Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = filtering power divider

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2127 KB  
Article
A Robust Coarse-to-Fine Ambiguity Resolution Algorithm for Moving Target Tracking Using Time-Division Multi-PRF Multiframe Bistatic Radars
by Peng Zhao, Pengbo Wang, Tao Tang, Wei Liu, Zhirong Men, Chong Song and Jie Chen
Remote Sens. 2025, 17(21), 3583; https://doi.org/10.3390/rs17213583 - 29 Oct 2025
Abstract
The bistatic radar has been widely applied in moving target detection and tracking due to its unique bistatic perspective, low power, and good concealment. With the growing demand for detecting remote and high-speed moving targets, two challenges inevitably arise in the bistatic radar. [...] Read more.
The bistatic radar has been widely applied in moving target detection and tracking due to its unique bistatic perspective, low power, and good concealment. With the growing demand for detecting remote and high-speed moving targets, two challenges inevitably arise in the bistatic radar. The first challenge is the range ambiguity and Doppler ambiguity caused by long-range and high-speed targets. The second challenge is the low signal-to-noise ratio (SNR) of the target caused by insufficient echo power. Addressing these challenges is essential for enhancing the performance of the bistatic radar. This paper proposes a robust two-step ambiguity resolution algorithm for detecting and tracking moving targets using a time-division multiple pulse repetition frequency (PRF) multiframe (TD-MPMF) under the bistatic radar. By exploring the coupling relationship between measurement data under different PRFs and frames, the data in a single frame is divided into multiple subframes to formulate a maximization problem, where each subframe corresponds to a specific PRF. Firstly, all possible state values of the measurement data in each subframe are listed based on the maximum unambiguous range and the maximum unambiguous Doppler. Secondly, a coarse threshold is applied based on prior knowledge of potential targets to filter out candidates. Thirdly, the sequence is transformed from the polar coordinate into the feature transform domain. Based on the linear relationship between the range and velocity of multiple PRFs with moving targets in the feature domain, the support vector machine (SVM) is used to classify the target measurements. By employing the SVM to determine the maximum margin hyperplane, the true target range and Doppler are derived, thereby enabling the generation of the target trajectory. Simulation results show better ambiguity resolution performance and more robust qualities than the traditional algorithm. An experiment using a TD-MPMF bistatic radar is conducted, successfully tracking an aircraft target. Full article
(This article belongs to the Special Issue Advanced Techniques of Spaceborne Surveillance Radar)
25 pages, 7226 KB  
Article
BudCAM: An Edge Computing Camera System for Bud Detection in Muscadine Grapevines
by Chi-En Chiang, Wei-Zhen Liang, Jingqiu Chen, Xin Qiao, Violeta Tsolova, Zonglin Yang and Joseph Oboamah
Agriculture 2025, 15(21), 2220; https://doi.org/10.3390/agriculture15212220 - 24 Oct 2025
Viewed by 156
Abstract
Bud break is a critical phenological stage in muscadine grapevines, marking the start of the growing season and the increasing need for irrigation management. Real-time bud detection enables irrigation to match muscadine grape phenology, conserving water and enhancing performance. This study presents BudCAM, [...] Read more.
Bud break is a critical phenological stage in muscadine grapevines, marking the start of the growing season and the increasing need for irrigation management. Real-time bud detection enables irrigation to match muscadine grape phenology, conserving water and enhancing performance. This study presents BudCAM, a low-cost, solar-powered, edge computing camera system based on Raspberry Pi 5 and integrated with a LoRa radio board, developed for real-time bud detection. Nine BudCAMs were deployed at Florida A&M University Center for Viticulture and Small Fruit Research from mid-February to mid-March, 2024, monitoring three wine cultivars (A27, noble, and Floriana) with three replicates each. Muscadine grape canopy images were captured every 20 min between 7:00 and 19:00, generating 2656 high-resolution (4656 × 3456 pixels) bud break images as a database for bud detection algorithm development. The dataset was divided into 70% training, 15% validation, and 15% test. YOLOv11 models were trained using two primary strategies: a direct single-stage detector on tiled raw images and a refined two-stage pipeline that first identifies the grapevine cordon. Extensive evaluation of multiple model configurations identified the top performers for both the single-stage (mAP@0.5 = 86.0%) and two-stage (mAP@0.5 = 85.0%) approaches. Further analysis revealed that preserving image scale via tiling was superior to alternative inference strategies like resizing or slicing. Field evaluations conducted during the 2025 growing season demonstrated the system’s effectiveness, with the two-stage model exhibiting superior robustness against environmental interference, particularly lens fogging. A time-series filter smooths the raw daily counts to reveal clear phenological trends for visualization. In its final deployment, the autonomous BudCAM system captures an image, performs on-device inference, and transmits the bud count in under three minutes, demonstrating a complete, field-ready solution for precision vineyard management. Full article
Show Figures

Figure 1

19 pages, 1765 KB  
Article
Reference High-Voltage Sensing Chain for the Assessment of Class 0.1-WB3 Instrument Transformers in the Frequency Range up to 150 kHz According to IEC 61869
by Mohamed Agazar, Claudio Iodice and Mario Luiso
Sensors 2025, 25(20), 6416; https://doi.org/10.3390/s25206416 - 17 Oct 2025
Viewed by 202
Abstract
This paper presents the development and characterization of a reference high-voltage sensing chain for the calibration and conformity assessment of instrument transformers with Class 0.1-WB3, in the extended frequency range up to 150 kHz, according to IEC 61869. The sensing chain, composed of [...] Read more.
This paper presents the development and characterization of a reference high-voltage sensing chain for the calibration and conformity assessment of instrument transformers with Class 0.1-WB3, in the extended frequency range up to 150 kHz, according to IEC 61869. The sensing chain, composed of a high-voltage divider, precision attenuators and high-pass filters, has been specifically developed and characterized. The chain features two parallel measurement paths: the first path, comprising the high-voltage divider and attenuator, is optimized for measuring the fundamental frequency superimposed with high-amplitude harmonics; the second path, consisting of the high-voltage divider followed by a high-pass filter, is dedicated to measuring very-low-level superimposed harmonic components by enhancing the signal-to-noise ratio. These two paths are integrated with a digitizer to form a complete and modular measurement chain. The expanded uncertainty of measurement has been thoroughly evaluated and confirms the chain’s ability to support assessment of instrument transformers with Class 0.1-WB3 compliance. Additionally, the chain architecture enables a future extension up to 500 kHz, addressing the growing need to evaluate instrument transformers under high-frequency power quality disturbances and improving the sensing capability in this field. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

12 pages, 5725 KB  
Article
A Back-to-Back Gap Waveguide-Based Packaging Structure for E-Band Radio Frequency Front-End
by Tao Xiu, Zhi Li, Lei Wang and Peng Lin
Micromachines 2025, 16(6), 644; https://doi.org/10.3390/mi16060644 - 28 May 2025
Viewed by 620
Abstract
This paper presents our research on an E-band Radio Frequency (RF) front-end packaging structure based on back-to-back gap waveguide (GW). This design effectively mitigates the impact of air gaps on performance and offers the advantage of large assembly tolerances. Additionally, its back-to-back structure [...] Read more.
This paper presents our research on an E-band Radio Frequency (RF) front-end packaging structure based on back-to-back gap waveguide (GW). This design effectively mitigates the impact of air gaps on performance and offers the advantage of large assembly tolerances. Additionally, its back-to-back structure enables structural stacking, which can reduce the overall packaging size. In terms of functionality, the structure integrates hybrid couplers, bandpass filters, and amplifier packaging structures. Notably, the hybrid couplers provide high port isolation, facilitating a higher isolation duplex function by simply connecting high-order bandpass filters at the output ports without the need for additional optimization. Furthermore, these couplers also serve as power dividers/combiners. When combined with the H-plane amplifier packaging structures, the output power of the module is theoretically increased by 3 dB. Based on the measurements, the results indicate that this structure operates within the frequency ranges of 71–76 GHz and 81–86 GHz. The common port return loss is below 12 dB, while the in-band insertion loss is less than 2.26 dB and 2.42 dB, respectively. These findings demonstrate excellent electrical performance and suitability for E-band communication systems. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

13 pages, 2923 KB  
Article
Programmable Gain Amplifier with Programmable Bandwidth for Ultrasound Imaging Application
by István Kovács, Paul Coste and Marius Neag
Electronics 2025, 14(6), 1186; https://doi.org/10.3390/electronics14061186 - 18 Mar 2025
Viewed by 1104
Abstract
This paper presents a low-power, fully differential, programmable gain amplifier (PGA) for ultrasound receiver analog front-ends (AFE). It consists of a programmable attenuator implemented by a capacitive voltage divider and a closed-loop amplifier based on a differential difference amplifier (DDA). A suitable sizing [...] Read more.
This paper presents a low-power, fully differential, programmable gain amplifier (PGA) for ultrasound receiver analog front-ends (AFE). It consists of a programmable attenuator implemented by a capacitive voltage divider and a closed-loop amplifier based on a differential difference amplifier (DDA). A suitable sizing strategy provides orthogonal control over gain and bandwidth. The PGA was designed using a standard 180 nm CMOS process. The gain value can be set between −18 dB and +20 dB in 2 dB steps; the bandwidth can be programmed independently of gain, to values from 5 MHz to 20 MHz, in 5 MHz steps; it draws 600 µA from a 1.8 V supply line. It achieves a differential output swing of 0.8 V peak-to-peak differential with no more than 1.7% total harmonic distortion (THD) and an input-referred noise density of 22 nV/√Hz at 10 MHz, measured at the gain of 20 dB. The PGA exhibits high input impedance and low output resistance for easy integration within the AFE signal chain. The digitally controlled gain and bandwidth make this PGA suitable for ultrasound imaging applications requiring precise time gain compensation and adjustable frequency response and/or additional anti-aliasing filtering. Full article
Show Figures

Figure 1

24 pages, 1339 KB  
Article
Bridging Neuroscience and Machine Learning: A Gender-Based Electroencephalogram Framework for Guilt Emotion Identification
by Saima Raza Zaidi, Najeed Ahmed Khan and Muhammad Abul Hasan
Sensors 2025, 25(4), 1222; https://doi.org/10.3390/s25041222 - 17 Feb 2025
Viewed by 1330
Abstract
This study explores the link between the emotion “guilt” and human EEG data, and investigates the influence of gender differences on the expression of guilt and neutral emotions in response to visual stimuli. Additionally, the stimuli used in the study were developed to [...] Read more.
This study explores the link between the emotion “guilt” and human EEG data, and investigates the influence of gender differences on the expression of guilt and neutral emotions in response to visual stimuli. Additionally, the stimuli used in the study were developed to ignite guilt and neutral emotions. Two emotions, “guilt” and “neutral”, were recorded from 16 participants after these emotions were induced using storyboards as pictorial stimuli. These storyboards were developed based on various guilt-provoking events shared by another group of participants. In the pre-processing step, collected data were de-noised using bandpass filters and ICA, then segmented into smaller sections for further analysis. Two approaches were used to feed these data to the SVM classifier. First, the novel approach employed involved feeding the data to SVM classifier without computing any features. This method provided an average accuracy of 83%. In the second approach, data were divided into Alpha, Beta, Gamma, Theta and Delta frequency bands using Discrete Wavelet Decomposition. Afterward, the computed features, including entropy, Hjorth parameters and Band Power, were fed to SVM classifiers. This approach achieved an average accuracy of 63%. The findings of both classification methodologies indicate that females are more expressive in response to depicted stimuli and that their brain cells exhibit higher feature values. Moreover, females displayed higher accuracy than males in all bands except the Delta band. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

29 pages, 15339 KB  
Article
A Noise Reduction Algorithm for White Noise and Periodic Narrowband Interference Noise in Partial Discharge Signals
by Jiyuan Cao, Yanwen Wang, Weixiong Zhu and Yihe Zhang
Appl. Sci. 2025, 15(4), 1760; https://doi.org/10.3390/app15041760 - 9 Feb 2025
Cited by 3 | Viewed by 1485
Abstract
Partial discharge (PD) detection plays an important role in online condition monitoring of electrical equipment and power cables. However, the noise of PD measurement will significantly reduce the performance of the detection algorithm. In this paper, we focus on the study of a [...] Read more.
Partial discharge (PD) detection plays an important role in online condition monitoring of electrical equipment and power cables. However, the noise of PD measurement will significantly reduce the performance of the detection algorithm. In this paper, we focus on the study of a PD noise reduction algorithm based on improved singular value decomposition (SVD) and multivariate variational mode decomposition (MVMD) for white Gaussian noise (WGN) and periodic narrowband interference signal noise. The specific noise reduction algorithm is divided into three noise reduction processes: The first noise reduction completes the suppression of narrowband interference in the noisy PD signal by the SVD algorithm with the guidance signal. The guidance signal is composed of a sinusoidal signal of the accurately estimated narrowband interference frequency component, and the amplitude is twice the maximum amplitude of the noisy PD signal. The second noise reduction decomposes the noisy PD signal after filtering the narrowband interference signal into k optimal intrinsic mode function by the MVMD after parameter optimization. By calculating the kurtosis value of each intrinsic mode function, it is determined whether it is the PD dominant component or the noise dominant component, and the noise dominant component is subjected to 3σ filtering to obtain the reconstructed PD signal. The third noise reduction uses a new wavelet threshold algorithm to denoise the reconstructed PD signal to obtain the denoised PD signal. The overall noise reduction algorithm proposed in this paper is compared with some existing methods. The results show that this method has a good effect on reducing the noise of PD signals measured in simulation and field. Full article
Show Figures

Figure 1

28 pages, 19163 KB  
Article
Quick Combustion Optimization for Utility Boilers Using a Novel Adaptive Hybrid Case Library
by Cong Yu, Shuo Chen, Haiquan Yu, Yukun Zhu, Qiang Wang, Guangting Liao and Ling Shi
Processes 2025, 13(2), 469; https://doi.org/10.3390/pr13020469 - 8 Feb 2025
Viewed by 1075
Abstract
To achieve carbon neutrality, thermal power plants must undertake heavier peak shaving tasks; consequently, utility boilers will be required to operate under frequently changing operating conditions. In light of this new circumstance, a combustion optimization decision that is executed more rapidly is necessary. [...] Read more.
To achieve carbon neutrality, thermal power plants must undertake heavier peak shaving tasks; consequently, utility boilers will be required to operate under frequently changing operating conditions. In light of this new circumstance, a combustion optimization decision that is executed more rapidly is necessary. A novel online combustion optimization framework is proposed for the combustion system of utility boilers. First, a robust filter for extracting high-quality steady-state data samples is designed and executed. Then, the K-means algorithm is used to divide the cleaned sample space and construct the working condition case library. Based on the constructed library, the boiler combustion model is constructed using the XGBoost algorithm. Therefore, the corresponding optimization case library can be established using the multiobjective optimization algorithm and working condition case library. To further capture the phenomenon of data distribution migrating as the operating conditions change, an adaptive update strategy for the combustion system is proposed, including online querying and data and model updates. The findings of this study conducted on a 660 MW utility boiler show that the proposed online optimization method can effectively decrease NOx emissions and improve combustion efficiency in approximately 2 milliseconds. Full article
Show Figures

Figure 1

9 pages, 4231 KB  
Communication
A Low-Profile Balanced Dielectric Resonator Filtering Power Divider with Isolation
by Rong Cai, Chuan Shao and Kai Xu
Micromachines 2025, 16(1), 88; https://doi.org/10.3390/mi16010088 - 14 Jan 2025
Cited by 1 | Viewed by 997
Abstract
A balanced dielectric resonator filtering power divider with isolation performance is proposed. By using the coupling of the TE111y modes between three rectangle dielectric resonators, combined with balanced feed structures, the differential-mode filtering and power dividing functions, as well as [...] Read more.
A balanced dielectric resonator filtering power divider with isolation performance is proposed. By using the coupling of the TE111y modes between three rectangle dielectric resonators, combined with balanced feed structures, the differential-mode filtering and power dividing functions, as well as the common-mode suppression were achieved effectively. Additionally, by technically utilizing the hollow structure of the stacked substrates, isolation resistor structures are introduced at the two output ports to improve the isolation level of the power divider. It can solve the problem of traditional metal-cavity dielectric resonator filter power dividers being unable to add isolation structures due to structural reasons. Compared with the reported dielectric resonator filtering power dividers, the proposed one has the characters of a lower profile and high isolation. For demonstration, one dielectric resonator filtering power divider was fabricated and measured at 11.65 GHz with the profile of 0.66 λg and an isolation higher than 15 dB. The simulation results are in good agreement with the measured results. Full article
Show Figures

Figure 1

12 pages, 4100 KB  
Article
Dual-Band Gysel Filtering Power Divider with a Frequency Transform Resonator and Microstrip/Slotline Phase Inverter
by Yongping Xu, Chaoyi Sun, Zhe Chen, Huayan Sun, Zeyu Huang, Runfeng Tang, Jinxiao Yang and Weilin Li
Electronics 2025, 14(1), 61; https://doi.org/10.3390/electronics14010061 - 26 Dec 2024
Cited by 1 | Viewed by 1097
Abstract
This paper presents a novel dual-band Gysel filtering power divider (FPD) with an excellent isolation performance and a significantly wide isolation bandwidth. Although Gysel power dividers have been extensively studied in the field of radio frequency (RF), the integration of filtering functionality and [...] Read more.
This paper presents a novel dual-band Gysel filtering power divider (FPD) with an excellent isolation performance and a significantly wide isolation bandwidth. Although Gysel power dividers have been extensively studied in the field of radio frequency (RF), the integration of filtering functionality and the expansion of isolation bandwidth remain challenging. The proposed design addresses these challenges by incorporating frequency transform resonators (FTRs) and a microstrip/slotline (M/S) phase inverter into the classic Gysel topology. The FTR is directly connected to the output port to provide a dual-band response, enabling the Gysel FPD to operate without external coupling between the resonator and the port. The M/S phase inverter is a dual-layer 180° phase shifter, designed to replace the conventional 180° transmission lines loaded between the two isolation resistors of the Gysel FPD, achieving a wide isolation bandwidth. To validate the proposed design method, a dual-band Gysel FPD with center frequencies of 1.4 GHz and 1.7 GHz is designed, fabricated, and measured. The measured results show that the in-band return loss is greater than 20 dB, and the in-band insertion loss is about 0.6 dB, and the amplitude and phase imbalance characteristics are good. In addition, the 20 dB-isolation fractional bandwidth achieves 97% (0.78–2.25 GHz). The measured results show excellent agreement with the simulation results, validating the effectiveness of the proposed design methodology. Full article
(This article belongs to the Special Issue Analog/RF Circuits: Latest Advances and Prospects)
Show Figures

Figure 1

24 pages, 8611 KB  
Article
An Analysis of Vertical Infiltration Responses in Unsaturated Soil Columns from Permafrost Regions
by Lincui Li, Xi’an Li, Yonghong Li, Cheng Li, Yong Li, Li Wang, Yiping He and Chaowei Yao
Appl. Sci. 2024, 14(22), 10195; https://doi.org/10.3390/app142210195 - 6 Nov 2024
Viewed by 1653
Abstract
Rainfall infiltration affects permafrost-related slope stability by changing the pore water pressure in soil. In this study, the infiltration responses under rainfall conditions were elucidated. The instantaneous profile method and filter paper method were used to obtain the soil–water characteristic curve (SWCC) and [...] Read more.
Rainfall infiltration affects permafrost-related slope stability by changing the pore water pressure in soil. In this study, the infiltration responses under rainfall conditions were elucidated. The instantaneous profile method and filter paper method were used to obtain the soil–water characteristic curve (SWCC) and hydraulic conductivity function (HCF). During the rainfall infiltration test, the vertical patters of volumetric moisture contents, total hydraulic head or suction and wetting front were recorded. Advancing displacement and rate of the wetting front, the cumulative infiltration, the instantaneous infiltration rate, and the average infiltration rate were determined to comprehensively assess the rainfall infiltration process, along with SWCC and HCF. Additionally, the effects of dry density and runoff on the one-dimensional vertical infiltration process of soil columns were evaluated. The results showed that the variation curve of wetting front displacement versus time obeys a power function relationship. In addition, the infiltration rate–time relationship curve and the unsaturated permeability curve could be roughly divided into three stages, and the SWCC and HCF calculated by volumetric moisture content are more sensitive to changes in dry density than to changes in runoff or hydraulic head height. Full article
(This article belongs to the Special Issue Advances in Permafrost)
Show Figures

Figure 1

26 pages, 9136 KB  
Article
Morphometric and Soil Erosion Characterization Based on Geospatial Analysis and Drainage Basin Prioritization of the Rabigh Area Along the Eastern Red Sea Coastal Plain, Saudi Arabia
by Bashar Bashir and Abdullah Alsalman
Sustainability 2024, 16(20), 9008; https://doi.org/10.3390/su16209008 - 17 Oct 2024
Cited by 3 | Viewed by 2874
Abstract
Soil erosion is one of the most significant problems in global environmental development. Assigning, analyzing, and quantifying the main physical characteristics of drainage basins are powerful keys in identifying regions where there is a higher risk of soil erosion and where prompt mitigation [...] Read more.
Soil erosion is one of the most significant problems in global environmental development. Assigning, analyzing, and quantifying the main physical characteristics of drainage basins are powerful keys in identifying regions where there is a higher risk of soil erosion and where prompt mitigation actions are needed. Drainage basins and their drainage systems are ideally defined using the analysis morphometric parameters and their quantitative description. The present study aims to analyze morphometric parameters to prioritize drainage basins that are prone to erosion. Topographic sheets and remotely sensed digital elevation model (DEM) datasets have been prepared and analyzed using geospatial techniques to delineate drainage basins of different sizes and extract different ordered drainage systems. Based on the analysis of morphometric parameters, the Rabigh area was divided into 12 drainage basins, which significantly contribute to determining soil erosion priority levels. The present study selected and applied the most effective morphometric parameters to rank and prioritize the drainage basins of the study area after considering the crucial quantitative characteristics, such as linear, relief, and areal aspects. For each single basin, the compound factor was assigned from several morphometric parameters and applied to rank the Rabigh area. The results confirm that Basins 1, 4, 11, and 12 require a high level of soil erosion priority over an area of 2107 km2; however, Basins 3, 8, 9, and 10 have little degradation and a low level of soil erosion priority. Therefore, in the regions where high soil erosion is a factor, mitigation techniques such as terracing, filter strips, contouring, and other effective and useful structural and non-structural methods should be applied. Full article
(This article belongs to the Special Issue Sustainable Resilience Planning for Natural Hazard Events)
Show Figures

Figure 1

11 pages, 11945 KB  
Article
Evaluation of Denoising Performance of ResNet Deep Learning Model for Ultrasound Images Corresponding to Two Frequency Parameters
by Hyekyoung Kang, Chanrok Park and Hyungjin Yang
Bioengineering 2024, 11(7), 723; https://doi.org/10.3390/bioengineering11070723 - 16 Jul 2024
Cited by 3 | Viewed by 2611
Abstract
Ultrasound imaging is widely used for accurate diagnosis due to its noninvasive nature and the absence of radiation exposure, which is achieved by controlling the scan frequency. In addition, Gaussian and speckle noises degrade image quality. To address this issue, filtering techniques are [...] Read more.
Ultrasound imaging is widely used for accurate diagnosis due to its noninvasive nature and the absence of radiation exposure, which is achieved by controlling the scan frequency. In addition, Gaussian and speckle noises degrade image quality. To address this issue, filtering techniques are typically used in the spatial domain. Recently, deep learning models have been increasingly applied in the field of medical imaging. In this study, we evaluated the effectiveness of a convolutional neural network-based residual network (ResNet) deep learning model for noise reduction when Gaussian and speckle noises were present. We compared the results with those obtained from conventional filtering techniques. A dataset of 500 images was prepared, and Gaussian and speckle noises were added to create noisy input images. The dataset was divided into training, validation, and test sets in an 8:1:1 ratio. The ResNet deep learning model, comprising 16 residual blocks, was trained using optimized hyperparameters, including the learning rate, optimization function, and loss function. For quantitative analysis, we calculated the normalized noise power spectrum, peak signal-to-noise ratio, and root mean square error. Our findings showed that the ResNet deep learning model exhibited superior noise reduction performance to median, Wiener, and median-modified Wiener filter algorithms. Full article
(This article belongs to the Special Issue Radiological Imaging and Its Applications)
Show Figures

Figure 1

14 pages, 6262 KB  
Article
A 0.055 mm2 Total Area Triple-Loop Wideband Fractional-N All-Digital Phase-Locked Loop Architecture for 1.9–6.1 GHz Frequency Tuning
by Byeongseok Kang, Youngsik Kim, Hyunwoo Son and Shinwoong Kim
Electronics 2024, 13(13), 2638; https://doi.org/10.3390/electronics13132638 - 5 Jul 2024
Cited by 2 | Viewed by 1576
Abstract
This paper presents a wideband fractional-N all-digital phase-locked loop (WBPLL) architecture featuring a triple-loop configuration capable of tuning frequencies from 1.9 to 6.1 GHz. The first and second loops, automatic frequency control (AFC) and counter-assisted phase-locked loop (CAPLL), respectively, perform coarse locking, while [...] Read more.
This paper presents a wideband fractional-N all-digital phase-locked loop (WBPLL) architecture featuring a triple-loop configuration capable of tuning frequencies from 1.9 to 6.1 GHz. The first and second loops, automatic frequency control (AFC) and counter-assisted phase-locked loop (CAPLL), respectively, perform coarse locking, while the third loop employs a digital sub-sampling architecture without a frequency divider for fine locking. In this third loop, fractional-N frequency synthesis is achieved using a delta-sigma modulator (DSM) and digital-to-time converter (DTC). To minimize area, digital modules such as counters, comparators, and differentiators used in the AFC and CAPLL loops are reused. Furthermore, a moving average filter (MAF) is employed to reduce the frequency overlap ratio of the digitally controlled oscillator (DCO) between the second and third loops, ensuring stable loop switching. The total power consumption of the WBPLL varies with the frequency range, consuming between 8.8 mW at the WBPLL minimum output frequency of 1.9 GHz and 12.8 mW at the WBPLL maximum output frequency of 6.1 GHz, all at a 1.0 V supply. Implemented in a 28 nm CMOS process, the WBPLL occupies an area of 0.055 mm2. Full article
(This article belongs to the Special Issue CMOS Integrated Circuits Design)
Show Figures

Figure 1

11 pages, 13239 KB  
Article
Controllable Pseudospin Topological Add-Drop Filter Based on Magnetic–Optical Photonic Crystals
by Chao Yan, Yuhao Huang, Zhi-Yuan Li and Wenyao Liang
Nanomaterials 2024, 14(11), 919; https://doi.org/10.3390/nano14110919 - 23 May 2024
Cited by 1 | Viewed by 1689
Abstract
We propose a controllable topological add-drop filter based on magnetic–optical photonic crystals. This add-drop filter is composed of two straight waveguides and a hexagonal photonic crystal ring resonator. The waveguide and ring resonator are constructed by three different honeycomb magnetic–optical photonic crystals. The [...] Read more.
We propose a controllable topological add-drop filter based on magnetic–optical photonic crystals. This add-drop filter is composed of two straight waveguides and a hexagonal photonic crystal ring resonator. The waveguide and ring resonator are constructed by three different honeycomb magnetic–optical photonic crystals. The expanded lattice is applied with an external magnetic field so that it breaks time-reversal symmetry and the analogous quantum spin Hall effect simultaneously. While the standard one and the compressed one are not magnetized and trivial, the straight waveguide supports pseudospin-down (or pseudospin-up) one-way states when the expanded lattice is applied with an external magnetic field of +H (or −H). The ring resonator possesses multiple resonant modes which can be divided into travelling modes and standing modes. By using the travelling modes, we have demonstrated the function of the add-drop filter and realized the output port control by changing the direction of the magnetic field. Moreover, a large tunable power ratio from near 0 to 52.6 is achieved by adjusting the strength of the external magnetic field. The structure has strong robustness against defects due to the topological protection property. These results have potential in wavelength division multiplexing systems and integrated topological optical devices. Full article
Show Figures

Figure 1

Back to TopTop