A Unified Spectrum Formulation for OFDM, FBMC, and F-OFDM
Abstract
:1. Introduction
2. Model Comparison in Time Domain
2.1. OFDM
2.2. FBMC
2.3. F-OFDM
3. Model Comparison in Frequency Domain
3.1. Unified Expression in Frequency Domain
3.2. OFDM
3.3. FBMC
3.4. F-OFDM
3.5. Comparison among OFDM, FBMC, and F-OFDM
4. Empirical Sideband Quantification
5. Practical Consideration
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
OFDM | Orthogonal frequency division multiplex |
FBMC | Filter bank multi-carrier |
F-OFDM | Filtered orthogonal frequency division multiplexing |
DMT | Discrete multi-tone transmission |
ADSL | Asymmetric digital subscriber line |
DVB-C | Digital video broadcasting cable |
eMBB | Enhanced mobile broadband |
mMTC | Massive machine type communications |
URLLC | Ultrareliable low latency communications |
OOB | Out-of-band |
PSD | Power spectrum density |
IFFT | Inverse fast Fourier transform |
ISI | Intersymbol interference |
CP | Cyclic prefix |
ZP | Zero padding |
SEM | Spectrum Emission Mask |
References
- Chen, W.Y. DSL: Simulation Techniques and Standards Development for Digital Subscriber Line Systems, 1st ed.; Macmillan Technical Pub.: London, UK, 1998. [Google Scholar]
- Cioffi, J.; Silverman, P.; Starr, T. Understanding Digital Subscriber Line Technology, 1st ed.; Prentice Hall: Bergen County, NJ, USA, 1999. [Google Scholar]
- Li, Y.; Stüber, G. Orthogonal Frequency Division Multiplexing for Wireless Communications, 2006th ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Farhang Boroujeny, B.; Moradi, H. OFDM inspired waveforms for 5G. IEEE Trans. Commun. Surv. Tutor. 2016, 18, 2474–2492. [Google Scholar] [CrossRef]
- 3GPP. Study on New Radio Access Technology Radio Interface Protocol Aspects. (Release 14). Available online: http://www.3gpp.org/DynaReport/38804.htm (accessed on 19 June 2020).
- 3GPP. Study on New Radio Access Technology Physical Layer Aspects. (Release 14). Available online: http://www.3gpp.org/DynaReport/38802.htm (accessed on 19 June 2020).
- Nee, R.V.; Prasad, R. OFDM for Wireless Multimedia Communications; Artech House: Suburban Boston, MA, USA, 2000. [Google Scholar]
- Ankarali, Z.; Pekoz, B.; Arslan, H. Flexible radio access beyond 5G: A future projection on waveform, numerology, and frame design principles flex. IEEE Access 2017, 5, 18295–18309. [Google Scholar] [CrossRef]
- Zhang, L.; Ijaz, A.; Xiao, P.; Molu, M. Filtered OFDM systems, algorithms, and performance analysis for 5G and beyond. IEEE Trans. Commun. 2018, 66, 1205–1218. [Google Scholar] [CrossRef] [Green Version]
- Nissel, R.; Schwarz, S.; Moradi, H. Filter bank multicarrier modulation schemes for future mobile communications. IEEE J. Sel. Areas Commun. 2017, 35, 1768–1782. [Google Scholar] [CrossRef]
- Farhang-Boroujeny, B. OFDM versus filter bank multicarrier. IEEE Signal Process. Mag. 2011, 28, 92–112. [Google Scholar] [CrossRef]
- Rajabzadeh, M.; Steendam, H. Power spectral analysis of UW-OFDM systems. IEEE Trans. Commun. 2018, 66, 2685–2695. [Google Scholar] [CrossRef]
- 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA) Physical Channels and Modulation. Available online: http://www.3gpp.org/DynaReport/36211.htm (accessed on 19 June 2020).
- Zaidi, A.; Athley, F.; Medbo, J.; Gustavsson, U.; Durisi, G.; Chen, X. 5G Physical Layer: Principles, Models and Technology Components; Academic Press: London, UK, 2018. [Google Scholar]
- Waterschoot, T.; Le Nir, V.; Duplicy, J.; Moonen, M. Analytical expressions for the power spectral density of CP-OFDM and ZP-OFDM signals. IEEE Signal Process. Lett. 2010, 17, 371–374. [Google Scholar] [CrossRef]
- Farhang-Boroujeny, B.; Yuen, C. Cosine modulated and offset QAM filter bank multicarrier techniques: A continuous-time prospect. EURASIP J. Adv. Signal Process. 2010, 2010, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Mattera, D.; Tanda, M. Windowed OFDM for small-cell 5G uplink. Phys. Commun. 2020, 39, 100993. [Google Scholar] [CrossRef]
- Mizutani, K.; Matsumura, T.; Harada, H. A Comprehensive Study of Universal Time-Domain Windowed OFDM-Based LTE Downlink System. In Proceedings of the 2017 20th International Symposium on Wireless Personal Multimedia Communications (WPMC), Bali, Indonesia, 17–20 December 2017; pp. 28–34. [Google Scholar] [CrossRef]
- Zhao, J. DFT-based offset-QAM OFDM for optical communications. Opt. Express 2014, 22, 1114–1126. [Google Scholar] [CrossRef] [PubMed]
- Moles-Cases, V.; Zaidi, A.; Chen, X.; Oechtering, T.; Baldemair, R. A Comparison of OFDM, QAM-FBMC, and OQAM-FBMC. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017. [Google Scholar] [CrossRef]
- Luo, F.; Zhang, C. Signal Processing for 5G: Algorithm and Implementations, 1st ed.; John Wiley & Sons Ltd.: West Sussex, UK, 2016. [Google Scholar]
- Jayan, G.; Nair, A.K. Performance Analysis of Filtered OFDM for 5G. In Proceedings of the 2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 22–24 March 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Couch, L.W. Digital and Analog Communication System, 7th ed.; Pearson: New York, NY, USA, 2007. [Google Scholar]
- Talbot, S.L.; Farhang-Boroujeny, B. Spectral Method of Blind Carrier Tracking for OFDM. IEEE Trans. Signal Process. 2008, 56, 2706–2717. [Google Scholar] [CrossRef]
- Proakis, J.G.; Salehi, M. Communication Systems Engineering; Prentice-Hall: Bergen County, NJ, USA, 2002. [Google Scholar]
- Kobayashi, R.T.; Abrão, T. FBMC Prototype Filter Design via Convex Optimization. IEEE Trans. Veh. Technol. 2019, 68, 393–404. [Google Scholar] [CrossRef]
- Floch, B.L.; Alard, M.; Berrou, C. Coded orthogonal frequency division multiplex. Proc. IEEE 1995, 83, 982–996. [Google Scholar] [CrossRef]
- Siohan, P.; Roche, C. Cosine-modulated filterbanks based on extended Gaussian functions. IEEE Trans. Signal Process. 2000, 48, 3052–3061. [Google Scholar] [CrossRef]
- Mirabbasi, S.; Martin, K. Overlapped complex-modulated transmultiplexer filters with simplified design and superior stopbands. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 2003, 50, 456–469. [Google Scholar] [CrossRef]
- Horn, R.A.; Johnson, C.R. Matrix Analysis; Cambridge Univ. Press: Cambridge, UK, 1985. [Google Scholar]
- Slepian, D. Prolate spheroidal wave functions, and introduction to the Slepian series and its properties. Appl. Comput. Harmon. Anal. 2004, 57, 1371–1430. [Google Scholar]
- Vilolainen, A.; Bellanger, M.; Huchard, M. PHYDYAS 007-PHYsical Layer for Dynamic Access and Cognitive Radio; ICT_211887; Mobile Networks (MONET): Seattle, WA, USA, 2009. [Google Scholar]
- Hass, R.; Belfifiore, J.C. A time-frequency well-localized pulse for multiple carrier transmission. Wireless Pers. Commun. 1997, 5, 1–18. [Google Scholar] [CrossRef]
- Prakash, J.A.; Reddy, G.R. Efficient Prototype Filter Design for Filter Bank Multicarrier (FBMC) System Based on Ambiguity Function Analysis of Hermite Polynomials. In Proceedings of the 2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s), Kottayam, India, 22–23 March 2013; pp. 580–585. [Google Scholar]
- Aminjavaheri, A.; Farhang, A.; Doyle, L.E.; Farhang-Boroujeny, B. Prototype Filter Design for FBMC in Massive MIMO Channels. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6. [Google Scholar]
- Bellanger, M. FBMC Physical Layer: A Primer. Available online: http://www.ict-phydyas.org/teamspace/internal-folder/FBMC-Primer_06-2010.pdf (accessed on 19 June 2020).
- MathWorks. FBMC vs. OFDM Modulation. Available online: https://www.mathworks.com/help/comm/examples/fbmc-vs-ofdm-modulation.html (accessed on 8 July 2020).
- Abdoli, J.; Jia, M.; Ma, J. Filtered OFDM: A New Waveform for Future Wireless Systems. In Proceedings of the 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Stockholm, Sweden, 28 June–1 July 2015; pp. 66–70. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, X.; Qiu, J.; Gu, L.; Satio, Y.; Benjebbour, A.; Kishiyama, Y. A Field Trial of f-OFDM toward 5G. In Proceedings of the 2016 IEEE Globecom Workshops (GC Wkshps), Washington, DC, USA, 4–8 December 2016; pp. 1–6. [Google Scholar] [CrossRef]
- 3GPP. TSG RAN WG1 Meeting #85 R1-165425. f-OFDM Scheme and Filter Design. Available online: https://www.3gpp.org/DynaReport/TDocExMtg--R1-85--31662.htm (accessed on 19 June 2020).
- 3GPP. TSG RAN. Terminal Conformance Specification, Radio Transmission and Reception (TDD). Available online: http://www.3gpp.org/DynaReport/34121.htm (accessed on 19 June 2020).
- Ayoub, R. Euler and the zeta function. Am. Math. Mon. 1974, 81, 1067–1086. [Google Scholar] [CrossRef]
I | … | ||||
---|---|---|---|---|---|
… | … | … | … | … | … |
4 | 1 | 0.971960 | 0.235147 | - | |
… | … | … | … | … | … |
I | OFDM | FBMC | F-OFDM |
---|---|---|---|
Rectangular pulse shaping | PHYDYAS etc. | Rectangular pulse shaping | |
- | - | Truncated filter with Hann window |
Title 1 | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Point 6 | Point 7 | Point 8 | Point 9 |
---|---|---|---|---|---|---|---|---|---|
Nth peak points (dBm) | −21.94 | −24.85 | −26.61 | −27.88 | −28.88 | −29.70 | −30.406 | −31.019 | −31.563 |
Nth peak points (dBm) | −22.04 | −24.87 | −26.62 | −27.89 | −28.89 | −29.71 | −30.408 | −31.021 | −31.565 |
Difference (dB) | 0.1 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.002 | 0.002 | 0.002 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Yan, S.; Li, X.; Li, F. A Unified Spectrum Formulation for OFDM, FBMC, and F-OFDM. Electronics 2020, 9, 1285. https://doi.org/10.3390/electronics9081285
Yang X, Yan S, Li X, Li F. A Unified Spectrum Formulation for OFDM, FBMC, and F-OFDM. Electronics. 2020; 9(8):1285. https://doi.org/10.3390/electronics9081285
Chicago/Turabian StyleYang, Xianzhen, Siyuan Yan, Xiao Li, and Fu Li. 2020. "A Unified Spectrum Formulation for OFDM, FBMC, and F-OFDM" Electronics 9, no. 8: 1285. https://doi.org/10.3390/electronics9081285
APA StyleYang, X., Yan, S., Li, X., & Li, F. (2020). A Unified Spectrum Formulation for OFDM, FBMC, and F-OFDM. Electronics, 9(8), 1285. https://doi.org/10.3390/electronics9081285