The Effect of Surface Fire in Savannah Systems in the Kruger National Park (KNP), South Africa, on the Backscatter of C-Band Sentinel-1 Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing Data
2.3. Ancillary Data
2.4. Methods
2.4.1. Burned Area Selection and Refinement
2.4.2. Sentinel-1 Data Processing
2.4.3. Pre-Fire and Post-Fire SAR Backscatter Analysis
3. Results
3.1. Backscatter and Environmental Temporal Dynamics
3.2. Pre-Fire Versus Post-Fire Backscatter Changes
3.3. Relationships between Pre-Fire Versus Post-Fire Backscatter Changes and Rainfall
3.4. Effect of Woody Cover
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chuvieco, E.; Yue, C.; Heil, A.; Mouillot, F.; Alonso-Canas, I.; Padilla, M.; Pereira, J.M.; Oom, D.; Tansey, K. A New Global Burned Area Product for Climate Assessment of Fire Impacts. Glob. Ecol. Biogeogr. 2016, 25, 619–629. [Google Scholar] [CrossRef]
- Roy, D.P.; Boschetti, L.; Justice, C.O.; Ju, J. The Collection 5 MODIS Burned Area Product—Global Evaluation by Comparison with the MODIS Active Fire Product. Remote Sens. Environ. 2008, 112, 3690–3707. [Google Scholar] [CrossRef]
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Mu, M.; Kasibhatla, P.S.; Morton, D.C.; DeFries, R.S.; Jin, Y.; van Leeuwen, T.T. Global Fire Emissions and the Contribution of Deforestation, Savanna, Forest, Agricultural, and Peat Fires (1997–2009). Atmos. Chem. Phys. Discuss. 2010, 10, 11707–11735. [Google Scholar] [CrossRef]
- Bond, W.J.; Keeley, J.E. Fire as a Global ‘Herbivore’: The Ecology and Evolution of Flammable Ecosystems. Trends Ecol. Evol. 2005, 20, 387–394. [Google Scholar] [CrossRef]
- Archibald, S.; Scholes, R.J.; Roy, D.P.; Roberts, G.; Boschetti, L. Southern African Fire Regimes as Revealed by Remote Sensing. Int. J. Wildland Fire 2010, 19, 861–878. [Google Scholar] [CrossRef]
- Sheuyange, A.; Oba, G.; Weladji, R.B. Effects of Anthropogenic Fire History on Savanna Vegetation in Northeastern Namibia. J. Environ. Manag. 2005, 75, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Mapiye, C.; Chikumba, N.; Chimonyo, M.; Mwale, M. Fire as a Rangeland Management Tool in the Savannas of Southern Africa: A Review. Trop. Subtrop. Agroecosyst. 2008, 8, 115–124. [Google Scholar]
- Lohmann, D.; Tietjen, B.; Blaum, N.; Joubert, D.F.; Jeltsch, F. Prescribed Fire as a Tool for Managing Shrub Encroachment in Semi-Arid Savanna Rangelands. J. Arid Environ. 2014, 107, 49–56. [Google Scholar] [CrossRef]
- Frost, P.G.H. Fire in southern African woodlands: Origins, impacts, effects, and control. In Proceedings of the FAO Meeting on Public Policies Affecting Forest Fires, FAO Forestry Paper 138. Rome, Italy, 28–30 October 1998; FAO; pp. 181–205. [Google Scholar]
- Jin, Y.; Roy, D.P. Fire-Induced Albedo Change and its Radiative Forcing at the Surface in Northern Australia. Geophys. Res. Lett. 2005, 32, L13401. [Google Scholar] [CrossRef]
- Levick, S.R.; Asner, G.P.; Smit, I.P.J. Spatial Patterns in the Effects of Fire on Savanna Vegetation Three-Dimensional Structure. Ecol. Appl. 2012, 22, 2110–2121. [Google Scholar] [CrossRef]
- Moreira, A.G. Effects of Fire Protection on Savanna Structure in Central Brazil. J. Biogeogr. 2000, 27, 1021–1029. [Google Scholar] [CrossRef]
- Smit, I.P.J.; Asner, G.P.; Govender, N.; Kennedy-Bowdoin, T.; Knapp, D.E.; Jacobson, J. Effects of Fire on Woody Vegetation Structure in African Savanna. Ecol. Appl. 2010, 20, 1865–1875. [Google Scholar] [CrossRef] [PubMed]
- Andersen, A.N.; Woinarski, J.C.Z.; Parr, C.L. Savanna Burning for Biodiversity: Fire Management for Faunal Conservation in Australian Tropical Savannas. Austral Ecol. 2012, 37, 658–667. [Google Scholar] [CrossRef]
- Medina, E.; Silva, J.F. Savannas of Northern South-America—A Steady-State Regulated by Water Fire Interactions on a Background of Low Nutrient Availability. J. Biogeogr. 1990, 17, 403–413. [Google Scholar] [CrossRef]
- Oba, G.; Post, E.; Syvertsen, P.O.; Stenseth, N.C. Bush Cover and Range Condition Assessments in Relation to Landscape and Grazing in Southern Ethiopia. Landsc. Ecol. 2000, 15, 535–546. [Google Scholar] [CrossRef]
- Smit, I.P.J.; Prins, H.H.T. Predicting the Effects of Woody Encroachment on Mammal Communities, Grazing Biomass and Fire Frequency in African Savannas. PLoS ONE 2015, 10, e0137857. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.K. Global Estimation of CO Emissions using Three Sets of Satellite Data for Burned Area. Atmos. Environ. 2007, 41, 6931–6940. [Google Scholar] [CrossRef]
- Stroppiana, D.; Brivio, P.A.; Gregoire, J.M.; Liousse, C.; Guillaume, B.; Granier, C.; Mieville, A.; Chin, M.; Petron, G. Comparison of Global Inventories of CO Emissions from Biomass Burning Derived from Remotely Sensed Data. Atmos. Chem. Phys. 2010, 10, 12173–12189. [Google Scholar] [CrossRef]
- Williams, J.E.; van Weele, M.; van Velthoven, P.F.J.; Scheele, M.P.; Liousse, C.; van der Werf, G.R. The Impact of Uncertainties in African Biomass Burning Emission Estimates on Modeling Global Air Quality, Long Range Transport and Tropospheric Chemical Lifetimes. Atmosphere 2012, 3, 132–163. [Google Scholar] [CrossRef] [Green Version]
- Alvarado, S.T.; Fornazari, T.; Costola, A.; Morellato, L.P.C.; Silva, T.S.F. Drivers of Fire Occurrence in a Mountainous Brazilian Cerrado Savanna: Tracking Long-Term Fire Regimes using Remote Sensing. Ecol. Ind. 2017, 78, 270–281. [Google Scholar] [CrossRef]
- Archibald, S.; Roy, D.P.; van Wilgen, B.W.; Scholes, R.J. What Limits Fire? an Examination of Drivers of Burnt Area in Southern Africa. Glob. Chang. Biol. 2009, 15, 613–630. [Google Scholar] [CrossRef]
- Curt, T.; Borgniet, L.; Ibanez, T.; Moron, V.; Hely, C. Understanding Fire Patterns and Fire Drivers for Setting a Sustainable Management Policy of the New-Caledonian Biodiversity Hotspot. For. Ecol. Manag. 2015, 337, 48–60. [Google Scholar] [CrossRef]
- Le Maitre, D.C.; Kruger, F.J.; Forsyth, G.G. Interfacing Ecology and Policy: Developing an Ecological Framework and Evidence Base to Support Wildfire Management in South Africa. Austral Ecol. 2014, 39, 424–436. [Google Scholar] [CrossRef]
- Trigg, S.N.; Roy, D.P. A Focus Group Study of Factors that Promote and Constrain the use of Satellite-Derived Fire Products by Resource Managers in Southern Africa. J. Environ. Manag. 2007, 82, 95–110. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.; Landmann, T. Characterizing the Surface Heterogeneity of Fire Effects using Multi-Temporal Reflective Wavelength Data. Int. J. Remote Sens. 2005, 26, 4197–4218. [Google Scholar] [CrossRef]
- Mouillot, F.; Schultz, M.G.; Yue, C.; Cadule, P.; Tansey, K.; Ciais, P.; Chuvieco, E. Ten Years of Global Burned Area Products from Spaceborne Remote Sensing-A Review: Analysis of User Needs and Recommendations for Future Developments. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 64–79. [Google Scholar] [CrossRef]
- Ruiz, J.A.M.; Riano, D.; Arbelo, M.; French, N.H.F.; Ustin, S.L.; Whiting, M.L. Burned Area Mapping Time Series in Canada (1984-1999) from NOAA-AVHRR LTDR: A Comparison with Other Remote Sensing Products and Fire Perimeters. Remote Sens. Environ. 2012, 117, 407–414. [Google Scholar] [CrossRef]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS Burned Area Mapping Algorithm and Product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef]
- Tansey, K.; Gregoire, J.M.; Binaghi, E.; Boschetti, L.; Brivio, P.A.; Ershov, D.; Flasse, S.; Fraser, R.; Graetz, D.; Maggi, M.; et al. A Global Inventory of Burned Areas at 1km Resolution for the Year 2000 Derived from SPOT VEGETATION Data. Clim. Chang. 2004, 67, 345–377. [Google Scholar] [CrossRef]
- Boschetti, L.; Roy, D.P.; Justice, C.O.; Humber, M.L. MODIS-Landsat Fusion for Large Area 30 M Burned Area Mapping. Remote Sens. Environ. 2015, 161, 27–42. [Google Scholar] [CrossRef]
- Hawbaker, T.J.; Vanderhoof, M.K.; Beal, Y.J.; Takacs, J.D.; Schmidt, G.L.; Falgout, J.T.; Williams, B.; Fairaux, N.M.; Caldwell, M.K.; Picotte, J.J.; et al. Mapping Burned Areas using Dense Time-Series of Landsat Data. Remote Sens. Environ. 2017, 198, 504–522. [Google Scholar] [CrossRef]
- Siegert, F.; Ruecker, G.; Hinrichs, A.; Hoffmann, A.A. Increased Damage from Fires in Logged Forests during Droughts Caused by El Nino. Nature 2001, 414, 437–440. [Google Scholar] [CrossRef] [PubMed]
- Siegert, F.; Hoffmann, A.A. The 1998 Forest Fires in East Kalimantan (Indonesia): A Quantitative Evaluation using High Resolution, Multitemporal ERS-2 SAR Images and NOAA-AVHRR Hotspot Data. Remote Sens. Environ. 2000, 72, 64–77. [Google Scholar] [CrossRef]
- Verhegghen, A.; Eva, H.; Ceccherini, G.; Achard, F.; Gond, V.; Gourlet-Fleury, S.; Cerutti, P.O. The Potential of Sentinel Satellites for Burnt Area Mapping and Monitoring in the Congo Basin Forests. Remote Sens. 2016, 8, 986. [Google Scholar] [CrossRef]
- Bourgeau-Chavez, L.L.; Kasischke, E.S.; Brunzell, S.; Mudd, J.P.; Tukman, M. Mapping Fire Scars in Global Boreal Forests using Imaging Radar Data. Int. J. Remote Sens. 2002, 23, 4211–4234. [Google Scholar] [CrossRef]
- Huang, S.L.; Siegert, F. Backscatter Change on Fire Scars in Siberian Boreal Forests in ENVISAT ASAR Wide-Swath Images. IEEE Geosci. Remote Sens. Lett. 2006, 3, 154–158. [Google Scholar] [CrossRef]
- Rykhus, R.; Lu, Z. Monitoring a Boreal Wildfire using Multi-Temporal Radarsat-1 Intensity and Coherence Images. Geomat. Nat. Hazards Risk 2011, 2, 15–32. [Google Scholar] [CrossRef]
- Tanase, M.A.; Kennedy, R.; Aponte, C. Fire Severity Estimation from Space: A Comparison of Active and Passive Sensors and their Synergy for Different Forest Types. Int. J. Wildland Fire 2015, 24, 1062–1075. [Google Scholar] [CrossRef]
- Imperatore, P.; Azar, R.; Calo, F.; Stroppiana, D.; Brivio, P.A.; Lanari, R.; Pepe, A. Effect of the Vegetation Fire on Backscattering: An Investigation Based on Sentinel-1 Observations. IEEE J. Select. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4478–4492. [Google Scholar] [CrossRef]
- Polychronaki, A.; Gitas, I.Z.; Veraverbeke, S.; Debien, A. Evaluation of ALOS PALSAR Imagery for Burned Area Mapping in Greece using Object-Based Classification. Remote Sens. 2013, 5, 5680–5701. [Google Scholar] [CrossRef]
- Tanase, M.A.; Santoro, M.; de la Riva, J.; Perez-Cabello, F.; Le Toan, T. Sensitivity of X-, C-, and L-Band SAR Backscatter to Burn Severity in Mediterranean Pine Forests. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3663–3675. [Google Scholar] [CrossRef]
- Minchella, A.; Del Frate, F.; Capogna, F.; Anselmi, S.; Manes, F. Use of Multitemporal SAR Data for Monitoring Vegetation Recovery of Mediterranean Burned Areas. Remote Sens. Environ. 2009, 113, 588–597. [Google Scholar] [CrossRef]
- Polychronaki, A.; Gitas, I.Z.; Minchella, A. Monitoring Post-Fire Vegetation Recovery in the Mediterranean using SPOT and ERS Imagery. Int. J. Wildland Fire 2014, 23, 631–642. [Google Scholar] [CrossRef]
- Tanase, M.; de la Riva, J.; Santoro, M.; Perez-Cabello, F.; Kasischke, E. Sensitivity of SAR Data to Post-Fire Forest Regrowth in Mediterranean and Boreal Forests. Remote Sens. Environ. 2011, 115, 2075–2085. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Melack, J.M.; Dobson, M.C. The use of Imaging Radars for Ecological Applications—A Review. Remote Sens. Environ. 1997, 59, 141–156. [Google Scholar] [CrossRef]
- Sankaran, M.; Hanan, N.P.; Scholes, R.J.; Ratnam, J.; Augustine, D.J.; Cade, B.S.; Gignoux, J.; Higgins, S.I.; Le Roux, X.; Ludwig, F.; et al. Determinants of Woody Cover in African Savannas. Nature 2005, 438, 846–849. [Google Scholar] [CrossRef] [PubMed]
- Bond, W.J.; Keane, R.E. Ecological Effects of Fire. Ref. Modul. Life Sci. 2017, 1–11. [Google Scholar] [CrossRef]
- Dantas, V.D.; Pausas, J.G. The Lanky and the Corky: Fire-Escape Strategies in Savanna Woody Species. J. Ecol. 2013, 101, 1265–1272. [Google Scholar] [CrossRef]
- Disney, M.I.; Lewis, P.; Gomez-Dans, J.; Roy, D.; Wooster, M.J.; Lajas, D. 3D Radiative Transfer Modelling of Fire Impacts on a Two-Layer Savanna System. Remote Sens. Environ. 2011, 115, 1866–1881. [Google Scholar] [CrossRef]
- Lawes, M.J.; Adie, H.; Russell-Smith, J.; Murphy, B.; Midgley, J.J. How do Small Savanna Trees Avoid Stem Mortality by Fire? the Roles of Stem Diameter, Height and Bark Thickness. Ecosphere 2011, 2, 1–13. [Google Scholar] [CrossRef]
- Archibald, S.; Lehmann, C.E.R.; Gomez-Dans, J.L.; Bradstock, R.A. Defining Pyromes and Global Syndromes of Fire Regimes. Proc. Natl. Acad. Sci. USA 2013, 110, 6442–6447. [Google Scholar] [CrossRef] [PubMed]
- Menges, C.H.; Bartolo, R.E.; Bell, D.; Hill, G.J.E. The Effect of Savanna Fires on SAR Backscatter in Northern Australia. Int. J. Remote Sens. 2004, 25, 4857–4871. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S.L. A Three-Component Scattering Model for Polarimetric SAR Data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 Mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Li, J.; Roy, D.P. A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring. Remote Sens. 2017, 9, 902. [Google Scholar] [Green Version]
- Bourgeau-Chavez, L.L.; Kasischke, E.S.; Riordan, K.; Brunzell, S.; Nolan, M.; Hyer, E.; Slawski, J.; Medvecz, M.; Walters, T.; Ames, S. Remote Monitoring of Spatial and Temporal Surface Soil Moisture in Fire Disturbed Boreal Forest Ecosystems with ERS SAR Imagery. Int. J. Remote Sens. 2007, 28, 2133–2162. [Google Scholar] [CrossRef]
- Lucas, R.; Armston, J.; Fairfax, R.; Fensham, R.; Accad, A.; Carreiras, J.; Kelley, J.; Bunting, P.; Clewley, D.; Bray, S.; et al. An Evaluation of the ALOS PALSAR L-Band Backscatter-Above Ground Biomass Relationship Queensland, Australia: Impacts of Surface Moisture Condition and Vegetation Structure. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 576–593. [Google Scholar] [CrossRef]
- Gertenbach, W.P.D. Rainfall Patterns in the Kruger National Park. Koedoe 1980, 23, 35–43. [Google Scholar] [CrossRef]
- Venter, K.J.; Scholes, R.J.; Eckhardt, H.C. The abiotic template and its associated vegetation pattern. In The Kruger Experience: Ecology and Management of Savanna Heterogeneity; Du Toit, J., Biggs, H., Rogers, K.H., Eds.; Island Press: London, UK, 2003; pp. 83–129. [Google Scholar]
- Cumming, D.H.M. The influence of large herbivores on savanna structure in Africa. In Ecology of Tropical Savannas, Ecological Studies 42; Huntley, B.J., Walker, B.H., Eds.; Springer: Berlin, Heidelberg, 1982; pp. 217–245. [Google Scholar]
- Shannon, G.; Thaker, M.; Vanak, A.T.; Page, B.R.; Grant, R.; Slotow, R. Relative Impacts of Elephant and Fire on Large Trees in a Savanna Ecosystem. Ecosystems 2011, 14, 1372–1381. [Google Scholar] [CrossRef]
- Govender, N.; Trollope, W.S.W.; Van Wilgen, B.W. The Effect of Fire Season, Fire Frequency, Rainfall and Management on Fire Intensity in Savanna Vegetation in South Africa. J. Appl. Ecol. 2006, 43, 748–758. [Google Scholar] [CrossRef]
- Trollope, W.S.W. Ecological effects of fires in South African savannas. In Ecology of Tropical Savannas; Huntley, B.J., Walker, B.H., Eds.; Springer: Berlin, Heidelberg, 1982; pp. 292–306. [Google Scholar]
- Mucina, L.; Rutherford, M.C. The Vegetation of South Africa, Lesotho and Swaziland; South African National Biodiversity Institute: Pretoria, South Africa, 2006. [Google Scholar]
- Govender, N.; Mutanga, O.; Ntsala, D. Veld Fire Reporting and Mapping Techniques in the Kruger National Park, South Africa, from 1941 to 2011. Afr. J. Range Forage Sc. 2012, 29, 63–73. [Google Scholar] [CrossRef]
- Leckie, D.G.; Ranson, K.J. Forestry applications using imaging radar. In Principles & Applications of Imaging Radar, 3rd ed.; Henderson, F.M., Lewis, A.J., Eds.; John Willey: New York, NY, USA, 1998; Volume 2, pp. 435–501. [Google Scholar]
- Schwerdt, M.; Schmidt, K.; Ramon, N.T.; Alfonzo, G.C.; Doring, B.J.; Zink, M.; Prats-Iraola, P. Independent Verification of the Sentinel-1A System Calibration. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 994–1007. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.; Gao, X.; Ferreira, L. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Giglio, L.; Loboda, T.; Roy, D.P.; Quayle, B.; Justice, C.O. An Active-Fire Based Burned Area Mapping Algorithm for the MODIS Sensor. Remote Sens. Environ. 2009, 113, 408–420. [Google Scholar] [CrossRef]
- Tsela, P.; Wessels, K.; Botai, J.; Archibald, S.; Swanepoel, D.; Steenkamp, K.; Frost, P. Validation of the Two Standard MODIS Satellite Burned-Area Products and an Empirically-Derived Merged Product in South Africa. Remote Sens. 2014, 6, 1275–1293. [Google Scholar] [CrossRef] [Green Version]
- Boschetti, L.; Roy, D.P.; Justice, C.O.; Giglio, L. Global Assessment of the Temporal Reporting Accuracy and Precision of the MODIS Burned Area Product. Int. J. Wildland Fire 2010, 19, 705–709. [Google Scholar] [CrossRef]
- Giglio, L.; Descloitres, J.; Justice, C.O.; Kaufman, Y.J. An Enhanced Contextual Fire Detection Algorithm for MODIS. Remote Sens. Environ. 2003, 87, 273–282. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D., Jr.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Hughes, M.J.; Laue, B. Cloud Detection Algorithm Comparison and Validation for Operational Landsat Data Products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef]
- Dwyer, J.L.; Roy, D.P.; Sauer, B.; Jenkerson, C.B.; Zhang, H.K.; Lymburner, L. Analysis Ready Data: Enabling Analysis of the Landsat Archive. Remote Sens. 2018, 10, 1363. [Google Scholar]
- SAWS. South African Weather Service Rainfall Data 2006 to 2010; Dataset; South African Weather Service: Pretoria, South Africa, 2015. [Google Scholar]
- Naidoo, L.; Mathieu, R.; Main, R.; Kleynhans, W.; Wessels, K.; Asner, G.; Leblon, B. Savannah Woody Structure Modelling and Mapping using Multi-Frequency (X-, C- and L-Band) Synthetic Aperture Radar Data. Isprs J. Photogramm. Remote Sens. 2015, 105, 234–250. [Google Scholar] [CrossRef]
- Boschetti, L.; Roy, D.P. Strategies for the Fusion of Satellite Fire Radiative Power with Burned Area Data for Fire Radiative Energy Derivation. J. Geophys. Res.-Atmos. 2009, 114, D20302. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive. Vol 2 Radar Remote Sensing and Surface Scattering and Emission Theory; Artech House: London, UK, 1982. [Google Scholar]
- Veci, L. Sentinel-1 Toolbox SAR Basics Tutorial. 2016. Available online: http://step.esa.int/main/doc/tutorials/ (accessed on 26 February 2019).
- Archibald, S.; Scholes, R.J. Leaf Green-Up in a Semi-Arid African Savanna—Separating Tree and Grass Responses to Environmental Cues. J. Veg. Sci. 2007, 18, 583–594. [Google Scholar]
- Bucini, G.; Hanan, N.P.; Boone, R.B.; Smit, I.P.J.; Saatchi, S.; Lefsky, M.A.; Asner, G.P. Woody fractional cover in Kruger National Park, South Africa: Remote-sensing-based maps and ecological insights. In Ecosystems Function in Savannas: Measurement and Modeling at Landscape to Global Scales; Hill, M.J., Hanan, N.P., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2010; pp. 219–237. [Google Scholar]
- Rembold, F.; Leo, O.; Nègre, T.; Hubbard, N. The 2015–2016 El Niño Event: Expected Impact on Food Security and Main Response Scenarios in East and Southern Africa; EUR 27653 EN; European Commission: Brussels, Belgium, 2015; pp. 1–5. [Google Scholar]
- Cho, M.A.; Debba, P.; Mathieu, R.; Naidoo, L.; van Aardt, J.; Asner, G.P. Improving Discrimination of Savanna Tree Species through a Multiple-Endmember Spectral Angle Mapper Approach: Canopy-Level Analysis. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4133–4142. [Google Scholar] [CrossRef]
- Shackleton, C.M. Rainfall and Topo-Edaphic Influences on Woody Community Phenology in South African Savannas. Glob. Ecol. Biogeogr. 1999, 8, 125–136. [Google Scholar] [CrossRef]
- McDonald, K.C.; Dobson, M.C.; Ulaby, F.T. Modeling Multifrequency Diurnal Backscatter from a Walnut Orchard. IEEE Trans. Geosci. Remote Sens. 1991, 29, 852–863. [Google Scholar] [CrossRef]
- Cronin, N.; Lucas, R.; Milne, A.; Witte, C. Relationships between the Component Biomass of Woodlands in Australia and Data from Airborne and Spaceborne SAR. In Proceedings of the IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment, Honolulu, HI, USA, 24–28 July 2000. [Google Scholar] [CrossRef]
- Lucas, R.; Moghaddam, M.; Cronin, N. Microwave Scattering from Mixed-Species Forests, Queensland, Australia. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2142–2159. [Google Scholar] [CrossRef]
- Trigg, S.; Roy, D.; Flasse, S. An in Situ Study of the Effects of Surface Anisotropy on the Remote Sensing of Burned Savannah. Int. J. Remote Sens. 2005, 26, 4869–4876. [Google Scholar] [CrossRef]
- Wang, Y.; Day, J.; Sun, G. Santa-Barbara Microwave Backscattering Model for Woodlands. Int. J. Remote Sens. 1993, 14, 1477–1493. [Google Scholar] [CrossRef]
- Higgins, S.I.; Bond, W.J.; February, E.C.; Bronn, A.; Euston-Brown, D.I.W.; Enslin, B.; Govender, N.; Rademan, L.; O’Regan, S.; Potgieter, A.L.F.; et al. Effects of Four Decades of Fire Manipulation on Woody Vegetation Structure in Savanna. Ecology 2007, 88, 1119–1125. [Google Scholar] [CrossRef]
- Nefabas, L.L.; Gambiza, J. Fire-Tolerance Mechanisms of Common Woody Plant Species in a Semiarid Savanna in South-Western Zimbabwe. Afr. J. Ecol. 2007, 45, 550–556. [Google Scholar] [CrossRef]
- N’Dri, A.B.; Gignoux, J.; Barot, S.; Konate, S.; Dembele, A.; Werner, P.A. The Dynamics of Hollowing in Annually Burnt Savanna Trees and its Effect on Adult Tree Mortality. Plant Ecol. 2014, 215, 27–37. [Google Scholar] [CrossRef]
- Huang, H.; Roy, D.P.; Boschetti, L.; Zhang, H.K.; Yan, L.; Kumar, S.S.; Gomez-Dans, J.; Li, J. Separability Analysis of Sentinel-2A Multi-Spectral Instrument (MSI) Data for Burned Area Discrimination. Remote Sens. 2016, 8, 873. [Google Scholar] [CrossRef]
Polarization | Time Prior to S1 Acquisition | Equations | R2 | r |
---|---|---|---|---|
VH | 1 day | = 0.04RDIFF − 1.96 | 0.0021 | 0.046 |
3 day | = −0.26RDIFF − 1.81 | 0.2 | 0.45 * | |
5 day | = −0.08RDIFF − 1.94 | 0.02 | 0.16 | |
7 day | = −0.06RDIFF − 1.89 | 0.03 | 0.17 | |
VV | 1 day | = −0.02RDIFF − 1.17 | 0.0015 | 0.039 |
3 day | = −0.23RDIFF − 1.04 | 0.33 | 0.58 ** | |
5 day | = −0.11RDIFF − 1.14 | 0.08 | 0.29 | |
7 day | = −0.07RDIFF − 1.01 | 0.07 | 0.26 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathieu, R.; Main, R.; Roy, D.P.; Naidoo, L.; Yang, H. The Effect of Surface Fire in Savannah Systems in the Kruger National Park (KNP), South Africa, on the Backscatter of C-Band Sentinel-1 Images. Fire 2019, 2, 37. https://doi.org/10.3390/fire2030037
Mathieu R, Main R, Roy DP, Naidoo L, Yang H. The Effect of Surface Fire in Savannah Systems in the Kruger National Park (KNP), South Africa, on the Backscatter of C-Band Sentinel-1 Images. Fire. 2019; 2(3):37. https://doi.org/10.3390/fire2030037
Chicago/Turabian StyleMathieu, Renaud, Russell Main, David P. Roy, Laven Naidoo, and Hannah Yang. 2019. "The Effect of Surface Fire in Savannah Systems in the Kruger National Park (KNP), South Africa, on the Backscatter of C-Band Sentinel-1 Images" Fire 2, no. 3: 37. https://doi.org/10.3390/fire2030037
APA StyleMathieu, R., Main, R., Roy, D. P., Naidoo, L., & Yang, H. (2019). The Effect of Surface Fire in Savannah Systems in the Kruger National Park (KNP), South Africa, on the Backscatter of C-Band Sentinel-1 Images. Fire, 2(3), 37. https://doi.org/10.3390/fire2030037