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Abstract: A novel visible-light communication (VLC) system with 4 × 1 multi-input–single-output
(MISO) channels is designed. In the system, the filter bank multicarrier (FBMC) and offset quadrature
amplitude modulation (OQAM) techniques are used to generate downlink signals. The principles
and implementation methods are proposed and analyzed, and the light intensity and received light
power distribution of four LED emitters are discussed. The results demonstrate that it not only
satisfies the requirements of indoor information access but also provides daily lighting. The used
FBMC-OQAM signals exhibit better reception performance than orthogonal frequency division
multiplexing (OFDM) signals. The system used has a lower bit error rate (BER) and larger access
bandwidth compared to a 1 × 1 single-input–single-output (SISO) system. It has the potential for
application advantages in future indoor VLC system applications.

Keywords: optical communication system; filter bank multicarrier; multi-input–single output;
visible-light communication; bit error rate

1. Introduction

With the advent of the 5G era, various types of access services are rapidly developing.
There is a growing demand for high-speed, low-power consumption, and secure-access
systems. Currently, indoor short-range wireless communication technologies include tradi-
tional Wi-Fi, Bluetooth, infrared communication, and wireless telephone communication.
However, they all have disadvantages, such as slow communication speed, high power
consumption, and low security. Visible-light communication (VLC) is an emerging indoor
technology that has captured the attention of researchers because of its low cost, high data
rates, frequency-free operation, and high security [1–3]. It uses LEDs as the light source
and the primary device for transmitting data signals, while also serving as indoor lighting.
One of the most common problems faced by the VLC application is the limitation of access
bandwidth [4].

In recent years, a few researchers have proposed a variety of techniques to enhance
the transmission rate and frequency-band utilization in the indoor access system. One of
the most common methods is using the multicarrier modulation technique, which divides
high-speed data streams into multiple low-speed sub-streams. This method effectively
improves spectral efficiency [5–8]. It has been widely applied in many optical access sys-
tems, such as multi-carrier modulation passive optical network systems, optical wireless
communication systems, and indoor visible-light communication systems [9–11]. However,
the traditional multi-carrier modulation technique, such as orthogonal frequency division
multiplexing (OFDM), adds a cyclic prefix (CP) to effectively reduce the impact of inter-
symbol interference (ISI). Nevertheless, it reduces the data transmission rate and leads
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to the wastage of spectrum resources [12,13]. In addition, using rectangular functions as
filters in OFDM systems results in large and slow-decaying side lobes, which easily cause
interference between subcarriers [14]. In [15], we propose and design a RoF system for
downlink 4/16/64QAM-OFDM signals. Although this scheme provides a flexible access
method, it wastes bandwidth resources and leads to a certain degree of out-of-band leakage.
In [16], although the FBMC system based on frequency-domain expansion can solve the
problem of spectrum resource waste caused by the OFDM system, its implementation com-
plexity is high. To resolve the above issues, we propose the integration scheme of filter bank
multicarrier (FBMC) and offset quadrature amplitude modulation (OQAM) techniques
based on a multiphase network in VLC systems to effectively reduce out-of-band leakage
and inter-symbol interference. In addition, to further enhance the downlink bandwidth
capacity, 4 × 1 multiple-input–single-output (MISO) access channels are introduced.

In this paper, a novel VLC system with 4 × 1 MISO FBMC-OQAM downlink signals
is proposed. We analyze the indoor optical intensity and power-distribution characteristics
when four LEDs are used as light sources and modulation signal transmitters. Meanwhile,
we test the bit-error-rate (BER) performance of traditional OFDM and FBMC-OQAM signals.
The results show that FBMC-OQAM signals have better visible-light signal-reception
performance than OFDM signals, and the 4 × 1 MISO system used has a larger downlink
bandwidth capacity than the 1 × 1 single-input–single-output (SISO) system. Compared to
using conventional OFDM access signals, we use FBMC-OQAM downlink signals as access
signals. One advantage of using this scheme is that there is less out-of-band leakage in
signal transmission, resulting in higher frequency-band utilization of the system. Moreover,
using this access signal can resist the negative impact of frequency offset. Based on this
research work, we will consider introducing some machine-learning algorithms in artificial
intelligence (AI) technology to further improve the transmission and reception performance
of FBMC-OQAM access signals in the future.

2. Material and Methods

Figure 1 shows the block diagrams of OFDM and FBMC transceivers, respectively.
In the OFDM system, the high-speed data stream is divided into multiple low-speed
subcarriers, which are modulated using QAM modulation. The subcarriers are then
converted into time-domain signals through inverse fast Fourier transform (IFFT). A CP
is added to the time-domain signals to address the ISI issue in data transmission [17–19].
The time-domain signals are then converted back into frequency-domain signals through
a fast Fourier transform (FFT) for demodulation and recovery of the original data. In the
FBMC system, the transmitter modulates the signal through a synthesis filter that utilizes
the polyphase network (PPN) for filtering after the IFFT stage, while the receiver processes
the signal through an analysis filter (PPN+FFT) [20,21]. The specific implementation steps
are shown in Figure 1b.
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Figure 1. (a) OFDM transmitter and receiver and (b) FBMC-OQAM transmitter and receiver. 
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Compared to OFDM modulation, the advantage of FBMC-OQAM is using prototype
filters instead of conventional rectangular filters. The design of the prototype filter is based
on the Nyquist sampling theorem [22]. With the increase in the overlap factor, the quality of
signal transmission and reception can be improved, but the trade-off is that the complexity
of digital signal processing (DSP) also increases. As K (overlap factor) is 2, 3, or 4, the
frequency tap coefficients of the filter are shown in Table 1.

Table 1. The tap coefficient of filter with different overlap factor.

K H0 H1 H2 H3 σ2(dB)

2 1
√

2/2 / / −35
3 1 0.911438 0.411438 / −44
4 1 0.971960

√
2/2 0.235147 −64

The frequency-domain expression of the filter is as follows:

H( f ) =
K−1

∑
k=−(K−1)

Hk
sin(π( f − k

MK )MK)

MK sin(π( f − k
MK ))

(1)

When different values of the overlap factor K are used, the filter exhibits varying
performance characteristics. We compared the frequency-response performance of K = 2, 3,
and 4, as shown in Figure 2.
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Figure 1. (a) OFDM transmitter and receiver and (b) FBMC-OQAM transmitter and receiver. 
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We can observe that the sidelobe attenuation of the signal increases as the overlap
factor K increases. This implies that the out-of-band leakage decreases. When K = 4,
the sidelobe attenuation is approximately 40 dB, which meets the system requirements.
Therefore, in our study, we choose K = 4. As illustrated in Figure 3, it is evident that the FBMC
signal exhibits significantly less out-of-band leakage in comparison to the OFDM signal.
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The interference between subcarriers undergoes an orderly transformation between
the real and imaginary parts [23,24]. Therefore, we can transmit real part information
when there is interference in the imaginary part and transmit imaginary part information
when there is interference in the real part. This way, the interference between adjacent
subcarriers can be effectively eliminated. Separating the real and imaginary parts can
reduce interference but also cut the data transmission rate in half. The OQAM algorithm
achieves an increase in symbol rate to twice the original rate by reducing the symbol period
T to T/2, thus it does not decrease the bandwidth utilization [25,26]. The time-frequency
characteristics of the QAM modulation signals and the OQAM modulation signals are
shown in Figure 4.
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Algorithm complexity has always been a crucial factor in filter bank design. High com-
putation complexity will result in the occupation of hardware resources and signal transmis-
sion time delay. The main problem faced by FBMC is its extensive computational workload.
We analyze the implementation complexity below. In OQAM modulation, it is also neces-
sary to first perform QAM modulation of the same order on the data. Subsequently, the
data will be divided into two channels, and each M-point data will be mapped to the virtual
space. This operation requires M multiplications in the simulation implementation. In the
hardware implementation, since the real and imaginary parts of the signal are represented
by two channels of data, only a mapping is required. And, no additional operational struc-
ture is necessary. However, it results in a doubling of the data volume, which, in turn, dou-
bles the computational load of the subsequent IFFT module and PPN structure. Therefore,
the difference in the computational complexity of the two systems can be attributed solely
to the FFT module and the PPN structure. The FFT module requires M log2 M/ 2 point mul-
tiplications and M log2 M point additions, while the PPN structure requires KM multiplica-
tions and KM additions. The OFDM system only needs M log2 M/ 2 point multiplications
and M log2 M point additions. The FBMC/OQAM system requires M log2 M + 2KM point
multiplication and 2M log2 M + 2KM point addition. In this system, where M = 512
and K = 4, OFDM requires 2304 multiplications and 4608 additions. FBMC/OQAM re-
quires 8704 multiplications and 13,312 additions. From the above, it can be seen that the
implementation complexity of FBMC/OQAM is much larger than that of OFDM.

3. Results and Discussion

In typical visible-light communication systems, there are two propagation paths
between the LED transmitter and the receiver: line of sight (LOS) and non-line of sight
(NLOS) [27–29]. We focus on studying LOS communication in indoor unobstructed spaces.
We propose a four-transmitter–one-receiver VLC system, as shown in Figure 5. The optical
transmitter comprises four LEDs, and the modulated signals are transmitted through four
line-of-sight paths to a receiver on the desk positioned 1 m above the ground.
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The received optical power pr at the receiver end can be represented by the follow-
ing equation:

pr = h(0)pt (2)

In the above equation, pt represents the optical power emitted by the LED light source,
and h(0) represents the DC gain of the channel. According to the Lambertian radiation
model [30], the DC gain of the LOS link is expressed as:

h(0) =

{
(m+1)A

2ΠD2 cosm(α)Ts(β)g(β) cos(β), 0 < β < FOV
0 , else

(3)

where m represents the Lambertian radiation coefficient, D represents the distance from the
white LED light source to the photodetector (PD), A is the detection area of the receiver, α is
the angle between the line connecting the transmitter and the receiver and the vertical
direction, β is the incident angle of the PD, Ts(β) is the optical filter gain of the receiver,
and g(β) is the optical system gain. The simulation parameters are set as shown in Table 2.

Table 2. Simulation parameters.

Parameter Value

Room
Size 4.5 m × 4.5 m × 3 m

Space Position

(−1.125, −1.125, 3)
(−1.125, 1.25, 3)
(1.125, 1.125, 3)

(1.125, −1.125, 3)

Optical Transmitter

Semi-angle at half power 70◦

Transmit Power 30 mW
LED Array 60 × 60

Center Emission Intensity 300~900 lx

Optical Receiver
Effective Area 1 cm2

FOV 70◦

Elevation 90◦

According to Equation (2), the light-intensity distribution of the four LED transmitters
is analyzed in the room and the power is received at different locations, as shown in
Figure 6. It can be observed that the light intensity and received power are highest near
the four groups of LED light sources, and they gradually decrease as the distance from the
sources increases. However, from Figure 6a, it can be seen that the minimum value of room
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illuminance is 373 lx, while the range for general lighting is between 300 lx and 1540 lx [31].
Therefore, using a combination of four groups of white LED arrays is sufficient to meet the
daily lighting requirements. Additionally, the distribution of received power, as shown in
Figure 6b, indicates that the maximum power is 4.7503 dBm, while the minimum power is
0.2579 dBm. Except for the edges of the room, the SNR in the main activity area is adequate
to fulfill the communication requirements.

Photonics 2024, 11, x FOR PEER REVIEW 6 of 10 
 

 

receiver, and 𝑔(𝛽) is the optical system gain. The simulation parameters are set as shown 
in Table 2. 

Table 2. Simulation parameters. 

 Parameter Value 

Room 

Size 4.5 m × 4.5 m × 3 m 

Space Position 

(−1.125, −1.125, 3) 
(−1.125, 1.25, 3) 
(1.125, 1.125, 3) 
(1.125, −1.125, 3) 

Optical Transmitter 

Semi-angle at half power 70° 
Transmit Power 30 mW 

LED Array 60 × 60 
Center Emission Intensity 300~900 lx 

Optical Receiver 
Effective Area 1 cm2 

FOV 70° 
Elevation 90° 

According to Equation (2), the light-intensity distribution of the four LED transmit-
ters is analyzed in the room and the power is received at different locations, as shown in 
Figure 6. It can be observed that the light intensity and received power are highest near 
the four groups of LED light sources, and they gradually decrease as the distance from 
the sources increases. However, from Figure 6a, it can be seen that the minimum value of 
room illuminance is 373 lx, while the range for general lighting is between 300 lx and 1540 
lx [31]. Therefore, using a combination of four groups of white LED arrays is sufficient to 
meet the daily lighting requirements. Additionally, the distribution of received power, as 
shown in Figure 6b, indicates that the maximum power is 4.7503 dBm, while the minimum 
power is 0.2579 dBm. Except for the edges of the room, the SNR in the main activity area 
is adequate to fulfill the communication requirements. 

 
Figure 6. (a) Light-intensity distribution map with four LED arrays. (b) Received power map with 
four LED arrays. 

Similarly, we tested at other locations in the room, as shown in Figure 7. When the 
LED light is positioned close to the center points (−0.75, −0.75, 3), (−0.75, 0.75, 3), (0.75, 0.75, 
3), and (0.75, −0.75, 3), the minimum light intensity is 324 lx. Simultaneously, the minimum 
received optical power is −0.7011 dBm, and the maximum received optical power is 6.6168 
dBm. When the LED lamp is positioned near the edge points (−1.25, −1.25, 3), (−1.25, 1.25, 
3), (1.25, 1.25, 3), and (1.25, −1.25, 3), the minimum light intensity is 397 lx. The minimum 
receiving optical power is 0.6518 dBm, and the maximum receiving optical power is 4.2941 
dBm. 
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Similarly, we tested at other locations in the room, as shown in Figure 7. When the
LED light is positioned close to the center points (−0.75, −0.75, 3), (−0.75, 0.75, 3), (0.75,
0.75, 3), and (0.75, −0.75, 3), the minimum light intensity is 324 lx. Simultaneously, the
minimum received optical power is −0.7011 dBm, and the maximum received optical
power is 6.6168 dBm. When the LED lamp is positioned near the edge points (−1.25, −1.25,
3), (−1.25, 1.25, 3), (1.25, 1.25, 3), and (1.25, −1.25, 3), the minimum light intensity is 397 lx.
The minimum receiving optical power is 0.6518 dBm, and the maximum receiving optical
power is 4.2941 dBm.
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Figure 8 shows the comparison of BER for OFDM and FBMC-OQAM signals in 1 × 1
SISO and 4 × 1 MISO channels. When the SNR is 24 dB, the 4 × 1 MISO FBMC-OQAM
(32QAM) achieves the lowest BER (6.74 × 10−6), while the 4 × 1 MISO OFDM (32QAM)
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has a slightly higher BER of 1.28 × 10−5. Similarly, at the SNR of 24 dB with a modulation
order of 64, the BER of 4 × 1 MISO FBMC-OQAM is 8.55 × 10−4, and the BER of 4 × 1
MISO OFDM is 1.24 × 10−3. FBMC-OQAM signals demonstrate superior performance
in visible-light signal reception compared to OFDM signals. As the SNR is 23 dB and the
modulation order is 32, the BER of 4×1 MISO FBMC-OQAM is 5.12 × 10−5, and the BER
of 1 × 1 SISO FBMC-OQAM is 3.28 × 10−4. Meanwhile, at the SNR of 23 dB, the BER of
4 × 1 MISO OFDM and 1×1 SISO OFDM is 8.31 × 10−5 and 5.7 × 10−4, respectively. It can
be seen that the 4 × 1 MISO system used has a lower BER and a larger access bandwidth
compared to the 1 × 1 SISO system. When the BER is 10−3, the corresponding SNRs for
4 × 1 MISO FBMC-OQAM (32QAM), 4 × 1 MISO OFDM (32QAM), 1 × 1 SISO FBMC-
OQAM (32QAM), 1 × 1 SISO OFDM (32QAM), 4 × 1 MISO FBMC-OQAM (64QAM),
4 × 1 MISO OFDM (64QAM), 1 × 1 SISO FBMC-OQAM (64QAM), and 1 × 1 SISO OFDM
(64QAM) are 20.86 dB, 21.19 dB, 22.21 dB, 22.50 dB, 23.85 dB, 24.18 dB, 24.72 dB, and
25.31 dB, respectively.
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Figure 8. BER vs. SNR comparison of OFDM and FBMC-OQAM signals in 1 × 1 SISO and 4 × 1
MISO downlink channels.

We introduced a frequency offset and compared the signal-reception performance
under various frequency offsets. As shown in Figure 9, the BER of the received OFDM
signal increases rapidly with the increase in frequency offset. The BER of FBMC increases
significantly and gradually. The rapid increase in the BER of OFDM rises rapidly with
frequency offset within a specific range and is attributed to the modulation of the system
based on FFT transform. The overall anti-frequency offset performance of FBMC is higher
than that of OFDM. This is due to the fact that the prototype filter of FBMC is designed
to be flat in the band, resulting in low inter-carrier interference. The frequency offset in
the subcarrier interval will not cause a significant BER, but it is fundamentally dependent
on the modulation method of time-frequency transformation. When the frequency offset
exceeds a certain range, the signal-reception performance will deteriorate.

In this scheme, the filter bank is used to achieve the modulation and demodulation of
subcarriers. This process enables fast attenuation of out-of-band amplitudes, reduces inter-
subcarrier interference and inter-symbol interference, and decreases sensitivity to frequency
offset. In addition, FBMC/OQAM can maintain good anti-interference performance in the
presence of frequency offset. In OFDM, frequency offset disrupts the orthogonality between
subcarriers, introducing interference. MISO can leverage the spatial diversity provided by
multiple LEDs to offer diversity gain. This helps mitigate the effects of fading, improving
the overall system reliability and performance. Based on the data comparison above, it
can be concluded that FBMC-OQAM, combined with MISO technology, offers superior
transmission performance. In practical applications, OFDM modulation is chosen due to
its low cost, despite its poor reception performance. On the other hand, FBMC/OQAM
multi-carrier modulation has a higher cost but provides higher-quality received signals.
Therefore, in practical applications, we can choose the appropriate signal modulation types
based on specific needs.
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4. Conclusions

We have designed a novel VLC system with a 4 × 1 MISO channel, which uses FBMC-
OQAM to generate downlink signals. The results show that the FBMC-OQAM signal
has better reception performance than the OFDM signal and greatly reduces out-of-band
leakage. This system not only multiplies downlink bandwidth capacity but also the used
FBMC-OQAM signals offer better reception quality compared with traditional OFDM
signals. It has the potential advantages in future indoor VLC system applications.
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