Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = filter-bank multicarrier (FBMC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2005 KiB  
Article
Automatic Classification of 5G Waveform-Modulated Signals Using Deep Residual Networks
by Haithem Ben Chikha, Alaa Alaerjan and Randa Jabeur
Sensors 2025, 25(15), 4682; https://doi.org/10.3390/s25154682 - 29 Jul 2025
Viewed by 230
Abstract
Modulation identification plays a crucial role in contemporary wireless communication systems, especially within 5G and future-generation networks that utilize a variety of multicarrier waveforms. This study introduces an innovative algorithm for automatic modulation classification (AMC) built on a deep residual network (DRN) architecture. [...] Read more.
Modulation identification plays a crucial role in contemporary wireless communication systems, especially within 5G and future-generation networks that utilize a variety of multicarrier waveforms. This study introduces an innovative algorithm for automatic modulation classification (AMC) built on a deep residual network (DRN) architecture. The approach is tailored to accurately identify advanced 5G waveform types such as Orthogonal Frequency-Division Multiplexing (OFDM), Filtered OFDM (FOFDM), Filter Bank Multicarrier (FBMC), Universal Filtered Multicarrier (UFMC), and Weighted Overlap and Add OFDM (WOLA), using both 16-QAM and 64-QAM modulation schemes. To our knowledge, this is the first application of deep learning in the classification of such a diverse set of complex 5G waveforms. The proposed model combines the deep learning capabilities of DRNs for feature extraction with Principal Component Analysis (PCA) for dimensionality reduction and feature refinement. A detailed performance evaluation is conducted using metrics like classification recall, precision, accuracy, and F-measure. When compared with traditional machine learning approaches reported in recent studies, our DRN-based method shows significantly improved classification accuracy and robustness. These results highlight the effectiveness of deep residual networks in improving adaptive signal processing and enabling automatic modulation recognition in future wireless communication technologies. Full article
(This article belongs to the Special Issue AI-Based 5G/6G Communications)
Show Figures

Figure 1

9 pages, 566 KiB  
Proceeding Paper
Comparative Analysis of Multicarrier Waveforms for Terahertz-Band Communications
by Srinivas Ramavath, Umesh Chandra Samal, Prasanta Kumar Patra, Sunil Pattepu, Nageswara Rao Budipi and Amitkumar Vidyakant Jha
Eng. Proc. 2025, 87(1), 41; https://doi.org/10.3390/engproc2025087041 - 8 Apr 2025
Viewed by 334
Abstract
The terahertz (THz) band, ranging from 0.1 to 10 THz, offers substantial bandwidths that are essential for meeting the ever-increasing demands for high data rates in future wireless communication systems. This paper presents a comprehensive comparative analysis of various multicarrier waveforms suitable for [...] Read more.
The terahertz (THz) band, ranging from 0.1 to 10 THz, offers substantial bandwidths that are essential for meeting the ever-increasing demands for high data rates in future wireless communication systems. This paper presents a comprehensive comparative analysis of various multicarrier waveforms suitable for THz-band communications. We explore the performance, advantages, and limitations of several waveforms, including Orthogonal Frequency Division Multiplexing (OFDM), Filter Bank Multicarrier (FBMC), Universal Filtered Multicarrier (UFMC), and Generalized Frequency Division Multiplexing (GFDM). The analysis covers key parameters such as spectral efficiency, the peak-to-average power ratio (PAPR), robustness to phase noise, and computational complexity. The simulation results demonstrate that while OFDM offers simplicity and robustness to multipath fading, it suffers from high PAPR and phase noise sensitivity. FBMC and UFMC, with their enhanced spectral efficiency and reduced out-of-band emissions, show promise for THz-band applications but come at the cost of increased computational complexity. GFDM presents a flexible framework with a trade-off between complexity and performance, making it a potential candidate for diverse THz communication scenarios. Our study concludes that no single waveform universally outperforms the others across all metrics. Therefore, the choice of multicarrier waveform for THz communications should be tailored to the specific requirements of the application, balancing performance criteria and implementation feasibility. Future research directions include the development of hybrid waveforms and adaptive techniques to dynamically optimize performance in varying THz communication environments. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

21 pages, 4121 KiB  
Article
Design of an Integrated System for Spaceborne SAR Imaging and Data Transmission
by Qixing Wang, Peng Gao, Zhuochen Xie and Jinpei Yu
Sensors 2024, 24(19), 6375; https://doi.org/10.3390/s24196375 - 1 Oct 2024
Viewed by 1213
Abstract
In response to the conflicting demands between real-time satellite communication and high-resolution synthetic aperture radar (SAR) imaging, we propose a method that aligns the data transmission rate with the imaging data volume. This approach balances SAR performance with the requirements for real-time data [...] Read more.
In response to the conflicting demands between real-time satellite communication and high-resolution synthetic aperture radar (SAR) imaging, we propose a method that aligns the data transmission rate with the imaging data volume. This approach balances SAR performance with the requirements for real-time data transmission. To meet the need for mobile user terminals to access real-time SAR imagery data of their surroundings without depending on large traditional ground data transmission stations, we developed an application system based on filter bank multicarrier offset quadrature amplitude modulation (FBMC-OQAM). To address the interference problem with SAR signals’ transmission and reception, we developed a signal sequence based on spaceborne SAR echo and data transmission and reception. This system enables SAR and data transmission signals to share the same frequency band, radio frequency transmission system, and antenna, creating an integrated sensing and communication system. Simulation experiments showed that, compared to the equal power allocation scheme for subcarriers, the echo image signal-to-noise ratio (SNR) improved by 2.79 dB and the data transmission rate increased by 24.075 Mbps. Full article
(This article belongs to the Special Issue 6G Space-Air-Ground Communication Networks and Key Technologies)
Show Figures

Figure 1

9 pages, 3308 KiB  
Article
A Novel 4 × 1 MISO-VLC System with FBMC-OQAM Downlink Signals
by Yufeng Shao, Yanlin Li, Anrong Wang, Yaodong Zhu, Chong Li, Peng Chen, Renjie Zuo, Jie Yuan and Shuanfan Liu
Photonics 2024, 11(5), 415; https://doi.org/10.3390/photonics11050415 - 30 Apr 2024
Cited by 1 | Viewed by 1198
Abstract
A novel visible-light communication (VLC) system with 4 × 1 multi-input–single-output (MISO) channels is designed. In the system, the filter bank multicarrier (FBMC) and offset quadrature amplitude modulation (OQAM) techniques are used to generate downlink signals. The principles and implementation methods are proposed [...] Read more.
A novel visible-light communication (VLC) system with 4 × 1 multi-input–single-output (MISO) channels is designed. In the system, the filter bank multicarrier (FBMC) and offset quadrature amplitude modulation (OQAM) techniques are used to generate downlink signals. The principles and implementation methods are proposed and analyzed, and the light intensity and received light power distribution of four LED emitters are discussed. The results demonstrate that it not only satisfies the requirements of indoor information access but also provides daily lighting. The used FBMC-OQAM signals exhibit better reception performance than orthogonal frequency division multiplexing (OFDM) signals. The system used has a lower bit error rate (BER) and larger access bandwidth compared to a 1 × 1 single-input–single-output (SISO) system. It has the potential for application advantages in future indoor VLC system applications. Full article
(This article belongs to the Special Issue Visible Light Communications)
Show Figures

Figure 1

45 pages, 46634 KiB  
Review
A Survey on Physical Layer Techniques and Challenges in Underwater Communication Systems
by Naveed Ur Rehman Junejo, Mariyam Sattar, Saifullah Adnan, Haixin Sun, Abuzar B. M. Adam, Ahmad Hassan and Hamada Esmaiel
J. Mar. Sci. Eng. 2023, 11(4), 885; https://doi.org/10.3390/jmse11040885 - 21 Apr 2023
Cited by 34 | Viewed by 7384
Abstract
In the past decades, researchers/scientists have paid attention to the physical layer of underwater communications (UWCs) due to a variety of scientific, military, and civil tasks completed beneath water. This includes numerous activities critical for communication, such as survey and monitoring of oceans, [...] Read more.
In the past decades, researchers/scientists have paid attention to the physical layer of underwater communications (UWCs) due to a variety of scientific, military, and civil tasks completed beneath water. This includes numerous activities critical for communication, such as survey and monitoring of oceans, rescue, and response to disasters under the sea. Till the end of the last decade, many review articles addressing the history and survey of UWC have been published which were mostly focused on underwater sensor networks (UWSN), routing protocols, and underwater optical communication (UWOC). This paper provides an overview of underwater acoustic (UWA) physical layer techniques including cyclic prefix orthogonal frequency division multiplexing (CP-OFDM), zero padding orthogonal frequency division multiplexing (ZP-OFDM), time-domain synchronization orthogonal frequency division multiplexing (TDS-OFDM), multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM), generalized frequency division multiplexing (GFDM), unfiltered orthogonal frequency division multiplexing (UF-OFDM), continuous phase modulation orthogonal frequency division multiplexing (CPM-OFDM), filter bank multicarrier (FBMC) modulation, MIMO, spatial modulation technologies (SMTs), and orthogonal frequency division multiplexing index modulation (OFDM-IM). Additionally, this paper provides a comprehensive review of UWA channel modeling problems and challenges, such as transmission loss, propagation delay, signal-to-noise ratio (SNR) and distance, multipath effect, ambient noise effect, delay spread, Doppler effect modeling, Doppler shift estimation. Further, modern technologies of the physical layer of UWC have been discussed. This study also discusses the different modulation technology in terms of spectral efficiency, computational complexity, date rate, bit error rate (BER), and energy efficiency along with their merits and demerits. Full article
(This article belongs to the Special Issue Underwater Perception and Sensing with Robotic Sensors and Networks)
Show Figures

Figure 1

23 pages, 8251 KiB  
Article
Joint Communication and Jamming System Design Based on Filter Bank Multicarrier Chirp Waveform: Using for Curvilinear Flight Scenario
by Gaogao Liu, Wenbo Yang, Yuqian Bao, Youming Wang and Peng Li
Remote Sens. 2023, 15(5), 1239; https://doi.org/10.3390/rs15051239 - 23 Feb 2023
Cited by 4 | Viewed by 3100
Abstract
A joint communication jamming waveform is proposed in this study based on the FBMC- chirp. To increase the number of false targets in a single pulse period, the chirp signal is modulated to different subcarrier groups. Since the subcarriers of the FBMC-OQAM signal [...] Read more.
A joint communication jamming waveform is proposed in this study based on the FBMC- chirp. To increase the number of false targets in a single pulse period, the chirp signal is modulated to different subcarrier groups. Since the subcarriers of the FBMC-OQAM signal are orthogonal, the signals are naturally orthogonal. This allows the transmitter and receiver to be separated and achieve multiple false target jamming, allowing the CFAR threshold to be raised by about 20 dB and protecting the target from detection. The ratio of the frequency shift of the designed jamming signal to the frequency modulation depends on the delay time, making the joint signal more robust in response to jamming and resistant to frequency modulation. The use of intercepted radar signals allowed channel estimation, providing high-speed digital transmission while ensuring multi-false-target jamming. The simulation results show that the joint signal has jamming effects on the pulse Doppler radar. The proposed FBMC chirp joint waveform requires about 20 dB less jamming signal ratio than the existing method, and thus the energy saved can ensure the robust performance of the communication subsystem in the joint communication jamming system. The proposed system has excelled in communication rate and bit error rate performance, ensuring that instructions are accurately and completely transmitted while implementing effective jamming. Full article
Show Figures

Figure 1

15 pages, 4789 KiB  
Article
Investigation of FBMC-OQAM Equalization with Real Interference Prediction Algorithm Properties for MIMO Transmission Scheme
by Vladimir O. Varlamov, Evgeniy M. Lobov and Elizaveta O. Lobova
Sensors 2023, 23(4), 2111; https://doi.org/10.3390/s23042111 - 13 Feb 2023
Cited by 14 | Viewed by 2470
Abstract
Increasing the data transfer rate is an urgent task in cellular, high-frequency (HF) and special communication systems. The most common way to increase the data rate is to expand the bandwidth of the transmitted signal, which is often achieved through the use of [...] Read more.
Increasing the data transfer rate is an urgent task in cellular, high-frequency (HF) and special communication systems. The most common way to increase the data rate is to expand the bandwidth of the transmitted signal, which is often achieved through the use of multitone systems. One such system is the filter bank multicarrier (FBMC). In addition, speed improvements are achieved using multi-input–multi-output (MIMO) systems. In this study, we developed an algorithm for equalizing FBMC signals with offset-QAM modulation (OQAM) with self-interference compensation due to its correlation properties in a MIMO channel with memory. An analytical derivation of the proposed algorithm and an analysis of the computational complexity are given. According to the results of simulation modeling and a comparative analysis of performance in terms of the bit error rate and error vector magnitude with solutions with similar computational complexity, a similar level of performance was shown compared to a more complex parallel multistage algorithm, and a better performance was demonstrated compared to a one-tap algorithm. Full article
Show Figures

Figure 1

11 pages, 2989 KiB  
Article
End-to-End Underwater Acoustic Communication Based on Autoencoder with Dense Convolution
by Fangtong Xie, Yunan Zhu, Biao Wang, Wu Wang and Pian Jin
Electronics 2023, 12(2), 253; https://doi.org/10.3390/electronics12020253 - 4 Jan 2023
Cited by 9 | Viewed by 3017
Abstract
To address the problems of the high complexity and poor bit error rate (BER) performance of traditional communication systems in underwater acoustic environments, this paper incorporates the theory of deep learning into a conventional communication system and proposes data-driven underwater acoustic filter bank [...] Read more.
To address the problems of the high complexity and poor bit error rate (BER) performance of traditional communication systems in underwater acoustic environments, this paper incorporates the theory of deep learning into a conventional communication system and proposes data-driven underwater acoustic filter bank multicarrier (FBMC) communications based on convolutional autoencoder networks. The proposed system is globally optimized by two one-dimensional convolutional (Conv1D) modules at the transmitter and receiver, it realizes signal reconstruction through end-to-end training, it effectively avoids the inherent imaginary interference of the system, and it improves the reliability of the communication system. Furthermore, dense-block modules are constructed between Conv1D layers and are connected across layers to achieve feature reuse in the network. Simulation results show that the BER performance of the proposed method outperforms that of the conventional FBMC system with channel equalization algorithms such as least squares (LS) estimation and virtual time reversal mirrors (VTRM) under the measured channel conditions at a certain moment in the Qingjiang River. Full article
(This article belongs to the Special Issue Advanced Underwater Acoustic Systems for UASNs)
Show Figures

Figure 1

14 pages, 519 KiB  
Article
Intrinsic Interference Cancellation Scheme for FBMC-OQAM Systems Based on Power Multiplexing
by Jiazhe Li, Siyi Li, Heng Dong and Zhuoming Li
Electronics 2022, 11(9), 1443; https://doi.org/10.3390/electronics11091443 - 29 Apr 2022
Cited by 3 | Viewed by 2002
Abstract
As a competitive candidate of orthogonal frequency-division multiplexing (OFDM), filter-bank multicarrier (FBMC) has significant advantages in low spectrum leakage, relaxed synchronization requirements and high spectral efficiency. However, the loss of orthogonality leads to intrinsic interference in FBMC, whereas most methods eliminate it by [...] Read more.
As a competitive candidate of orthogonal frequency-division multiplexing (OFDM), filter-bank multicarrier (FBMC) has significant advantages in low spectrum leakage, relaxed synchronization requirements and high spectral efficiency. However, the loss of orthogonality leads to intrinsic interference in FBMC, whereas most methods eliminate it by sacrificing data symbols, resulting in a non-negligible decrease in spectral efficiency. In this context, we propose a new method that eliminates intrinsic interference completely without sacrificing any data symbols thanks to the power multiplexing in the transmitter and the successive interference cancellation scheme in the receiver, contributing to a higher spectral efficiency compared with previous methods. Both the analytical and simulation results demonstrate that the proposed method has higher spectral efficiency and similar power efficiency compared with the traditional coded auxiliary pilot (CAP) method without a notable decrease in bit error rate (BER) performance. Full article
(This article belongs to the Special Issue Multirate and Multicarrier Communication)
Show Figures

Figure 1

13 pages, 2540 KiB  
Article
Peak-to-Average Power Ratio Reduction Method Based on Partial Transmit Sequence and Discrete Fourier Transform Spreading
by Nahla Al Harthi, Zhongfeng Zhang, Daejin Kim and Seungwon Choi
Electronics 2021, 10(6), 642; https://doi.org/10.3390/electronics10060642 - 10 Mar 2021
Cited by 10 | Viewed by 3122
Abstract
Recently, filter bank multicarrier with offset quadrature amplitude modulation (FBMC/OQAM) has received increasing attention from researchers, owing to its merits and superior spectral efficiency. High peak-to-average power ratio (PAPR) occurs in approximately all multicarrier systems, including FBMC/OQAM, and may cause bit-error-rate (BER) degradation [...] Read more.
Recently, filter bank multicarrier with offset quadrature amplitude modulation (FBMC/OQAM) has received increasing attention from researchers, owing to its merits and superior spectral efficiency. High peak-to-average power ratio (PAPR) occurs in approximately all multicarrier systems, including FBMC/OQAM, and may cause bit-error-rate (BER) degradation if not appropriately handled. Conventional PAPR reduction methods for orthogonal frequency division multiplexing (OFDM), such as partial transmit sequence (PTS), selective mapping (SLM), and discrete Fourier transform (DFT) spreading, are ineffective in FBMC/OQAM because of the different structure of the symbols. This study proposes a novel method combining DFT spreading and PTS methods to reduce the PAPR of FBMC/OQAM systems with reasonable computational complexity. Numerical results obtained from various computer simulations show that the proposed method achieves a noticeable enhancement in the PAPR performance of the FBMC/OQAM signal compared to other existing methods without affecting the BER performance. Further, the computational complexity analysis and BER performance of the proposed method are presented in comparison to typical existing methods. From our computer simulations, the proposed method reduces the PAPR by approximately 32.8% compared to that of the conventional methods, and the BER performance is improved by 25% with a high-power amplifier effect. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

15 pages, 4351 KiB  
Article
Field Trials of SC-FDMA, FBMC and LP-FBMC in Indoor Sub-3.5 GHz Bands
by Dongjun Na, Sangmin Jang, Won-Gi Seo and Kwonhue Choi
Electronics 2021, 10(5), 573; https://doi.org/10.3390/electronics10050573 - 1 Mar 2021
Cited by 3 | Viewed by 2776
Abstract
LP-FBMC (low peak-to-average power ratio filter bank multicarrier) was recently proposed to ameliorate the high peak-to-average power ratio (PAPR) issue of filter bank multicarrier (FBMC). The previous simulation study showed that LP-FBMC achieves a similar PAPR as that of single carrier frequency division [...] Read more.
LP-FBMC (low peak-to-average power ratio filter bank multicarrier) was recently proposed to ameliorate the high peak-to-average power ratio (PAPR) issue of filter bank multicarrier (FBMC). The previous simulation study showed that LP-FBMC achieves a similar PAPR as that of single carrier frequency division multiple access (SC-FDMA) while being very robust to inter-user timing/frequency offsets. However, the simulation results that were obtained assuming the stereotyped channel model and the simple nonlinearity model of analog circuits substantially differ from the performance results in a real channel with a real transceiver. To address this, the main purpose of this work is to compare the performances of three waveforms, i.e., SC-FDMA, FBMC, and LP-FBMC, in a real uplink indoor channel. We investigate how the bit error rate (BER) performance gaps of three waveforms in the indoor channels change by the system parameters, such as the carrier frequency within sub-3.5 GHz band and the number of sub-carriers or the sub-carrier spacing, which was not found in the previous simulation study. Our investigation confirms that LP-FBMC is a suitable waveform for real indoor applications. Full article
(This article belongs to the Special Issue Waveform Design for 5G and beyond Systems)
Show Figures

Figure 1

19 pages, 3306 KiB  
Article
Time-Domain Blind ICI Compensation in Coherent Optical FBMC/OQAM System
by Binqi Wu, Jin Lu, Mingyi Gao, Hongliang Ren, Zichun Le, Yali Qin, Shuqin Guo and Weisheng Hu
Sensors 2020, 20(21), 6397; https://doi.org/10.3390/s20216397 - 9 Nov 2020
Cited by 3 | Viewed by 3844
Abstract
A blind discrete-cosine-transform-based phase noise compensation (BD-PNC) is proposed to compensate the inter-carrier-interference (ICI) in the coherent optical offset-quadrature amplitude modulation (OQAM)-based filter-bank multicarrier (CO-FBMC/OQAM) transmission system. Since the phase noise sample can be approximated by an expansion of the discrete cosine transform [...] Read more.
A blind discrete-cosine-transform-based phase noise compensation (BD-PNC) is proposed to compensate the inter-carrier-interference (ICI) in the coherent optical offset-quadrature amplitude modulation (OQAM)-based filter-bank multicarrier (CO-FBMC/OQAM) transmission system. Since the phase noise sample can be approximated by an expansion of the discrete cosine transform (DCT) in the time-domain, a time-domain compensation model is built for the transmission system. According to the model, phase noise compensation (PNC) depends only on its DCT coefficients. The common phase error (CPE) compensation is firstly performed for the received signal. After that, a pre-decision is made on a part of compensated signals with low decision error probability, and the pre-decision results are used as the estimated values of transmitted signals to calculate the DCT coefficients. Such a partial pre-decision process reduces not only decision error but also the complexity of the BD-PNC method while keeping almost the same performance as in the case of the pre-decision of all compensated signals. Numerical simulations are performed to evaluate the performance of the proposed scheme for a 30 GBaud CO-FBMC/OQAM system. The simulation results show that its bit error rate (BER) performance is improved by more than one order of magnitude through the mitigation of the ICI in comparison with the traditional blind PNC scheme only aiming for CPE compensation. Full article
Show Figures

Figure 1

15 pages, 1858 KiB  
Article
A Unified Spectrum Formulation for OFDM, FBMC, and F-OFDM
by Xianzhen Yang, Siyuan Yan, Xiao Li and Fu Li
Electronics 2020, 9(8), 1285; https://doi.org/10.3390/electronics9081285 - 11 Aug 2020
Cited by 12 | Viewed by 4643
Abstract
Although orthogonal frequency division multiplexing (OFDM) has been standardized for 5G, filter bank multi-carrier (FBMC) and filtered orthogonal frequency division multiplexing (F-OFDM) remain competitive as candidates for future generations of wireless technologies beyond 5G, due to their reduced spectrum leakage and thus enhanced [...] Read more.
Although orthogonal frequency division multiplexing (OFDM) has been standardized for 5G, filter bank multi-carrier (FBMC) and filtered orthogonal frequency division multiplexing (F-OFDM) remain competitive as candidates for future generations of wireless technologies beyond 5G, due to their reduced spectrum leakage and thus enhanced spectrum efficiency. In this article, we developed a unified spectrum expression for OFDM, FBMC, and F-OFDM, which provides comparative insights into those techniques. A representative sideband quantification is included at the end of this article. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

15 pages, 513 KiB  
Article
Performance Analysis of LDS Multi Access Technique and New 5G Waveforms for V2X Communication
by Imane Khelouani, Fouzia Elbahhar, Raja Elassali and Noureddine Idboufker
Electronics 2020, 9(7), 1094; https://doi.org/10.3390/electronics9071094 - 4 Jul 2020
Cited by 7 | Viewed by 3262
Abstract
Low Density Signature (LDS) is an emerging non-orthogonal multiple access (NOMA) technique that has never been evaluated under a vehicular channel in order to simulate the environment of a vehicle to everything (V2X) communication. Moreover, the LDS structure has been combined with only [...] Read more.
Low Density Signature (LDS) is an emerging non-orthogonal multiple access (NOMA) technique that has never been evaluated under a vehicular channel in order to simulate the environment of a vehicle to everything (V2X) communication. Moreover, the LDS structure has been combined with only Orthogonal Frequency Division Multiplexing (OFDM) and Filter-Bank Multi-Carrier (FBMC) waveforms to improve its performances. In this paper, we propose new schemes where the LDS structure is combined with Universal Filtered Multi-Carrier (UFMC) and Filtered-OFDM waveforms and the Bit Error Rate (BER) is analysed over a frequency selective channel as a reference and over a vehicular channel to analyse the effect of the Doppler shift on the overall performance. Full article
(This article belongs to the Special Issue Waveform Design for 5G and beyond Systems)
Show Figures

Figure 1

34 pages, 1320 KiB  
Review
An Overview of FIR Filter Design in Future Multicarrier Communication Systems
by Lei Jiang, Haijian Zhang, Shuai Cheng, Hengwei Lv and Pandong Li
Electronics 2020, 9(4), 599; https://doi.org/10.3390/electronics9040599 - 31 Mar 2020
Cited by 21 | Viewed by 9828
Abstract
Future wireless communication systems are facing with many challenges due to their complexity and diversification. Orthogonal frequency division multiplexing (OFDM) in 4G cannot meet the requirements in future scenarios, thus alternative multicarrier modulation (MCM) candidates for future physical layer have been extensively studied [...] Read more.
Future wireless communication systems are facing with many challenges due to their complexity and diversification. Orthogonal frequency division multiplexing (OFDM) in 4G cannot meet the requirements in future scenarios, thus alternative multicarrier modulation (MCM) candidates for future physical layer have been extensively studied in the academic field, for example, filter bank multicarrier (FBMC), generalized frequency division multiplexing (GFDM), universal filtered multicarrier (UFMC), filtered OFDM (F-OFDM), and so forth, wherein the prototype filter design is an essential component based on which the synthesis and analysis filters are derived. This paper presents a comprehensive survey on the recent advances of finite impulse response (FIR) filter design methods in MCM based communication systems. Firstly, the fundamental aspects are examined, including the introduction of existing waveform candidates and the principle of FIR filter design. Then the methods of FIR filter design are summarized in details and we focus on the following three categories—frequency sampling methods, windowing based methods and optimization based methods. Finally, the performances of various FIR design methods are evaluated and quantified by power spectral density (PSD) and bit error rate (BER), and different MCM schemes as well as their potential prototype filters are discussed. Full article
(This article belongs to the Special Issue Waveform Design for 5G and beyond Systems)
Show Figures

Figure 1

Back to TopTop