Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (289)

Search Parameters:
Keywords = fine grinding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3262 KiB  
Article
Energy-Efficient Gold Flotation via Coarse Particle Generation Using VSI and HPGR Comminution
by Sindhura Thatipamula and Sheila Devasahayam
Materials 2025, 18(15), 3553; https://doi.org/10.3390/ma18153553 - 29 Jul 2025
Viewed by 181
Abstract
This study investigates the impact of two comminution technologies—Vertical Shaft Impactors (VSI) and High-Pressure Grinding Rolls (HPGR)—on gold flotation performance, using ore samples from the Ballarat Gold Mine, Australia. The motivation stems from the growing need to improve energy efficiency and flotation recovery [...] Read more.
This study investigates the impact of two comminution technologies—Vertical Shaft Impactors (VSI) and High-Pressure Grinding Rolls (HPGR)—on gold flotation performance, using ore samples from the Ballarat Gold Mine, Australia. The motivation stems from the growing need to improve energy efficiency and flotation recovery in mineral processing, particularly under increasing economic and environmental constraints. Despite the widespread use of HPGR and VSI in the industry, limited comparative studies have explored their effects on downstream flotation behavior. Laboratory-scale experiments were conducted across particle size fractions (300–600 µm) using two collector types—Potassium Amyl Xanthate (PAX) and DSP002 (a proprietary dithiophosphate collector) to assess differences in flotation recovery, concentrate grade, and specific energy consumption. The results reveal that HPGR produces more fines and micro-cracks, enhancing liberation but also increasing gangue entrainment and energy demand. Conversely, VSI produces coarser, cubical particles with fewer slimes, achieving higher flotation grades and recoveries at lower energy input. VSI at 600 µm demonstrated the highest flotation efficiency (4241) with only 9.79 kWh/t energy input. These findings support the development of hybrid or tailored comminution strategies for improved flotation selectivity and sustainable processing. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

15 pages, 6309 KiB  
Article
Study on the Sustainability of Carbon Emission Reduction in China’s Cement Industry
by Kui Zhao, Congling Bao and Bingxin Zhang
Sustainability 2025, 17(14), 6349; https://doi.org/10.3390/su17146349 - 10 Jul 2025
Viewed by 445
Abstract
Recycled concrete fines (RCFs) have the potential to serve as a supplementary cementitious material (SCM) after carbonation. Traditionally, carbonation of RCFs results in calcium carbonate primarily in the form of calcite, which significantly limits the development of RCFs as an SCM. In this [...] Read more.
Recycled concrete fines (RCFs) have the potential to serve as a supplementary cementitious material (SCM) after carbonation. Traditionally, carbonation of RCFs results in calcium carbonate primarily in the form of calcite, which significantly limits the development of RCFs as an SCM. In this research, a wet grinding carbonation (WGC) technique was introduced to enhance the reactivity of RCFs. The research indicates that RCFs after WGC exhibit a finer particle size and a larger specific surface area. The carbonation products include calcite with smaller grains, metastable calcium carbonate, and nanoscale silica gel and Al-Si gel. When RCF-WGC is used as an SCM in ordinary Portland cement (OPC), it significantly promotes the hydration of the cement paste, as evidenced by the advancement and increased intensity of the exothermic peaks of aluminates and silicates. RCF-WGC can significantly enhance the compressive strength of hydrated samples, particularly at early ages. Specifically, at a curing age of 1 day, the compressive strength of WGC5, WGC10, and WGC20 samples increased by 9.9%, 22.5%, and 7.7%, respectively, compared to the Ref sample (0% RCF-WGC). At a curing age of 3 days, the compressive strength of the WGC5, WGC10, and WGC20 samples showed even more significant improvements, increasing by 20.8%, 21.9%, and 11.8%, respectively. The performance enhancement of the WGC samples is attributed to the chemical reactions involving nanoscale silica gel, Al-Si gel, and calcium carbonate in the RCFs. When RCF-WGC is used as an SCM to replace 5%, 10%, and 20% of cement, it can reduce carbon emissions by 27.5 kg/t, 55 kg/t, and 110 kg/t, respectively. Large-scale application of RCFs as a high-value SCM can significantly reduce the life-cycle carbon emissions of the cement industry, contributing to the achievement of carbon peaking in China’s cement sector. Full article
Show Figures

Figure 1

14 pages, 2493 KiB  
Article
New Approach to Effective Dry Grinding of Materials by Controlling Grinding Media Actions
by Samat Baigereyev, Georgiy Guryanov, Ansagan Suleimenov and Boris Abdeyev
Appl. Sci. 2025, 15(14), 7713; https://doi.org/10.3390/app15147713 - 9 Jul 2025
Viewed by 270
Abstract
The grinding process plays a crucial role in many technological operations. However, the complexity of increasing product fineness and energy efficiency in particle size reduction poses a problem in grinding processes. This study proposes a new approach for increasing grinding efficiency under dry [...] Read more.
The grinding process plays a crucial role in many technological operations. However, the complexity of increasing product fineness and energy efficiency in particle size reduction poses a problem in grinding processes. This study proposes a new approach for increasing grinding efficiency under dry grinding conditions in mills with grinding media. The approach involves a complex impact on the particle, in which it is subjected to two- and one-sided actions by the grinding media in the horizontal and vertical directions, respectively. The efficiency of the approach was tested by mathematical modeling and experimentation. The difference between the theoretical and experimental results was less than 11%, indicating the reliability of the proposed model. The results indicate that the proposed approach enhances the grinding efficiency by nearly fourfold and can be applied in industrial sectors that require high product fineness. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

30 pages, 3010 KiB  
Article
The Concentration of Nickel and Cobalt from Agios Ioannis Laterites by Multi-Gravity Separator
by Amina Eljoudiani, Moacir Medeiros Veras, Carlos Hoffmann Sampaio, Josep Oliva Moncunill, Stylianos Tampouris and Jose Luis Cortina Pallas
Minerals 2025, 15(7), 714; https://doi.org/10.3390/min15070714 - 4 Jul 2025
Viewed by 331
Abstract
Asbolane is a secondary source of cobalt (Co) and manganese (Mn), essential for battery and alloy production. Enhancing the utilization of low-grade ores, typically containing ~1.2% Co and 14.7% Mn, is vital for conserving high-grade resources. However, fine grinding for such ores presents [...] Read more.
Asbolane is a secondary source of cobalt (Co) and manganese (Mn), essential for battery and alloy production. Enhancing the utilization of low-grade ores, typically containing ~1.2% Co and 14.7% Mn, is vital for conserving high-grade resources. However, fine grinding for such ores presents challenges for conventional gravity separation. This study investigates the effectiveness of the Multi-Gravity Separator (MGS) in processing finely disseminated asbolane ore from Agios Ioannis, Greece. The study was conducted at the Mineral Processing Laboratory of UPC/Bases Manresa. Two size fractions, D80 (−100 +50 µm and −50 µm), were tested under varying drum speeds, tilt angles, and wash water flows. Response surface methodology (RSM) was implemented using Python-optimized (version 3.15) process parameters. The results demonstrate that a concentrate with 2.6% Co and 32.5% Mn can be obtained, achieving 82.1% Co recovery. Independent and multi-objective optimizations confirm MGS as a viable method for recovering Co and Mn from complex low-grade ores, with reduced overgrinding-related energy losses essential for production. The study aimed to implement and enhance low-grade asbolane ore from a feed containing 2.6% Co and 32.5% Mn. Variables were optimized with a multi-objective target, demonstrating their effectiveness. Full article
(This article belongs to the Special Issue Recycling of Mining and Solid Wastes)
Show Figures

Figure 1

16 pages, 2512 KiB  
Article
The Effect of Grinding Techniques on the Microstructural Properties of Purslane (Portulaca oleracea L.) Powder, Its Total Phenolics Before and After In Vitro Simulated Gastrointestinal Digestion, and Its Antioxidant Capacity
by Tea Bilušić, Dora Runtić, Ivana Šola, Maja Benković, Ante Bilušić, Marija Ćosić and Dani Đorđević
Appl. Sci. 2025, 15(13), 7448; https://doi.org/10.3390/app15137448 - 2 Jul 2025
Viewed by 302
Abstract
Purslane (Portulaca oleracea L.) is a plant recognized as a valuable source of nutrients and bioactive compounds such as omega-3 fatty acids, antioxidants, vitamins, and minerals. This study investigates the effects of grinding techniques (knife, ball, and planetary ball mill) on the [...] Read more.
Purslane (Portulaca oleracea L.) is a plant recognized as a valuable source of nutrients and bioactive compounds such as omega-3 fatty acids, antioxidants, vitamins, and minerals. This study investigates the effects of grinding techniques (knife, ball, and planetary ball mill) on the properties of purslane powder (surface microstructure, particle size distribution, and color), their influence on the phenolic content in the extracts of purslane powder before and after in vitro simulated digestion process, and the antioxidant activity of the purslane extracts. The results showed that applied grinding techniques affected the particle size distribution and surface morphology of the powder, which in turn influenced the gastrointestinal stability of the dominant phenolic compounds in purslane powder extracts. The powder obtained via ball milling, characterized by the highest proportion of fine particles (x < 100 µm), showed the highest content of total phenolics (656 mg GAE/L). Ball milling resulted in high preservation of the dominant phenolic acids in the powder extract after simulated gastric and intestinal digestion (83.55% and 69.42%) and high free radical scavenging activity (DPPH and ABTS) and ferric reducing power (FRAP). The results obtained emphasize the nutritional and biological benefits of purslane in the form of a fine powder. Full article
(This article belongs to the Special Issue Biosynthesis and Applications of Natural Products)
Show Figures

Figure 1

13 pages, 3345 KiB  
Article
Grinding Deformation Behavior of a Lamellar γ-TiAl Alloy
by Jiale Qin, Mengxi Xu, Renci Liu, Yingying Shen, Zhiqiang Shan, Zuohai Zhu, Dong Liu, Yuyou Cui and Rui Yang
Materials 2025, 18(13), 3114; https://doi.org/10.3390/ma18133114 - 1 Jul 2025
Viewed by 311
Abstract
γ-TiAl alloys are susceptible to surface damage during grinding, deteriorating their mechanical properties during service. However, the underlying mechanism of surface microstructure deformation during grinding remains incompletely understood. This work systematically investigated the deformation behavior of surface lamellae in a Ti-45Al-2Nb-2Mn-1B (at.%) alloy [...] Read more.
γ-TiAl alloys are susceptible to surface damage during grinding, deteriorating their mechanical properties during service. However, the underlying mechanism of surface microstructure deformation during grinding remains incompletely understood. This work systematically investigated the deformation behavior of surface lamellae in a Ti-45Al-2Nb-2Mn-1B (at.%) alloy during grinding. The surface lamellae exhibit bending after grinding, with the degree of bending angle φ depending on the orientation of the lamellae. The bending angle φ depends on both the angle between the lamellae interface normal and the grinding direction, and the angle between the lamellae interface normal and the grinding surface normal. The lamellar deformation depth h is primarily governed by the grinding depth. The surface of the sample after grinding can be divided into three distinct layers: a surface fine-equiaxed grain zone, a bending lamella zone, and a near-surface deformation zone. The deformation in the bending lamella zone primarily results from slip bands and stacking faults, whereas the near-surface deformation zone contains extensive dislocation tangles. The results offer fundamental insights into the deformation mechanism of surface lamellar colonies during grinding and provide theoretical guidance for the machining of γ-TiAl alloy components. Full article
(This article belongs to the Special Issue New Advances in High-Temperature Structural Materials)
Show Figures

Figure 1

20 pages, 2527 KiB  
Article
Investigation of the Impact of Clinker Grinding Conditions on Energy Consumption and Ball Fineness Parameters Using Statistical and Machine Learning Approaches in a Bond Ball Mill
by Yahya Kaya, Veysel Kobya, Gulveren Tabansiz-Goc, Naz Mardani, Fatih Cavdur and Ali Mardani
Materials 2025, 18(13), 3110; https://doi.org/10.3390/ma18133110 - 1 Jul 2025
Viewed by 386
Abstract
This study explores the application of machine learning (ML) techniques—gradient boosting (GB), ridge regression (RR), and support vector regression (SVR)—for estimating the consumption of energy (CE) and Blaine fineness (BF) in cement clinker grinding. This study utilizes key clinker grinding parameters, such as [...] Read more.
This study explores the application of machine learning (ML) techniques—gradient boosting (GB), ridge regression (RR), and support vector regression (SVR)—for estimating the consumption of energy (CE) and Blaine fineness (BF) in cement clinker grinding. This study utilizes key clinker grinding parameters, such as maximum ball size, ball filling ratio, clinker mass, rotation speed, and number of revolutions, as input features. Through comprehensive preprocessing, feature selection methods (mutual info regression (MIR), lasso regression (LR), and sequential backward selection (SBS)) were employed to identify the most significant variables for predicting CE and BF. The performance of the models was optimized using a grid search for hyperparameter tuning and validated using k-fold cross-validation (k = 10). The results show that all ML methods effectively estimated the target parameters, with SVR demonstrating superior accuracy in both CE and BF predictions, as evidenced by its higher R2 and lower error metrics (MAE, MAPE, and RMSE). This research highlights the potential of ML models in optimizing cement grinding processes, offering a novel approach to parameter estimation that can reduce experimental effort and enhance production efficiency. The findings underscore the advantages of SVR, making it the most reliable method for predicting energy consumption and Blaine fineness in clinker grinding. Full article
Show Figures

Figure 1

14 pages, 2384 KiB  
Article
Analysis of Influencing Factors in the Preparation Process of Solid Waste-Based Ternesite Sulphoaluminate Cement
by Dunlei Su, Xin Liu, Haojian Tang, Yani Hao, Jiahui Wang, Dejin Xing, Hongxing Liu, Mingxin Yang and Weiyi Kong
Coatings 2025, 15(7), 773; https://doi.org/10.3390/coatings15070773 - 30 Jun 2025
Viewed by 246
Abstract
Based on a novel ternesite sulphoaluminate cement (NTSAC), the effects of various influencing factors on the calcination of clinker were studied, including mineral composition of clinker, grinding fineness of raw materials, molding technology of samples, and cooling methods of clinker. The research was [...] Read more.
Based on a novel ternesite sulphoaluminate cement (NTSAC), the effects of various influencing factors on the calcination of clinker were studied, including mineral composition of clinker, grinding fineness of raw materials, molding technology of samples, and cooling methods of clinker. The research was carried out by taking the calcination system and mineral content of clinker as evaluation indexes, and using RSM and QXRD as analytical means. The results indicate that the optimal calcination temperature of clinker varies with the design mineral composition, while the holding time remains basically unchanged. Clinker with high CaSO4 content has a relatively lower calcination temperature. The use of a calcination system of 1175 °C-49 min can control the mineral content error of the cement below 15%. Moreover, the molding pressure, molding methods, grinding fineness of raw materials, and cooling methods of clinker have significant effects on the clinker preparation to varying degrees, with the order of influence from high to low being molding methods, grinding fineness of raw materials, molding pressure, and cooling methods of clinker. Within the range of experimental parameters, the better preparation conditions are compression molding (molding method), 15 MPa (molding pressure), and 20 μm (grinding fineness). The above research conclusions provide reference data for cement preparation in the laboratory, offering useful guidance for developing novel types of cement. Full article
Show Figures

Figure 1

15 pages, 2585 KiB  
Article
The Influence of Grinding Media on the Grinding Effect of Granite Pegmatite-Type Quartz
by Qi Tan, Lei Liu, Lixiang Guo and Guangxue Liu
Minerals 2025, 15(7), 682; https://doi.org/10.3390/min15070682 - 26 Jun 2025
Viewed by 286
Abstract
The selection of grinding media significantly impacts the resulting mineral’s liberation degree and grinding quality; this is particularly impactful for granite pegmatite-type quartz. Accordingly, in this study, we investigate the effects of different grinding media on the breakage characteristics of muscovite granite pegmatite-type [...] Read more.
The selection of grinding media significantly impacts the resulting mineral’s liberation degree and grinding quality; this is particularly impactful for granite pegmatite-type quartz. Accordingly, in this study, we investigate the effects of different grinding media on the breakage characteristics of muscovite granite pegmatite-type quartz, focusing also on quartz mineral flotation. An analysis of scanning electron microscope images reveals distinct fracture characteristics among different minerals. Notably, the fractal dimension of mineral fracture roughness in ball-milled products is larger compared to that of rod-milled products, which exhibit a smaller fractal dimension. This fractal dimension serves as a quantitative measure of the microscopic morphology of mineral fractures in the grinding products, establishing a relationship between the roughness of the fractures and the type of grinding medium used. Further analysis of particle size distribution and mineral dissociation indicates that the rod mill produces a higher yield of coarse fractions compared to both ceramic and steel balls, while the fine fraction yield is significantly lower than that of the rod mill and steel balls. Importantly, the rod mill enhances the dissociation degree of quartz, suggesting that it can improve the liberation of mineral monomers and increase the yield of qualified fractions during the grinding process while effectively reducing the phenomenon of overgrinding. Our flotation experiments demonstrate that the recovery rate of quartz using the rod mill is 2.59% and 5.07% higher than that achieved with the ball mill and ceramic mill, respectively. These findings provide theoretical support for the optimization of grinding media and enhancement of mineral flotation recovery. Full article
(This article belongs to the Special Issue Physicochemical Properties and Purification of Quartz Minerals)
Show Figures

Graphical abstract

16 pages, 3042 KiB  
Article
Development and Evaluation of Modified Rotor–Stator Knives for Enhanced Fine Grinding of Chicken Meat–Bone Raw Material in Colloid Mill
by Zhanibek Yessimbekov, Rasul Turagulov, Aitbek Kakimov, Anuarbek Suychinov, Eleonora Okuskhanova and Assemgul Baikadamova
Appl. Sci. 2025, 15(13), 7106; https://doi.org/10.3390/app15137106 - 24 Jun 2025
Viewed by 373
Abstract
The growing demand for cost-effective, high-quality protein ingredients in the meat industry highlights the need for advanced processing methods capable of producing uniform, functional meat–bone pastes from poultry by-products. This study investigates the optimization of colloid milling parameters for the fine grinding of [...] Read more.
The growing demand for cost-effective, high-quality protein ingredients in the meat industry highlights the need for advanced processing methods capable of producing uniform, functional meat–bone pastes from poultry by-products. This study investigates the optimization of colloid milling parameters for the fine grinding of chicken meat–bone by-products, with a focus on improving particle size distribution, rheological properties, and processing efficiency. A modified rotor–stator system with teeth inclined at 20° and a reduced pitch (0.5 mm) was compared to a conventional configuration (45° inclination, 1.5 mm pitch). Experiments were conducted at rotor speeds ranging from 1000 to 4000 rpm, with a fixed clearance of 0.1 mm. The results showed that the modified design significantly enhanced grinding efficiency, reducing the proportion of bone fragments > 1 mm and yielding over 70% of particles under 0.1 mm at 3000 rpm. Viscosity and shear stress measurements indicated that grinding at 3000 rpm yielded a dynamic viscosity of 71,507 Pa·s and a shear stress of 43,531 mPa·s, values that were significantly lower (p < 0.05) than those observed at other tested speeds, thereby producing a paste consistency with the most favorable balance of elasticity and flowability. At 4000 rpm, the temperature rise (up to 32 °C) led to partial denaturation of muscle proteins, accompanied by emulsion destabilization and disruption of the protein gel matrix, resulting in reductions in the viscosity and water-binding capacity of the paste. Comparative analysis confirmed that tool geometry and rotor speed have critical effects on grinding quality, energy use, and thermal load. The optimal operating parameters, 3000 rpm with modified rotor–stator teeth, achieve the finest, most homogeneous bone paste while preserving protein functionality and minimizing energy losses. These findings support the development of energy-efficient grinding equipment for the valorization of poultry by-products in emulsified meat formulations. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

17 pages, 3077 KiB  
Article
Development of Mannitol-Based Microparticles for Dry Powder Inhalers: Enhancing Pulmonary Delivery of NSAIDs
by Petra Party, Zsófia Ilona Piszman and Rita Ambrus
Pharmaceuticals 2025, 18(6), 923; https://doi.org/10.3390/ph18060923 - 19 Jun 2025
Viewed by 569
Abstract
Background/Objectives: Chronic lung diseases are among the leading causes of death worldwide. In the treatment of these diseases, non-steroidal anti-inflammatory drugs can be effective. We have previously developed an excipient formulation alongside a modern manufacturing protocol, which we aim to further investigate. We [...] Read more.
Background/Objectives: Chronic lung diseases are among the leading causes of death worldwide. In the treatment of these diseases, non-steroidal anti-inflammatory drugs can be effective. We have previously developed an excipient formulation alongside a modern manufacturing protocol, which we aim to further investigate. We have chosen two new model drugs, meloxicam (MX) and its water-soluble salt, meloxicam-potassium (MXP). The particles in dry powder inhaler (DPI) formulation were expected to have a spherical shape, fast drug release, and good aerodynamic properties. Methods: The excipients were poloxamer-188, mannitol, and leucine. The samples were prepared by spray drying, preceded by solution preparation and wet grinding. Particle size was determined by laser diffraction, shape by scanning electron microscopy (SEM), crystallinity by powder X-ray diffraction (PXRD), interactions by Fourier-transform infrared spectroscopy (FT-IR), in vitro drug dissolution by paddle apparatus, and in vitro aerodynamic properties by Andersen cascade impactor and Spraytec® device. Results: We achieved the proper particle size (<5 μm) and spherical shape according to laser diffraction and SEM. The XRPD showed partial amorphization. FT-IR revealed no interaction between the materials. During the in vitro dissolution tests, more than 90% of MX and MXP were released within the first 5 min. The best products exhibited an aerodynamic diameter of around 4 µm, a fine particle fraction around 50%, and an emitted fraction over 95%. The analysis by Spraytec® supported the suitability for lung targeting. Conclusions: The developed preparation process and excipient system can be applied in the development of different drugs containing DPIs. Full article
(This article belongs to the Special Issue Recent Advances in Inhalation Therapy)
Show Figures

Graphical abstract

18 pages, 4063 KiB  
Article
Influence of Clinker and Cinder Particle Gradation on the Properties of Blended Cement and Associated Mortars
by Runze Shang, Dexiang Huang, Wenju Cai, Longlong Niu, Bi Chen, Xinyu Zhang, Wei Li and Min Deng
Materials 2025, 18(12), 2864; https://doi.org/10.3390/ma18122864 - 17 Jun 2025
Viewed by 290
Abstract
The high-hydrolysis reactivity cement clinker powder in cement plays a major role in cement’s cementation, while low-hydrolysis reactivity mineral admixture powders, such as slag, m mainly serve as a filler. Through optimizing the particle matching of cement clinker powder and slag powder, the [...] Read more.
The high-hydrolysis reactivity cement clinker powder in cement plays a major role in cement’s cementation, while low-hydrolysis reactivity mineral admixture powders, such as slag, m mainly serve as a filler. Through optimizing the particle matching of cement clinker powder and slag powder, the mechanical properties of cement can be enhanced. In this study, clinker and slag with differing levels of fineness were obtained by separate grinding, and the particle gradation of clinker powder and slag powder in the cement was optimized. Fine clinker particles were mixed with coarse slag particles to systematically explore their effects on the rheology of cement paste, the formation of hydration products, the evolution of the pore structure, and the material’s mechanical properties. Through experimental tests and microscopic analysis, the mechanism whereby particle gradation is regulated by separate grinding was revealed. The findings of the study are as follows: with the same amount of cinder, finer clinker requires a higher water content of standard consistency. The addition of coarse cinder effectively reduces the standard-consistency water requirement of the blended cement. Fine grinding of coal cinder fails to enhance cement strength effectively but markedly raises the standard-consistency water demand. Thus, the specific surface area of coal cinder should be maintained at approximately 210 m2/kg. Full article
Show Figures

Figure 1

24 pages, 3021 KiB  
Article
The Cavitation Characteristics of Micro–Nanobubbles and Their Effects on the Flotation Recovery of Fine-Grained Ilmenite
by Weiping Yan, Boyuan Zhang, Yaohui Yang, Jian Deng and Weisi Li
Minerals 2025, 15(6), 628; https://doi.org/10.3390/min15060628 - 10 Jun 2025
Viewed by 390
Abstract
The co-occurring relationships between ilmenite and gangue minerals in ilmenite deposits, as well as fine mineral embedding particle sizes, are complex. During the beneficiation process, grinding ilmenite finely is necessary to achieve sufficient individual mineral dissociation and the efficient recovery of ilmenite. During [...] Read more.
The co-occurring relationships between ilmenite and gangue minerals in ilmenite deposits, as well as fine mineral embedding particle sizes, are complex. During the beneficiation process, grinding ilmenite finely is necessary to achieve sufficient individual mineral dissociation and the efficient recovery of ilmenite. During this process, a large number of fine-grained minerals can easily be generated, which adversely affects flotation separation. Micro–nanobubbles have been proven to effectively enhance the flotation separation efficiency of fine-grained minerals, as their cavitation characteristics are closely related to the flotation performance of the minerals. In order to fully understand the cavitation characteristics of micro–nanobubbles and their impact on the flotation recovery of fine-grained ilmenite, a series of experiments were conducted using methods such as the bubble cavitation property test, micro-flotation experiments, zeta potential analysis, the contact angle test, adsorption capacity detection, and PBM monitoring. The results indicate that during the process of slurry cavitation, appropriate concentrations of 2-octanol, cycle treatment times, and external inflation volume are conducive to the formation of micro–nanobubbles. Compared with deionized water without cavitation, cavitated micro–nanobubble water is more beneficial for the flotation separation of fine particulate ilmenite, titanaugite, and olivine. The presence of micro–nanobubbles can effectively promote the adsorption of combined collectors on mineral surfaces, significantly enhancing the hydrophobicity of the minerals, with an even stronger promoting effect observed under the treatment of 2-octanol. Micro–nanobubbles can adsorb a portion of the collectors originally attached to the mineral surfaces, thereby decreasing the absolute value of the surface potential of the minerals, which is beneficial for mineral aggregation. The introduction of micro–nanobubbles promotes the aggregation of fine ilmenite iron ore particles into flocculent bodies. 2-Octanol can reduce the size of the micro–nanobubbles generated during the cavitation process of the mineral slurry and, to a certain extent, weaken the phenomenon of bubble coalescence, so they demonstrate a greater advantage in facilitating the aggregation phenomenon. Full article
(This article belongs to the Special Issue Advances on Fine Particles and Bubbles Flotation, 2nd Edition)
Show Figures

Figure 1

15 pages, 2035 KiB  
Article
Evaluation of the Effect of Using Different Types of Clinker Grinding Aids on Grinding Performance by Numerical Analysis
by Yahya Kaya, Veysel Kobya, Murat Eser, Naz Mardani, Metin Bilgin and Ali Mardani
Materials 2025, 18(12), 2712; https://doi.org/10.3390/ma18122712 - 9 Jun 2025
Viewed by 408
Abstract
To develop more environmentally friendly and sustainable cementitious systems, the use of grinding aids (GAs) during the clinker grinding process has increasingly gained attention. Although the mechanisms of the action of grinding aids (GAs) are known, the selection of an effective grinding aid [...] Read more.
To develop more environmentally friendly and sustainable cementitious systems, the use of grinding aids (GAs) during the clinker grinding process has increasingly gained attention. Although the mechanisms of the action of grinding aids (GAs) are known, the selection of an effective grinding aid (GA) can be difficult due to the complexity of appropriate selection criteria. For this reason, it is important to model the effect of GA properties on grinding performance. In this study, seven different types of GAs were used in four different dosages, and time-dependent grinding was performed. The Blaine fineness values of cements were compared after each grinding process. In addition, the modeling of these parameters using machine learning and ensemble learning methods was discussed. The Synthetic Minority Over-sampling Technique (Smote) was used to generate artificial data and increase the number of data for the grinding efficiency experiment. The data were modeled using methods such as Artificial Neural Networks (ANNs), Attentive Interpretable Tabular Learning (TabNet), Random Forests (RFs), and the XGBoost Regressor (XGBoost), and the ranking of the parameters affecting the Blaine properties was determined using the XGBoost method. The XGBoost method achieved the best results in the MAE, RMSE, and LogCosh metrics with values of 21.0384, 33.7379, and 15.4846, respectively, in the experimental modeling studies with augmented data. This study contributes to a better understanding of the relationship between GA selection and milling process performance. Full article
(This article belongs to the Special Issue Modeling and Optimization of Material Properties and Characteristics)
Show Figures

Figure 1

17 pages, 7055 KiB  
Article
Effects of Grinding Parameters on Galena Particle Size Distribution and Flotation Performance
by Mengchi Guo, Yuankun Yang, Shengli Yu, Yanming Wu, Guohua Gu, Yanhong Wang, Qingke Li and Jianyu Chen
Minerals 2025, 15(6), 618; https://doi.org/10.3390/min15060618 - 9 Jun 2025
Viewed by 480
Abstract
The processing of low-grade, lead-containing practical ores requires fine grinding to liberate galena and enhance flotation recovery. The ball mill is still one of the most common approaches used in industry for fine grinding. This study investigated the effect of the grinding parameters [...] Read more.
The processing of low-grade, lead-containing practical ores requires fine grinding to liberate galena and enhance flotation recovery. The ball mill is still one of the most common approaches used in industry for fine grinding. This study investigated the effect of the grinding parameters in a ball mill on the fine grinding product of galena and on flotation performance. The grinding product had a particle size below 30 μm, which was classified into +25 μm, −25 + 10 μm, and −10 μm fractions. Grinding experiments showed that modifications to the grinding concentration, media proportion, and filling ratio exerted significant effects on the yields of the +25 μm and −10 μm fractions. Flotation experiments showed that the yield of −10 μm particles negatively affected the flotation performance of galena. Discrete element method simulation results revealed that an increase in the motion velocity of the media group enhanced attrition effects during fine grinding, promoting the generation of −10 μm particles. The higher yield of −10 μm particles facilitated a smaller contact angle and smaller agglomerate size, resulting in lower recovery. To optimize the particle size distribution and improve fine-grained galena flotation recovery, it is essential to reduce the attrition of the grinding media on the mineral. Full article
(This article belongs to the Special Issue Advances in the Theory and Technology of Physical Separation)
Show Figures

Figure 1

Back to TopTop