Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (190)

Search Parameters:
Keywords = fine granules

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 471 KiB  
Article
Multi-Granulation Covering Rough Intuitionistic Fuzzy Sets Based on Maximal Description
by Xiao-Meng Si and Zhan-Ao Xue
Symmetry 2025, 17(8), 1217; https://doi.org/10.3390/sym17081217 - 1 Aug 2025
Viewed by 85
Abstract
Rough sets and fuzzy sets are two complementary approaches for modeling uncertainty and imprecision. Their integration enables a more comprehensive representation of complex, uncertain systems. However, existing rough fuzzy sets models lack the expressive power to fully capture the interactions among structural uncertainty, [...] Read more.
Rough sets and fuzzy sets are two complementary approaches for modeling uncertainty and imprecision. Their integration enables a more comprehensive representation of complex, uncertain systems. However, existing rough fuzzy sets models lack the expressive power to fully capture the interactions among structural uncertainty, cognitive hesitation, and multi-level granular information. To address these limitations, we achieve the following: (1) We propose intuitionistic fuzzy covering rough membership and non-membership degrees based on maximal description and construct a new single-granulation model that more effectively captures both the structural relationships among elements and the semantics of fuzzy information. (2) We further extend the model to a multi-granulation framework by defining optimistic and pessimistic approximation operators and analyzing their properties. Additionally, we propose a neutral multi-granulation covering rough intuitionistic fuzzy sets based on aggregated membership and non-membership degrees. Compared with single-granulation models, the multi-granulation models integrate multiple levels of information, allowing for more fine-grained and robust representations of uncertainty. Finally, a case study on real estate investment was conducted to validate the effectiveness of the proposed models. The results show that our models can more precisely represent uncertainty and granularity in complex data, providing a flexible tool for knowledge representation in decision-making scenarios. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

32 pages, 1285 KiB  
Review
Metabolic Engineering Strategies for Enhanced Polyhydroxyalkanoate (PHA) Production in Cupriavidus necator
by Wim Hectors, Tom Delmulle and Wim K. Soetaert
Polymers 2025, 17(15), 2104; https://doi.org/10.3390/polym17152104 - 31 Jul 2025
Viewed by 359
Abstract
The environmental burden of conventional plastics has sparked interest in sustainable alternatives such as polyhydroxyalkanoates (PHAs). However, despite ample research in bioprocess development and the use of inexpensive waste streams, production costs remain a barrier to widespread commercialization. Complementary to this, genetic engineering [...] Read more.
The environmental burden of conventional plastics has sparked interest in sustainable alternatives such as polyhydroxyalkanoates (PHAs). However, despite ample research in bioprocess development and the use of inexpensive waste streams, production costs remain a barrier to widespread commercialization. Complementary to this, genetic engineering offers another avenue for improved productivity. Cupriavidus necator stands out as a model host for PHA production due to its substrate flexibility, high intracellular polymer accumulation, and tractability to genetic modification. This review delves into metabolic engineering strategies that have been developed to enhance the production of poly(3-hydroxybutyrate) (PHB) and related copolymers in C. necator. Strategies include the optimization of central carbon flux, redox and cofactor balancing, adaptation to oxygen-limiting conditions, and fine-tuning of granule-associated protein expression and the regulatory network. This is followed by outlining engineered pathways improving the synthesis of PHB copolymers, PHBV, PHBHHx, and other emerging variants, emphasizing genetic modifications enabling biosynthesis based on unrelated single-carbon sources. Among these, enzyme engineering strategies and the establishment of novel artificial pathways are widely discussed. In particular, this review offers a comprehensive overview of promising engineering strategies, serving as a resource for future strain development and positioning C. necator as a valuable microbial chassis for biopolymer production at an industrial scale. Full article
Show Figures

Figure 1

19 pages, 2696 KiB  
Article
Effect of Ultrasound and Chemical Cross-Linking on the Structural and Physicochemical Properties of Malanga (Colocasia esculenta) Starch
by Ana Sofía Martínez-Cigarroa, Guadalupe del Carmen Rodríguez-Jimenes, Alejandro Aparicio-Saguilán, Violeta Carpintero-Tepole, Miguel Ángel García-Alvarado, Ceferino Carrera, Gerardo Fernández Barbero, Mercedes Vázquez-Espinosa and Lucio Abel Vázquez-León
Foods 2025, 14(15), 2609; https://doi.org/10.3390/foods14152609 - 25 Jul 2025
Viewed by 343
Abstract
Starch extracted from malanga (Colocasia esculenta) is a biopolymer with considerable industrial potential thanks to its high starch content (70–80% on a dry basis) and small granule size, which give it distinctive functional properties. To expand its applications in advanced processes [...] Read more.
Starch extracted from malanga (Colocasia esculenta) is a biopolymer with considerable industrial potential thanks to its high starch content (70–80% on a dry basis) and small granule size, which give it distinctive functional properties. To expand its applications in advanced processes such as encapsulation, it is necessary to modify its structural and physicochemical characteristics. This study evaluated the effects of ultrasound (US) and chemical cross-linking (CL) on the properties of this starch. US was applied at various times and amplitudes, while CL was performed using sodium trimetaphosphate and sodium tripolyphosphate, with sodium sulfate as a catalyst. US treatment reduced particle size and increased amylose content, resulting in lower viscosity and gelatinization temperature, without affecting granule morphology. Meanwhile, CL induced phosphate linkages between starch chains, promoting aggregation and reducing amylose content and enthalpy, but increasing the gelatinization temperature. The modified starches exhibited low syneresis, making them potentially suitable for products such as pastas, baby foods, and jams. Additionally, ultrasound modification enabled the production of fine starch microparticles, which could be applied in the microencapsulation of bioactive compounds in the food and pharmaceutical industries. These findings suggest that modified malanga starch can serve as a functional and sustainable alternative in industrial applications. Full article
Show Figures

Graphical abstract

13 pages, 4081 KiB  
Article
Tailored Morphology and Phase Evolution of Magnesium Whitlockite Granules via a Dissolution–Precipitation Approach
by Ruta Raiseliene, Greta Linkaite, Akvile Ezerskyte and Inga Grigoraviciute
Appl. Sci. 2025, 15(13), 7221; https://doi.org/10.3390/app15137221 - 26 Jun 2025
Viewed by 298
Abstract
Magnesium whitlockite (Mg-WH) has emerged as a promising biomaterial for bone regeneration due to its compositional similarity to natural bone minerals. This study aimed to systematically modify a dissolution–precipitation synthesis method to produce Mg-WH granules with tailored morphologies and controlled phase compositions for [...] Read more.
Magnesium whitlockite (Mg-WH) has emerged as a promising biomaterial for bone regeneration due to its compositional similarity to natural bone minerals. This study aimed to systematically modify a dissolution–precipitation synthesis method to produce Mg-WH granules with tailored morphologies and controlled phase compositions for possible use in bone regeneration applications. Three distinct precursor granules were prepared by mixing varying amounts of ammonium dihydrogen phosphate and magnesium hydrogen phosphate with calcium sulfate. The precursors were then transformed into biphasic and single-phase Mg-WH granules by means of immersion in magnesium- and phosphate-containing solutions under controlled conditions. The X-ray diffraction results demonstrated that biphasic materials containing Mg-WH and either calcium-deficient hydroxyapatite (CDHA) or dicalcium phosphate anhydrous (DCPA) formed after 24 h of synthesis, depending on the synthesis conditions. Prolonging the reaction time to 48 h resulted in complete transformation into single-phase Mg-WH granules. Fourier-transform infrared spectroscopy confirmed the presence of functional groups characteristic of Mg-WH, CDHA, and DCPA in the intermediate products. The spectra also indicated the absence of precursor phases and the progressive elimination of secondary phases as the reaction time increased. Scanning electron microscopy analyses revealed notable morphological transformations from the raw granules to the product granules, with the latter exhibiting interlocked spherical and rod-like particles composed of fine Mg-WH rhombohedral crystals. N2 adsorption–desorption analyses exposed significant differences in the surface properties of the synthesized granules. By varying precursor, reaction solution compositions, and reaction times, the study elucidated the phase evolution mechanisms and demonstrated their impact on the structural, morphological, and surface properties of Mg-WH granules. Full article
(This article belongs to the Special Issue Novel Ceramic Materials: Processes, Properties and Applications)
Show Figures

Figure 1

25 pages, 1601 KiB  
Article
Effect of Steel Fibers on Shear Carrying Capacity of Rubberized Geopolymer Concrete Beams
by Divya S Nair and T Meena
Buildings 2025, 15(13), 2248; https://doi.org/10.3390/buildings15132248 - 26 Jun 2025
Viewed by 329
Abstract
Geopolymer concrete (GPC) offers reduced carbon emissions and employs industrial by-products such as fly ash and ground granulated blast furnace slag (GGBFS). In this study, the synergistic augmentation of shear carrying capacity in steel-fiber-reinforced rubberized geopolymer concrete (FRGC) incorporating industrial by-products such as [...] Read more.
Geopolymer concrete (GPC) offers reduced carbon emissions and employs industrial by-products such as fly ash and ground granulated blast furnace slag (GGBFS). In this study, the synergistic augmentation of shear carrying capacity in steel-fiber-reinforced rubberized geopolymer concrete (FRGC) incorporating industrial by-products such as fly ash, GGBFS, and recycled rubber for sustainable construction is investigated. The reinforced rubberized geopolymer concrete (RFRGC) mixtures contained 20% rubber crumbs as a partial replacement for fine aggregate, uniform binder, and alkaline activator. The findings revealed that 1.25% steel fiber achieved optimal hardened properties (compressive strength, flexural, and split tensile strength), with 12 M sodium hydroxide and oven curing achieving maximum values. An increase in molarity improved geopolymerization, with denser matrices, while oven curing boosted polymerization, enhancing the bonding between the matrix and the fiber. The effect of steel fiber on the shear carrying capacity of RFRGC beams without stirrups is also discussed in this paper. An increased fiber content led to an increased shear carrying capacity, characterized by an improvement in first crack load and a delayed ultimate failure. These results contribute to sustainable concrete technologies for specifically designed FRGC systems that can balance structural toughness, providing viable alternatives to traditional concrete without compromising strength capacity. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

40 pages, 4122 KiB  
Article
Stress–Strain Relationship of Rubberized Geopolymer Concrete with Slag and Fly Ash
by Sunday U. Azunna, Farah N. A. A. Aziz, Raizal S. M. Rashid and Ernaleza B. Mahsum
Constr. Mater. 2025, 5(3), 42; https://doi.org/10.3390/constrmater5030042 - 25 Jun 2025
Cited by 1 | Viewed by 329
Abstract
Rubberized concrete is a more environmentally friendly material than natural concrete as it helps to reduce rubber disposal issues and has superior impact resistance. Geopolymer concrete, on the other hand, is an economical concrete with higher mechanical properties than nominal concrete that uses [...] Read more.
Rubberized concrete is a more environmentally friendly material than natural concrete as it helps to reduce rubber disposal issues and has superior impact resistance. Geopolymer concrete, on the other hand, is an economical concrete with higher mechanical properties than nominal concrete that uses fly ash and slag, among other industrial solid wastes, to lower carbon footprints. Rubberized geopolymer concrete (RuGPC) combines the advantages of both concrete types, and a thorough grasp of its dynamic compressive characteristics is necessary for its use in components linked to impact resistance. Despite the advantages of RuGPC, predicting its mechanical characteristics is sometimes difficult because of variations in binder type and combination. This research investigated the combined effect of ground granulated blast furnace slag (GGBFS) and fly ash (FA) on the workability, compressive strength, and stress–strain characteristics of RuGPC with rubber at 0%, 10%, and 20% fine aggregate replacement. Thereafter, energy absorption and ductile characteristics were evaluated through the concrete toughness and ductility index. Numerical models were proposed for the cube compressive strength, modulus of elasticity, and peak strain of RuGPC at different percentages of crumb rubber. It was found that RuGPC made with GGBFS/FA had similar stress–strain characteristics to FA- and MK-based RuGPC. At 20% of crumb rubber aggregate replacement, the workability, compressive strength, modulus of elasticity, and peak stress of RuGPC reduced by 8.33%, 34.67%, 43.42%, and 44.97%, while Poisson’s ratio, peak, and ultimate strain increased by 30.34%, 8.56%, and 55.84%, respectively. The concrete toughness and ductility index increased by 22.4% and 156.67%. The proposed model’s calculated results, with R2 values of 0.9508, 0.9935, and 0.9762, show high consistency with the experimental data. RuGPC demonstrates high energy absorption capacity, making it a suitable construction material for structures requiring high-impact resistance. Full article
Show Figures

Figure 1

23 pages, 8462 KiB  
Article
Engineering and Durability Properties of Sustainable Bricks Incorporating Lime Kiln Dust, Ground Granulated Blast Furnace Slag, and Tyre Rubber Wastes
by Joy Ayankop Oke and Hossam Abuel-Naga
Buildings 2025, 15(12), 2079; https://doi.org/10.3390/buildings15122079 - 17 Jun 2025
Viewed by 379
Abstract
This study explores the potential of using sustainable materials in brick manufacturing by designing a novel brick mix in the laboratory, incorporating sand, lime kiln dust (LKD) waste, tyre rubber, and ground granulated blast furnace slag (GGBFS) waste. These cementless bricks blended LKD–GGBFS [...] Read more.
This study explores the potential of using sustainable materials in brick manufacturing by designing a novel brick mix in the laboratory, incorporating sand, lime kiln dust (LKD) waste, tyre rubber, and ground granulated blast furnace slag (GGBFS) waste. These cementless bricks blended LKD–GGBFS wastes as the binder agent and fine crumb rubber from waste tyres as a partial replacement for sand in measured increments of 0%, 5%, and 10% by volume of sand. Ordinary Portland cement (OPC) and fired clay bricks were sourced from the industry, and their properties were compared to those of the laboratory bricks. Tests performed on the industry and laboratory bricks included compressive strength (CS), freeze-thaw (F-T), and water absorption (WA) tests for comparison purposes. Additionally, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analyses were performed on the bricks to assess the morphological and mineralogical changes responsible for the observed strengths and durability. The CS and WA values of the engineered bricks were 12, 6, and 4 MPa, and 7, 12, and 15%, respectively, for 0, 5, and 10% crumb rubber replacements. The industry bricks’ average CS and WA values were 13 MPa and 8%, respectively. From the results obtained, the green laboratory bricks passed the minimum strength requirements for load-bearing and non-load-bearing bricks, which can be used to construct small houses. Lastly, the engineered bricks demonstrated strength and durability properties comparable to those of the industry-standard bricks, indicating their potential as a sustainable alternative to help divert waste from landfills, reduce the pressure on natural fine sand extraction, and support eco-conscious brick production for a sustainable environment. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 4596 KiB  
Article
OsMYBR1, a 1R-MYB Family Transcription Factor Regulates Starch Biosynthesis in Rice Endosperm
by Kunyong Huang, Long Chen, Guiai Jiao, Zheyan Ruan, Xinwei Li, Shaoqing Tang, Peisong Hu and Xiangjin Wei
Life 2025, 15(6), 962; https://doi.org/10.3390/life15060962 - 16 Jun 2025
Viewed by 550
Abstract
Starch is the primary component of the endosperm and plays a crucial role in rice quality. Although the enzymes involved in starch synthesis have been extensively studied, the transcription factors that regulate these enzymes remain largely unknown. Here, we identified a MYB family [...] Read more.
Starch is the primary component of the endosperm and plays a crucial role in rice quality. Although the enzymes involved in starch synthesis have been extensively studied, the transcription factors that regulate these enzymes remain largely unknown. Here, we identified a MYB family transcription factor, OsMYBR1, that regulates starch biosynthesis in rice. OsMYBR1 is highly expressed during endosperm development. Mutations of OsMYBR1 result in reduced grain thickness and a decrease in 1000-grain weight. The endosperm of osmybr1 mutants exhibit rounded and loosely packed starch granules, decreased amylose content, altered fine structure of amylopectin, and modified physicochemical properties. The analysis of RT-qPCR showed that the expression of several starch-synthesis enzyme-coding genes (SSEGs), including OsGBSSⅠ, OsAGPL1, OsAGPL2, OsBEⅡb, OsISA1, PHOL, and OsSSⅢa, is altered in osmybr1 mutants. Further experiments indicated that OsMYBR1 directly binds to the promoters of OsGBSSⅠ, OsAGPL1, OsAGPL2, OsISA1, OsBEⅡb, and PHOL, resulting in an increase in the expression of OsGBSSⅠ but a decrease in the expression of OsAGPL2, OsISA1, and OsSSⅢa. In contrast, OsMYBR1-overexpressing endosperm appears normal, with starch granule morphology, increased amylopectin content, and improved alkali spreading value, indicating enhanced rice eating and cooking quality (ECQ). These findings suggest that the overexpression of OsMYBR1 could be a promising strategy for improving rice ECQ. Full article
(This article belongs to the Special Issue Recent Advances in Crop Genetics and Breeding)
Show Figures

Figure 1

20 pages, 3363 KiB  
Article
Effect of Elevated Temperature on Mechanical Properties and Shielding Performance of Magnetite–Serpentine Radiation-Proof Concrete
by Dan Wu, Zehua Liu, Zhenfu Chen, Qiongfang Wu and Qiuwang Tao
Materials 2025, 18(12), 2686; https://doi.org/10.3390/ma18122686 - 6 Jun 2025
Viewed by 624
Abstract
High temperatures can induce a range of physical and chemical alterations in radiation-protective concrete, potentially compromising its strength and significantly diminishing its radiation shielding capabilities. Therefore, it is very important to study the high temperature performance of radiation-proof concrete to ensure its safety [...] Read more.
High temperatures can induce a range of physical and chemical alterations in radiation-protective concrete, potentially compromising its strength and significantly diminishing its radiation shielding capabilities. Therefore, it is very important to study the high temperature performance of radiation-proof concrete to ensure its safety and stability in extreme environment. In this study, the magnetite–serpentine radiation-proof concrete is designed with magnetite as coarse aggregate, serpentine as fine aggregate, and Portland cement and granulated blast furnace slag as mixture. The apparent characteristics, mass loss, ultrasonic pulse velocity, mechanical properties, shielding performance, and correlation of this concrete were analyzed through experiments. The results show that the damage degree and relative wave velocity have a good correlation in evaluating the relative mass loss, linear attenuation coefficient, compressive strength, and tensile strength after high temperatures. The compressive strength at 800 °C is 12.2 MPa and the splitting tensile strength is 0.48 MPa; the linear attenuation coefficient of specimen at 800 °C is reduced to 80.9% of that at normal temperature. Meanwhile, penetrating cracks appeared at 600 °C and spalling phenomenon appeared at 800 °C, and better thermal stability and favorable mechanical properties and shielding performance also occurred; thus, suitable radioactive and high temperature environment was determined. The results could provide scientific guidance for nondestructive testing and performance evaluation of shielding structure materials. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

24 pages, 5466 KiB  
Article
The Impact of the Feed Rate and the Binder Concentration on the Morphology of Spray-Dried Alumina–Polymer Nanocomposites
by Rahul Mitra, Lukas Fuchs, Orkun Furat, Yannik Sinnwell, Sergiy Antonyuk, Volker Schmidt and Urs Alexander Peuker
Processes 2025, 13(6), 1643; https://doi.org/10.3390/pr13061643 - 23 May 2025
Viewed by 540
Abstract
Spray-drying is a flexible method for creating fine porous composites with controlled size and morphology. This study investigates how the morphology and porosity of the spray-dried powder of nano-alumina and polyvinylpyrrolidone (PVP-30) granules are affected by both the feed rate and the binder [...] Read more.
Spray-drying is a flexible method for creating fine porous composites with controlled size and morphology. This study investigates how the morphology and porosity of the spray-dried powder of nano-alumina and polyvinylpyrrolidone (PVP-30) granules are affected by both the feed rate and the binder concentration. Droplet size and velocity distributions, measured with a HiWatch system, showed that higher feed rates produce larger droplets with faster velocities, therefore affecting the final morphology of the dried product. The morphology of the dried granules was analyzed using inline SOPAT imaging. While mercury intrusion porosimetry quantified the nano-pore volume and nano-pore size of the granules, offline scanning electron microscopy (SEM) was also used to characterize the morphology of the dried product. The findings show that, while raising the binder concentration produces a more compact morphology with a lower nano-pore volume, higher feed rates produce larger granules with a larger nano-pore volume. This study offers fundamental insights that can support the future development of control strategies for optimizing the production of spray-dried porous alumina–polymer nanocomposites by means of knowledge about the relationship between these process parameters and product qualities. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

15 pages, 3844 KiB  
Article
Effervescent Tablet Preparation by Twin-Screw Melt Granulation with Sorbitol as a Melt Binder
by Zoltán Márk Horváth, Kirils Kukuls, Alīna Jaroslava Frolova, Marta Žogota, Elżbieta Maria Buczkowska, Līga Pētersone and Valentyn Mohylyuk
Pharmaceutics 2025, 17(5), 676; https://doi.org/10.3390/pharmaceutics17050676 - 21 May 2025
Viewed by 1418
Abstract
Methods: Effervescent granules containing citric acid and sodium bicarbonate were successfully prepared for the first time via TS-MG using a polyol (sorbitol) as a melt binder. Results: Processing parameters, specifically granulation temperature and screw speed, were systematically varied to investigate their [...] Read more.
Methods: Effervescent granules containing citric acid and sodium bicarbonate were successfully prepared for the first time via TS-MG using a polyol (sorbitol) as a melt binder. Results: Processing parameters, specifically granulation temperature and screw speed, were systematically varied to investigate their influence. The granulation efficiency, inversely related to the wt.% of fines, decreased in the following order across the tested conditions (granulation temperature–screw speed; ℃-rpm): 95-6 > 100-5 > 90-5 > 100-7 > 90-7. Granulation temperature had a minimal impact on the bulk and tapped densities of the uncalibrated granules, whereas increased screw speed led to higher densities, associated with a reduced proportion of fines. The tensile strength of the resulting effervescent tablets increased with granulation temperature and was generally higher for tablets derived from granules with higher granulation efficiency. The residence time within the TS-MG barrel decreased with increasing temperature and screw speed. Notably, the greatest effect of granulation temperature on tensile strength occurred between 90 and 95 °C, particularly under longer residence times. The disintegration time of the tablets was shortest for the 90 °C and 5 rpm condition, corresponding to the lowest tensile strength, while tablets across formulations showed consistent homogeneity as indicated by similar pH values post-disintegration. Conclusions: These findings underscore sorbitol’s suitability as a melt binder and highlight the interplay between TS-MG parameters and the physical characteristics of effervescent granules and tablets. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Graphical abstract

33 pages, 688 KiB  
Review
The Regulatory Roles of RNA-Binding Proteins in Plant Salt Stress Response
by Tangying Wang, Kaiyuan Meng, Zilin Zhu, Linxuan Pan, Thomas W. Okita, Laining Zhang and Li Tian
Plants 2025, 14(9), 1402; https://doi.org/10.3390/plants14091402 - 7 May 2025
Cited by 1 | Viewed by 1778
Abstract
Salt stress is one of the most prominent abiotic stresses. Behind the intricate adaptive responses of plants to salt stress, the regulation of gene expression assumes a pivotal role. Complementing transcriptional mechanisms, post-transcriptional regulation performed by RNA-binding proteins provides an additional layer of [...] Read more.
Salt stress is one of the most prominent abiotic stresses. Behind the intricate adaptive responses of plants to salt stress, the regulation of gene expression assumes a pivotal role. Complementing transcriptional mechanisms, post-transcriptional regulation performed by RNA-binding proteins provides an additional layer of control through sophisticated molecular machinery. RBPs interact with both RNA molecules and protein partners to coordinate RNA metabolism and, thus, fine-tune the expression of salt-responsive genes, enabling plants to rapidly adapt to ionic challenges. This review systematically evaluates the functional roles of RBPs localized in distinct subcellular compartments, including nuclear, cytoplasmic, chloroplastic, and mitochondrial systems, in mediating post-transcriptional regulatory networks under salinity challenges. Specific classes of RBPs are discussed in detail, including glycine-rich RNA-binding proteins (GR-RBPs), serine/arginine-rich splicing factors (SR proteins), zinc finger domain-containing proteins, DEAD-box RNA helicases (DBRHs), KH domain-containing proteins, Pumilio domain-containing proteins (PUMs), pentatricopeptide repeat proteins (PPRs), and RBPs involved in cytoplasmic RNA granule formation. By integrating their subcellular localization and current mechanistic insights, this review concludes by summarizing the current knowledge and highlighting potential future research directions, aiming to inspire further investigations into the complex network of RBPs in modulating plant responses to salt stress and facilitating the development of strategies to enhance plant salt tolerance. Full article
Show Figures

Figure 1

14 pages, 10903 KiB  
Article
Effects of Nickel and Iron Content on the Microstructures and Mechanical Properties of Cemented Carbide with Coarse and Fine-Grained Heterostructures
by Shuzhong Yang, Nan Ye, Mingxian Zhang, Yaru Zhu, Chenxin Zhang, Wentan Zhu, Fan Zhang, Jiafa Jiang and Jiancheng Tang
Materials 2025, 18(9), 2045; https://doi.org/10.3390/ma18092045 - 30 Apr 2025
Viewed by 568
Abstract
Cemented carbides are composite materials that combine both structural and functional properties. However, the inherent trade-off between strength and toughness presents a significant challenge in fully leveraging the synergistic potential of these dual-phase materials. In this study, cemented carbides with coarse and fine-grained [...] Read more.
Cemented carbides are composite materials that combine both structural and functional properties. However, the inherent trade-off between strength and toughness presents a significant challenge in fully leveraging the synergistic potential of these dual-phase materials. In this study, cemented carbides with coarse and fine-grained heterogeneous structure were fabricated. The effects of nickel (Ni) and iron (Fe) content on the microstructures and mechanical properties of these heterogeneously structured cemented carbides were systematically investigated. Microstructural analysis revealed that the fine-grained granules are uniformly embedded in the coarse-grained region, forming a typical network-like mixed-grain structure. The introduction of the heterogeneous structure enables cemented carbides to achieve a remarkable balance of high strength and toughness. Specifically, the materials exhibit optimal strength–toughness matching with a transverse rupture strength of 2949 MPa, a fracture toughness of 23.65 MPa·m−1/2, and a hardness of 1430 HV when the proportion of Ni and Fe content reaches 4.2 wt.%. The toughening mechanism is primarily attributed to the increased volume fraction and stabilized dimensions of CoNiFe binder phases, which promote interfacial decohesion at WC/WC and WC/binder boundaries while suppressing transgranular fracture. These mechanisms collectively contribute to enhanced toughening and crack propagation resistance. This study establishes foundational insights into achieving a synergistic combination of strength and toughness in cemented carbides. Full article
Show Figures

Figure 1

14 pages, 12032 KiB  
Article
Fabrication of Stainless Steel/Alumina Composite Powders by Spray Granulation and Plasma Spheroidization
by Elodie Cabrol, Sandrine Cottrino, Hocine Si-Mohand and Gilbert Fantozzi
Materials 2025, 18(8), 1872; https://doi.org/10.3390/ma18081872 - 19 Apr 2025
Viewed by 421
Abstract
This work presents a new approach for the fabrication of 316L/Al2O3 composites, based on a combination of spray granulation, radio frequency (RF) plasma spheroidization and spark plasma sintering (SPS). Initially, a suspension containing 316L and alumina powders is formulated by [...] Read more.
This work presents a new approach for the fabrication of 316L/Al2O3 composites, based on a combination of spray granulation, radio frequency (RF) plasma spheroidization and spark plasma sintering (SPS). Initially, a suspension containing 316L and alumina powders is formulated by precisely adjusting the pH and selecting an appropriate dispersant, thereby ensuring homogeneous dispersion of the constituents. The spray granulation process then produces granules with controlled size and morphology. RF plasma spheroidization, carried out using a TekSphero-40 system, is investigated by varying parameters such as the power, gas flow rates, injection position and feed rate, in order to optimize the formation of spherical and dense particles. The analysis reveals a marked sensitivity to heat transfer from the plasma to the particles, with a tendency for fine particles to segregate, which underscores the necessity for precise control of the processing conditions. Finally, SPS densification, performed under a constant pressure and a rigorously controlled thermal cycle, yields composites with excellent density and hardness characteristics. This study thus demonstrates that the proposed hybrid process offers an optimal synergy between a uniform distribution of alumina and a controlled microstructure, opening up promising avenues for the design of high-performance composite materials for demanding applications. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

22 pages, 5259 KiB  
Article
Performance of Microconcretes with Different Percentages of Recycled Tire Rubber Granulate
by Purificación Bautiste Villanueva, María Isabel Prieto Barrio and Alfonso Cobo Escamilla
Appl. Mech. 2025, 6(1), 3; https://doi.org/10.3390/applmech6010003 - 7 Jan 2025
Cited by 1 | Viewed by 1317
Abstract
This paper investigates the short-term behavior of microconcretes with recycled rubber (RmCs) for extensive use as structural and non-structural materials. The physical and mechanical properties of a typical microconcrete composition have been experimentally evaluated by replacing the fine aggregate with rubber granules in [...] Read more.
This paper investigates the short-term behavior of microconcretes with recycled rubber (RmCs) for extensive use as structural and non-structural materials. The physical and mechanical properties of a typical microconcrete composition have been experimentally evaluated by replacing the fine aggregate with rubber granules in volumetric percentages of 10%, 20%, and 30%. The results obtained are compared with the data provided by other authors for crumb rubber concretes (CRCs). Material investment costs have also been estimated to determine the economic impact of using rubber as a fine aggregate in these products. It is observed that the use of small percentages of recycled rubber (up to 20%) produces significant increases in slump as well as important drops in compressive strength, although it substantially improves its post-critical behavior. These trends tend to stabilize with higher percentages of rubber (30%). It is also noted that the experimental results and predictive models developed for concretes are not applicable to microconcretes, so more specific research is desirable for this type of product. Regarding the economic profitability of the investment in RmCs, it is found that it is necessary to make recycled rubber cheaper and to ensure its technological performance in order to guarantee the quality of the final product. Full article
Show Figures

Figure 1

Back to TopTop