0.00 | 0.24 ± 0.02 | 10.28 | |
PM10 | 2 | 0.18 ± 0.11 | 0.02 ± 0.01 | 0.20 ± 0.11 | 9.50 ± 2.07 | ||
Bamboo | Bamboo | PM2.5 | 4 | 0.63 ± 0.17 | 0.09 ± 0.04 | 0.72 ± 0.15 | 7.84 ± 3.69 |
PM10 | 4 | 0.38 ± 0.09 | 0.07 ± 0.03 | 0.45 ± 0.07 | 6.28 ± 3.10 |
Tamarind | Chinese Guger Tree | China Fir | Chinese Red Pine | Rice Straw | Peanut Straw | Bamboo | |
---|---|---|---|---|---|---|---|
Samples (n) | 8 | 7 | 7 | 3 | 8 | 2 | 6 |
LG (mg/m3) | 0.17 | 0.03 | 0.02 | 0.05 | 0.10 | 0.03 | 0.13 |
OC (mg/m3) | 0.64 | 0.36 | 0.43 | 0.40 | 2.73 | 1.04 | 1.26 |
EC (mg/m3) | 0.04 | 0.06 | 0.28 | 0.15 | 0.13 | 0.10 | 0.13 |
LG/EC (w/w) | 4.69 | 0.50 | 0.09 | 0.33 | 0.78 | 0.22 | 0.96 |
R2 | 0.84 | 0.86 | 0.82 | 0.99 | 0.95 | − | 0.28 |
p | 0.01 | 0.01 | 0.01 | 0.05 | 0.01 | 0.16 | |
LG/OC (w/w) | 0.27 | 0.08 | 0.06 | 0.12 | 0.04 | 0.02 | 0.10 |
R2 | 0.81 | 0.97 | 0.96 | 0.99 | 0.97 | − | −0.11 |
p | 0.01 | 0.01 | 0.01 | 0.05 | 0.01 | 0.53 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sang-Arlt, X.; Fu, H.; Zhang, Y.; Ding, X.; Wang, X.; Zhou, Y.; Zou, L.; Zellmer, G.F.; Engling, G. Carbonaceous Aerosol Emitted from Biofuel Household Stove Combustion in South China. Atmosphere 2020, 11, 112. https://doi.org/10.3390/atmos11010112
Sang-Arlt X, Fu H, Zhang Y, Ding X, Wang X, Zhou Y, Zou L, Zellmer GF, Engling G. Carbonaceous Aerosol Emitted from Biofuel Household Stove Combustion in South China. Atmosphere. 2020; 11(1):112. https://doi.org/10.3390/atmos11010112
Chicago/Turabian StyleSang-Arlt, Xuefang, Haoxiang Fu, Yinan Zhang, Xiang Ding, Xinming Wang, Yanan Zhou, Lilin Zou, Georg F. Zellmer, and Guenter Engling. 2020. "Carbonaceous Aerosol Emitted from Biofuel Household Stove Combustion in South China" Atmosphere 11, no. 1: 112. https://doi.org/10.3390/atmos11010112
APA StyleSang-Arlt, X., Fu, H., Zhang, Y., Ding, X., Wang, X., Zhou, Y., Zou, L., Zellmer, G. F., & Engling, G. (2020). Carbonaceous Aerosol Emitted from Biofuel Household Stove Combustion in South China. Atmosphere, 11(1), 112. https://doi.org/10.3390/atmos11010112