Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (296)

Search Parameters:
Keywords = fine grinding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2854 KB  
Article
Geometallurgical Characterization of the Lamego Gold Deposit, Sabará-MG: Linking Mineralogy to Processing Performance
by Gabriel Silva, Paola Barbosa, Fernando Villanova, Mariana Lemos, Rodrigo Fonseca, Cintia Stumpf and Alexandre Oliveira
Minerals 2025, 15(11), 1136; https://doi.org/10.3390/min15111136 - 30 Oct 2025
Viewed by 223
Abstract
Gold deposits of the Iron Quadrangle are highly heterogeneous, requiring integrated studies to optimize processing. This study presents a geometallurgical assessment of the Lamego orogenic gold deposit, located in the Iron Quadrangle, Brazil. Eleven composite samples representing four lithotypes, namely metandesite, banded iron [...] Read more.
Gold deposits of the Iron Quadrangle are highly heterogeneous, requiring integrated studies to optimize processing. This study presents a geometallurgical assessment of the Lamego orogenic gold deposit, located in the Iron Quadrangle, Brazil. Eleven composite samples representing four lithotypes, namely metandesite, banded iron formation (BIF), smoky quartz, and carbonaceous phyllite, were analyzed through QEMSCAN, fire assay, and Leco methods. Samples underwent gravity separation and flotation tests to evaluate mineralogical variability and its metallurgical implications. The results show that sulfide-rich lithotypes, particularly those containing pyrite and arsenopyrite, achieved higher gold and sulfur recoveries, especially in flotation. In contrast, samples with high concentrations of muscovite or reactive carbonates such as ankerite and dolomite showed reduced selectivity due to reagent competition and flotation interference. Grinding behavior varied among lithologies, with smoky quartz requiring the highest energy input (10.32 kWh/t) and displaying the lowest breakage parameter (K = 0.120), reflecting its high hardness and fine mineral intergrowths. Strong correlations were established between ore mineralogy and process performance; for instance, sulfide abundance directly predicted flotation recovery, while quartz content correlated with higher grinding energy consumption. These findings underscore the importance of incorporating detailed mineralogical characterization into process design. Geometallurgical tools enable more accurate prediction of metallurgical performance and support the development of lithotype-specific flowsheets for improved recovery, reduced energy consumption, and more efficient gold processing in complex ore systems such as Lamego. Full article
Show Figures

Figure 1

20 pages, 5489 KB  
Article
Sustainable Cement Production: TEA-TIPA as Grinding Aids: Optimizing Ratios for Efficiency and Environmental Impact
by Veysel Kobya, Yahya Kaya, Fatih Eren Akgümüş, Yunus Kaya, Naz Mardani and Ali Mardani
Polymers 2025, 17(19), 2698; https://doi.org/10.3390/polym17192698 - 7 Oct 2025
Cited by 1 | Viewed by 650
Abstract
In line with sustainable construction goals, this study investigates the synergistic use of amine-based grinding aids (GAs), triethanolamine (TEA), and triisopropanolamine (TIPA) to enhance grinding performance and cement properties. GAs were physically blended at varying TEA/TIPA ratios, and their effects on grinding efficiency, [...] Read more.
In line with sustainable construction goals, this study investigates the synergistic use of amine-based grinding aids (GAs), triethanolamine (TEA), and triisopropanolamine (TIPA) to enhance grinding performance and cement properties. GAs were physically blended at varying TEA/TIPA ratios, and their effects on grinding efficiency, CO2 emissions, and environmental footprint were assessed based on energy consumption per target Blaine fineness. The interaction of blended GAs with Ca2+ ions was modeled to understand adsorption behavior. Cement particle size distribution (PSD), Hausner ratio, Carr index, and angle of repose were analyzed to evaluate powder flowability. Scanning electron microscopy (SEM) was employed to examine microstructural changes. Finally, the Taguchi method statistically analyzed the effective parameters influencing system performance. Results demonstrated that the optimized blend containing 25% TEA and 75% TIPA improved grinding performance, enhanced polymer–ion interactions, refined PSD, and significantly increased powder flowability. Overall, the study underscores the potential of amine-based polymeric GAs in producing environmentally friendly, high-performance cement composites. Using a Taguchi design with the larger-is-better S/N criterion, the optimal formulation was determined to be 25% TEA and 75% TIPA at a dosage of 0.10%. ANOVA results indicated that the TEA content was the most significant factor, while the dosage had no statistically significant effect. Full article
Show Figures

Figure 1

16 pages, 1274 KB  
Article
Study on the Effect of Grinding Media Material and Proportion on the Cyanide Gold Extraction Process
by Guiqiang Niu, Yunfeng Shao, Qingfei Xiao, Mengtao Wang, Saizhen Jin, Guobin Wang and Yijun Cao
Minerals 2025, 15(10), 1031; https://doi.org/10.3390/min15101031 - 28 Sep 2025
Viewed by 555
Abstract
Laboratory and industrial tests were conducted to study the impact of grinding media material on key indicators such as grinding product particle size, sodium cyanide consumption, gold recovery rate, unit power consumption, and ball consumption. Laboratory test results indicate that the reasonable mixing [...] Read more.
Laboratory and industrial tests were conducted to study the impact of grinding media material on key indicators such as grinding product particle size, sodium cyanide consumption, gold recovery rate, unit power consumption, and ball consumption. Laboratory test results indicate that the reasonable mixing of ceramic and steel balls can achieve an increase of more than 2.8% in the fineness of the grinding product (−0.038 mm), an increase of 0.3% in the gold recovery rate, and a decrease of 1.3 kg/t in the consumption of sodium cyanide. Industrial trial studies indicate that, compared to the traditional steel ball scheme, using a ceramic ball to steel ball mass ratio of 3:1 under conditions of processing 50,000 tons of gold concentrate annually can save a total of 1.31 million yuan in annual ball consumption, electricity consumption, and cyanide consumption costs. Additionally, the improved recovery rate generates an additional economic benefit of 3.63 million yuan, resulting in an annual comprehensive economic benefit increase of 4.94 million yuan. In summary, in gold cyanide leaching grinding, the mixture ratio between ceramic balls and steel balls demonstrates significant potential for energy conservation, cost reduction, and efficiency enhancement, providing a theoretical basis and technical support for subsequent process optimization and green gold extraction. Full article
(This article belongs to the Collection Advances in Comminution: From Crushing to Grinding Optimization)
Show Figures

Figure 1

33 pages, 4874 KB  
Review
Rheology Modifying Reagents for Clay-Rich Mineral Suspensions: A Review
by Williams Leiva, Norman Toro, Pedro Robles, Gonzalo R. Quezada, Iván Salazar, Javier Flores-Badillo and Ricardo I. Jeldres
Polymers 2025, 17(17), 2427; https://doi.org/10.3390/polym17172427 - 8 Sep 2025
Viewed by 1111
Abstract
In the mining industry, key unit operations such as grinding, flotation, thickening, and tailings transport are negatively affected by the presence of clay minerals, which impart complex rheological behaviors to mineral suspensions by increasing their rheological properties. This deterioration arises from specific physicochemical [...] Read more.
In the mining industry, key unit operations such as grinding, flotation, thickening, and tailings transport are negatively affected by the presence of clay minerals, which impart complex rheological behaviors to mineral suspensions by increasing their rheological properties. This deterioration arises from specific physicochemical characteristics of clay minerals such as fine particle size, anisotropic character, laminar morphology, and swelling capacity. This work reviews the effects of various rheology-modifying reagents on clay suspensions including kaolinite, illite, and montmorillonite. The reviewed reagents include inorganic salts, pH modifiers, polymers, surfactants, and nanoparticles. Their mechanisms of interaction with solid particles are analyzed, highlighting their influence on the degree of dispersion or aggregation. Furthermore, this review proposes research opportunities focused on the formulation of hybrid reagents, modified biopolymers, and the development of reagents effective under adverse conditions such as high salinity or elevated temperatures. This review provides a comprehensive basis for optimizing the use of rheological additives through more efficient and sustainable strategies for managing clay-rich suspensions in the mining industry. Full article
Show Figures

Figure 1

22 pages, 4532 KB  
Article
Research on Deep Separation Technology of Multi–Source By–Products in Coking Coal
by Andile Khumalo, Chuanzhen Wang, Tao Tan and Md. Shakhaoath Khan
ChemEngineering 2025, 9(4), 92; https://doi.org/10.3390/chemengineering9040092 - 18 Aug 2025
Cited by 1 | Viewed by 879
Abstract
This study proposes considering the effective re–benefication of coal middlings and other such considered waste materials as a way to ensure that clean coal in coal by–products can be extracted and effectively utilized, saving costs and reducing coal waste. To quantify the clean–coal [...] Read more.
This study proposes considering the effective re–benefication of coal middlings and other such considered waste materials as a way to ensure that clean coal in coal by–products can be extracted and effectively utilized, saving costs and reducing coal waste. To quantify the clean–coal yield and ash reduction that can be achieved by re–beneficiating four typical by–product streams from the Guobei Coal Preparation Plant (6 Mt a−1) were used for the study. Coking–coal middlings, flotation tailings, and pressure–filter cakes from preparation plants still contain 30–60% combustible matter. Re–beneficiation techniques have been considered to recover this often-wasted coal, reduce waste rock disposal, and cut greenhouse–gas emissions per ton of clean coal produced. Representative samples (n = 4) were collected, sample size–classified as (fine coal particles ≤0.5 mm and coarse particles ≥) and subjected to (i) magnetite removal, (ii) laboratory froth flotation (diesel 507 g t−1, sec–octanol 103 g t−1), and (iii) fine and large particle density separation at 1.3–1.8 g cm−3 ZnCO3 media. Clean–coal yield and ash were measured for each stream and the coal’s particle liberation was examined by SEM. Crushing, grinding and liberation equipment and techniques that aid in the treatment of coal and the re–beneficiation of coal middlings and tailings. The key findings recorded during the experiment are as follows: Flotation of <0.5 mm fractions delivered 46.9–58.3% clean–coal yield at 10.3–17.0% ash. Density separation of 0.5–1.0 mm middlings peaked at 1.4–1.5 g cm−3, yielding 34.2% clean coal at 15–18.4% ash. Scanning Electron Microscope analysis confirmed partial liberation as results from re–grinding + second flotation which increased yield by a further 8–12%. A calculated theoretical examination of the preliminary cost–benefit analysis indicates ≈36 CNY t−1≈9 million CNY a−1 in saved disposal costs alone. savings in disposal and 0.25 Mt a−1 additional clean coal for the Guobei plant. The research presented in this paper highlights the current work by Anhui University of Science and technology in collaboration with Guobei coal preparation plant and the results therein achieved. Full article
Show Figures

Figure 1

15 pages, 912 KB  
Article
Ultrasonic-Assisted Nanoparticle Engineering to Enhance the Extraction Efficiency and Sensory Quality of Saudi Coffee
by Sameh A. Ahmed, Faisal S. Al-Amro and Yaser M. Alahmadi
Foods 2025, 14(16), 2811; https://doi.org/10.3390/foods14162811 - 13 Aug 2025
Viewed by 866
Abstract
Background: Saudi coffee, made from Khawlani beans, is known for its sweeter, less acidic flavor and rich content of bioactive compounds. However, traditional preparation methods are time consuming and inefficient in extracting these compounds, limiting their global appeal. This study introduces an ultrasonic-assisted [...] Read more.
Background: Saudi coffee, made from Khawlani beans, is known for its sweeter, less acidic flavor and rich content of bioactive compounds. However, traditional preparation methods are time consuming and inefficient in extracting these compounds, limiting their global appeal. This study introduces an ultrasonic-assisted nanoparticle preparation technique to enhance the extraction efficiency, chemical profile, and sensory quality of Saudi coffee. The method aims to overcome limitations of traditional grinding by reducing the particle size while preserving key bioactive compounds. Methods: Finely ground coffee was subjected to ultrasonic processing at optimized parameters 450 W (60% of 750 W output), with 10 min of pulsed sonication to produce nanoparticles. These were characterized using SEM, FT-IR, XRPD, and particle size analysis. Comparative chemical analysis (caffeine, total phenols) and sensory evaluation were conducted against regular Saudi coffee. Results: Ultrasonication reduced the particle size to ~101 nm, significantly enhancing caffeine (from 0.54 to 3.21 mg/g) and phenolic content (from 426.7 to 1825.3 µg GAE/g). Solubility also increased from 40.7% to 75.9%. Sensory tests showed an improved aroma, mouthfeel, and flavor. These improvements are attributed to an enhanced extraction and surface area at the nanoscale. Conclusion: Ultrasonic-assisted nanoparticle technology significantly improves the physicochemical and sensory properties of Saudi coffee. This approach offers a fast, scalable, and eco-friendly method for quality enhancement, positioning Saudi coffee for greater global competitiveness. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

12 pages, 1502 KB  
Article
A Study on the Beneficiation of Very Fine Particle Rutile Ore Using Flotation
by Oyku Bilgin and Ilhan Ehsani
Minerals 2025, 15(8), 838; https://doi.org/10.3390/min15080838 - 7 Aug 2025
Viewed by 642
Abstract
This study investigates the beneficiation of finely grinded rutile ore utilizing a combination of flocculation and flotation methods. Rutile, a Ti-bearing mineral with industrial significance, is often associated with heavy minerals found in coastal and metamorphic environments. A rutile ore sample from Azıtepe [...] Read more.
This study investigates the beneficiation of finely grinded rutile ore utilizing a combination of flocculation and flotation methods. Rutile, a Ti-bearing mineral with industrial significance, is often associated with heavy minerals found in coastal and metamorphic environments. A rutile ore sample from Azıtepe (Alaşehir, Türkiye) was reduced to −63 µm and enriched under varying pH conditions (2.5–12) using different reagent combinations and was used for our investigation of both flocculation and flotation processes using reagents such as Aero801(SIPX), Aero825, tannic acid (TA), and pomace oil. The best results were achieved at pH: 8 using Aero801(SIPX) and pomace oil during flocculation, and Aero801(SIPX), Aero825, and Aerofroth88 during flotation, yielding a concentrate with an 8.99% TiO2 grade and an 89.5% recovery rate. Meanwhile, a 7.00% TiO2 grade concentrate was obtained with a recovery rate of 71.92% at neutral pH. This study found that pH and reagent selection had an important effect on TiO2 enrichment efficiency in fine size, low-grade rutile ores. Future research is recommended to investigate selective depressants and multi-stage cleaning to improve separation. Full article
(This article belongs to the Special Issue Particle–Bubble Interactions in the Flotation Process)
Show Figures

Figure 1

27 pages, 3262 KB  
Article
Energy-Efficient Gold Flotation via Coarse Particle Generation Using VSI and HPGR Comminution
by Sindhura Thatipamula and Sheila Devasahayam
Materials 2025, 18(15), 3553; https://doi.org/10.3390/ma18153553 - 29 Jul 2025
Cited by 1 | Viewed by 645
Abstract
This study investigates the impact of two comminution technologies—Vertical Shaft Impactors (VSI) and High-Pressure Grinding Rolls (HPGR)—on gold flotation performance, using ore samples from the Ballarat Gold Mine, Australia. The motivation stems from the growing need to improve energy efficiency and flotation recovery [...] Read more.
This study investigates the impact of two comminution technologies—Vertical Shaft Impactors (VSI) and High-Pressure Grinding Rolls (HPGR)—on gold flotation performance, using ore samples from the Ballarat Gold Mine, Australia. The motivation stems from the growing need to improve energy efficiency and flotation recovery in mineral processing, particularly under increasing economic and environmental constraints. Despite the widespread use of HPGR and VSI in the industry, limited comparative studies have explored their effects on downstream flotation behavior. Laboratory-scale experiments were conducted across particle size fractions (300–600 µm) using two collector types—Potassium Amyl Xanthate (PAX) and DSP002 (a proprietary dithiophosphate collector) to assess differences in flotation recovery, concentrate grade, and specific energy consumption. The results reveal that HPGR produces more fines and micro-cracks, enhancing liberation but also increasing gangue entrainment and energy demand. Conversely, VSI produces coarser, cubical particles with fewer slimes, achieving higher flotation grades and recoveries at lower energy input. VSI at 600 µm demonstrated the highest flotation efficiency (4241) with only 9.79 kWh/t energy input. These findings support the development of hybrid or tailored comminution strategies for improved flotation selectivity and sustainable processing. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

15 pages, 6309 KB  
Article
Study on the Sustainability of Carbon Emission Reduction in China’s Cement Industry
by Kui Zhao, Congling Bao and Bingxin Zhang
Sustainability 2025, 17(14), 6349; https://doi.org/10.3390/su17146349 - 10 Jul 2025
Viewed by 821
Abstract
Recycled concrete fines (RCFs) have the potential to serve as a supplementary cementitious material (SCM) after carbonation. Traditionally, carbonation of RCFs results in calcium carbonate primarily in the form of calcite, which significantly limits the development of RCFs as an SCM. In this [...] Read more.
Recycled concrete fines (RCFs) have the potential to serve as a supplementary cementitious material (SCM) after carbonation. Traditionally, carbonation of RCFs results in calcium carbonate primarily in the form of calcite, which significantly limits the development of RCFs as an SCM. In this research, a wet grinding carbonation (WGC) technique was introduced to enhance the reactivity of RCFs. The research indicates that RCFs after WGC exhibit a finer particle size and a larger specific surface area. The carbonation products include calcite with smaller grains, metastable calcium carbonate, and nanoscale silica gel and Al-Si gel. When RCF-WGC is used as an SCM in ordinary Portland cement (OPC), it significantly promotes the hydration of the cement paste, as evidenced by the advancement and increased intensity of the exothermic peaks of aluminates and silicates. RCF-WGC can significantly enhance the compressive strength of hydrated samples, particularly at early ages. Specifically, at a curing age of 1 day, the compressive strength of WGC5, WGC10, and WGC20 samples increased by 9.9%, 22.5%, and 7.7%, respectively, compared to the Ref sample (0% RCF-WGC). At a curing age of 3 days, the compressive strength of the WGC5, WGC10, and WGC20 samples showed even more significant improvements, increasing by 20.8%, 21.9%, and 11.8%, respectively. The performance enhancement of the WGC samples is attributed to the chemical reactions involving nanoscale silica gel, Al-Si gel, and calcium carbonate in the RCFs. When RCF-WGC is used as an SCM to replace 5%, 10%, and 20% of cement, it can reduce carbon emissions by 27.5 kg/t, 55 kg/t, and 110 kg/t, respectively. Large-scale application of RCFs as a high-value SCM can significantly reduce the life-cycle carbon emissions of the cement industry, contributing to the achievement of carbon peaking in China’s cement sector. Full article
Show Figures

Figure 1

14 pages, 2493 KB  
Article
New Approach to Effective Dry Grinding of Materials by Controlling Grinding Media Actions
by Samat Baigereyev, Georgiy Guryanov, Ansagan Suleimenov and Boris Abdeyev
Appl. Sci. 2025, 15(14), 7713; https://doi.org/10.3390/app15147713 - 9 Jul 2025
Viewed by 575
Abstract
The grinding process plays a crucial role in many technological operations. However, the complexity of increasing product fineness and energy efficiency in particle size reduction poses a problem in grinding processes. This study proposes a new approach for increasing grinding efficiency under dry [...] Read more.
The grinding process plays a crucial role in many technological operations. However, the complexity of increasing product fineness and energy efficiency in particle size reduction poses a problem in grinding processes. This study proposes a new approach for increasing grinding efficiency under dry grinding conditions in mills with grinding media. The approach involves a complex impact on the particle, in which it is subjected to two- and one-sided actions by the grinding media in the horizontal and vertical directions, respectively. The efficiency of the approach was tested by mathematical modeling and experimentation. The difference between the theoretical and experimental results was less than 11%, indicating the reliability of the proposed model. The results indicate that the proposed approach enhances the grinding efficiency by nearly fourfold and can be applied in industrial sectors that require high product fineness. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

30 pages, 3010 KB  
Article
The Concentration of Nickel and Cobalt from Agios Ioannis Laterites by Multi-Gravity Separator
by Amina Eljoudiani, Moacir Medeiros Veras, Carlos Hoffmann Sampaio, Josep Oliva Moncunill, Stylianos Tampouris and Jose Luis Cortina Pallas
Minerals 2025, 15(7), 714; https://doi.org/10.3390/min15070714 - 4 Jul 2025
Viewed by 749
Abstract
Asbolane is a secondary source of cobalt (Co) and manganese (Mn), essential for battery and alloy production. Enhancing the utilization of low-grade ores, typically containing ~1.2% Co and 14.7% Mn, is vital for conserving high-grade resources. However, fine grinding for such ores presents [...] Read more.
Asbolane is a secondary source of cobalt (Co) and manganese (Mn), essential for battery and alloy production. Enhancing the utilization of low-grade ores, typically containing ~1.2% Co and 14.7% Mn, is vital for conserving high-grade resources. However, fine grinding for such ores presents challenges for conventional gravity separation. This study investigates the effectiveness of the Multi-Gravity Separator (MGS) in processing finely disseminated asbolane ore from Agios Ioannis, Greece. The study was conducted at the Mineral Processing Laboratory of UPC/Bases Manresa. Two size fractions, D80 (−100 +50 µm and −50 µm), were tested under varying drum speeds, tilt angles, and wash water flows. Response surface methodology (RSM) was implemented using Python-optimized (version 3.15) process parameters. The results demonstrate that a concentrate with 2.6% Co and 32.5% Mn can be obtained, achieving 82.1% Co recovery. Independent and multi-objective optimizations confirm MGS as a viable method for recovering Co and Mn from complex low-grade ores, with reduced overgrinding-related energy losses essential for production. The study aimed to implement and enhance low-grade asbolane ore from a feed containing 2.6% Co and 32.5% Mn. Variables were optimized with a multi-objective target, demonstrating their effectiveness. Full article
(This article belongs to the Special Issue Recycling of Mining and Solid Wastes)
Show Figures

Figure 1

16 pages, 2512 KB  
Article
The Effect of Grinding Techniques on the Microstructural Properties of Purslane (Portulaca oleracea L.) Powder, Its Total Phenolics Before and After In Vitro Simulated Gastrointestinal Digestion, and Its Antioxidant Capacity
by Tea Bilušić, Dora Runtić, Ivana Šola, Maja Benković, Ante Bilušić, Marija Ćosić and Dani Đorđević
Appl. Sci. 2025, 15(13), 7448; https://doi.org/10.3390/app15137448 - 2 Jul 2025
Viewed by 968
Abstract
Purslane (Portulaca oleracea L.) is a plant recognized as a valuable source of nutrients and bioactive compounds such as omega-3 fatty acids, antioxidants, vitamins, and minerals. This study investigates the effects of grinding techniques (knife, ball, and planetary ball mill) on the [...] Read more.
Purslane (Portulaca oleracea L.) is a plant recognized as a valuable source of nutrients and bioactive compounds such as omega-3 fatty acids, antioxidants, vitamins, and minerals. This study investigates the effects of grinding techniques (knife, ball, and planetary ball mill) on the properties of purslane powder (surface microstructure, particle size distribution, and color), their influence on the phenolic content in the extracts of purslane powder before and after in vitro simulated digestion process, and the antioxidant activity of the purslane extracts. The results showed that applied grinding techniques affected the particle size distribution and surface morphology of the powder, which in turn influenced the gastrointestinal stability of the dominant phenolic compounds in purslane powder extracts. The powder obtained via ball milling, characterized by the highest proportion of fine particles (x < 100 µm), showed the highest content of total phenolics (656 mg GAE/L). Ball milling resulted in high preservation of the dominant phenolic acids in the powder extract after simulated gastric and intestinal digestion (83.55% and 69.42%) and high free radical scavenging activity (DPPH and ABTS) and ferric reducing power (FRAP). The results obtained emphasize the nutritional and biological benefits of purslane in the form of a fine powder. Full article
(This article belongs to the Special Issue Biosynthesis and Applications of Natural Products)
Show Figures

Figure 1

13 pages, 3345 KB  
Article
Grinding Deformation Behavior of a Lamellar γ-TiAl Alloy
by Jiale Qin, Mengxi Xu, Renci Liu, Yingying Shen, Zhiqiang Shan, Zuohai Zhu, Dong Liu, Yuyou Cui and Rui Yang
Materials 2025, 18(13), 3114; https://doi.org/10.3390/ma18133114 - 1 Jul 2025
Viewed by 516
Abstract
γ-TiAl alloys are susceptible to surface damage during grinding, deteriorating their mechanical properties during service. However, the underlying mechanism of surface microstructure deformation during grinding remains incompletely understood. This work systematically investigated the deformation behavior of surface lamellae in a Ti-45Al-2Nb-2Mn-1B (at.%) alloy [...] Read more.
γ-TiAl alloys are susceptible to surface damage during grinding, deteriorating their mechanical properties during service. However, the underlying mechanism of surface microstructure deformation during grinding remains incompletely understood. This work systematically investigated the deformation behavior of surface lamellae in a Ti-45Al-2Nb-2Mn-1B (at.%) alloy during grinding. The surface lamellae exhibit bending after grinding, with the degree of bending angle φ depending on the orientation of the lamellae. The bending angle φ depends on both the angle between the lamellae interface normal and the grinding direction, and the angle between the lamellae interface normal and the grinding surface normal. The lamellar deformation depth h is primarily governed by the grinding depth. The surface of the sample after grinding can be divided into three distinct layers: a surface fine-equiaxed grain zone, a bending lamella zone, and a near-surface deformation zone. The deformation in the bending lamella zone primarily results from slip bands and stacking faults, whereas the near-surface deformation zone contains extensive dislocation tangles. The results offer fundamental insights into the deformation mechanism of surface lamellar colonies during grinding and provide theoretical guidance for the machining of γ-TiAl alloy components. Full article
(This article belongs to the Special Issue New Advances in High-Temperature Structural Materials)
Show Figures

Figure 1

20 pages, 2527 KB  
Article
Investigation of the Impact of Clinker Grinding Conditions on Energy Consumption and Ball Fineness Parameters Using Statistical and Machine Learning Approaches in a Bond Ball Mill
by Yahya Kaya, Veysel Kobya, Gulveren Tabansiz-Goc, Naz Mardani, Fatih Cavdur and Ali Mardani
Materials 2025, 18(13), 3110; https://doi.org/10.3390/ma18133110 - 1 Jul 2025
Viewed by 714
Abstract
This study explores the application of machine learning (ML) techniques—gradient boosting (GB), ridge regression (RR), and support vector regression (SVR)—for estimating the consumption of energy (CE) and Blaine fineness (BF) in cement clinker grinding. This study utilizes key clinker grinding parameters, such as [...] Read more.
This study explores the application of machine learning (ML) techniques—gradient boosting (GB), ridge regression (RR), and support vector regression (SVR)—for estimating the consumption of energy (CE) and Blaine fineness (BF) in cement clinker grinding. This study utilizes key clinker grinding parameters, such as maximum ball size, ball filling ratio, clinker mass, rotation speed, and number of revolutions, as input features. Through comprehensive preprocessing, feature selection methods (mutual info regression (MIR), lasso regression (LR), and sequential backward selection (SBS)) were employed to identify the most significant variables for predicting CE and BF. The performance of the models was optimized using a grid search for hyperparameter tuning and validated using k-fold cross-validation (k = 10). The results show that all ML methods effectively estimated the target parameters, with SVR demonstrating superior accuracy in both CE and BF predictions, as evidenced by its higher R2 and lower error metrics (MAE, MAPE, and RMSE). This research highlights the potential of ML models in optimizing cement grinding processes, offering a novel approach to parameter estimation that can reduce experimental effort and enhance production efficiency. The findings underscore the advantages of SVR, making it the most reliable method for predicting energy consumption and Blaine fineness in clinker grinding. Full article
Show Figures

Figure 1

14 pages, 2384 KB  
Article
Analysis of Influencing Factors in the Preparation Process of Solid Waste-Based Ternesite Sulphoaluminate Cement
by Dunlei Su, Xin Liu, Haojian Tang, Yani Hao, Jiahui Wang, Dejin Xing, Hongxing Liu, Mingxin Yang and Weiyi Kong
Coatings 2025, 15(7), 773; https://doi.org/10.3390/coatings15070773 - 30 Jun 2025
Viewed by 359
Abstract
Based on a novel ternesite sulphoaluminate cement (NTSAC), the effects of various influencing factors on the calcination of clinker were studied, including mineral composition of clinker, grinding fineness of raw materials, molding technology of samples, and cooling methods of clinker. The research was [...] Read more.
Based on a novel ternesite sulphoaluminate cement (NTSAC), the effects of various influencing factors on the calcination of clinker were studied, including mineral composition of clinker, grinding fineness of raw materials, molding technology of samples, and cooling methods of clinker. The research was carried out by taking the calcination system and mineral content of clinker as evaluation indexes, and using RSM and QXRD as analytical means. The results indicate that the optimal calcination temperature of clinker varies with the design mineral composition, while the holding time remains basically unchanged. Clinker with high CaSO4 content has a relatively lower calcination temperature. The use of a calcination system of 1175 °C-49 min can control the mineral content error of the cement below 15%. Moreover, the molding pressure, molding methods, grinding fineness of raw materials, and cooling methods of clinker have significant effects on the clinker preparation to varying degrees, with the order of influence from high to low being molding methods, grinding fineness of raw materials, molding pressure, and cooling methods of clinker. Within the range of experimental parameters, the better preparation conditions are compression molding (molding method), 15 MPa (molding pressure), and 20 μm (grinding fineness). The above research conclusions provide reference data for cement preparation in the laboratory, offering useful guidance for developing novel types of cement. Full article
Show Figures

Figure 1

Back to TopTop