A Novel 4 × 1 MISO-VLC System with FBMC-OQAM Downlink Signals
Abstract
:1. Introduction
2. Material and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chi, N.; Zhou, Y.; Wei, Y.; Hu, F. Visible light communication in 6G: Advances, challenges, and prospects. IEEE Veh. Technol. Mag. 2020, 15, 93–102. [Google Scholar] [CrossRef]
- Gancarz, J.; Elgala, H.; Little, T.D.C. Impact of lighting requirements on VLC systems. IEEE Commun. Mag. 2013, 51, 34–41. [Google Scholar] [CrossRef]
- Kashef, M.; Ismail, M.; Abdallah, M.; Qaraqe, K.A.; Serpedin, E. Energy efficient resource allocation for mixed RF/VLC heterogeneous wireless networks. IEEE J. Sel. Areas Commun. 2016, 34, 883–893. [Google Scholar] [CrossRef]
- Sadat, H.; Abaza, M.; Mansour, A.; Alfalou, A. A survey of NOMA for VLC systems: Research challenges and future trends. Sensors 2022, 22, 1395. [Google Scholar] [CrossRef]
- Lin, H.; Siohan, P. An advanced multi-carrier modulation for future radio systems. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 8097–8101. [Google Scholar]
- Shaik, N.; Malik, P.K. A comprehensive survey 5G wireless communication systems: Open issues, research challenges, channel estimation, multi carrier modulation and 5G applications. Multimed. Tools Appl. 2021, 80, 28789–28827. [Google Scholar] [CrossRef]
- Chen, R.; Park, K.H.; Shen, C.; Ng, T.K.; Ooi, B.S.; Alouini, M.S. Visible light communication using DC-biased optical filter bank multi-carrier modulation. In Proceedings of the IEEE 2018 Global LIFI Congress (GLC), Paris, France, 8–9 February 2018; pp. 1–6. [Google Scholar]
- Ibrahim, A.; Prat, J.; Ismail, T. Asymmetrical clipping optical filter bank multi-carrier modulation scheme. Opt. Quantum Electron. 2021, 53, 230. [Google Scholar] [CrossRef]
- Khan, J.; Khan, Y.; Ullah, S.; Shafique Querishi, S. Transmission performance and cost analysis of multi-carrier-based wavelength division multiplexed passive optical access network. J. Opt. Commun. 2020, 41, 159–165. [Google Scholar] [CrossRef]
- Li, X.; Yu, J. W-band RoF transmission based on optical multi-carrier generation by cascading one directly-modulated DFB laser and one phase modulator. Opt. Commun. 2015, 345, 80–85. [Google Scholar] [CrossRef]
- Yang, Y.; Zeng, Z.; Cheng, J.; Guo, C.; Feng, C. A relay-assisted OFDM system for VLC uplink transmission. IEEE Trans. Commun. 2019, 67, 6268–6281. [Google Scholar] [CrossRef]
- Tao, Y.; Liu, L.; Liu, S.; Zhang, Z. A survey: Several technologies of non-orthogonal transmission for 5G. China Commun. 2015, 12, 1–15. [Google Scholar] [CrossRef]
- Seo, B.; Sim, D.; Lee, T.; Lee, C. Efficient time synchronization method with adaptive resource configuration for FBMC systems. IEEE Trans. Commun. 2020, 68, 5563–5574. [Google Scholar] [CrossRef]
- Arjun, R.; Shah, H.; Dhua, S.; Appaiah, K.; Gadre, V.M. Low complexity FBMC for wireless MIMO systems. Phys. Commun. 2021, 47, 101332. [Google Scholar] [CrossRef]
- Shao, Y.F.; Chen, L.; Wang, A.R.; Zhao, Y.J.; Long, Y.; Ji, X.P. Analysis of different sub-carrier allocation of M-ary QAM-OFDM downlink in RoF system. Optoelectron. Lett. 2018, 14, 40–43. [Google Scholar] [CrossRef]
- Tao, Y. Simulation performance analysis of FBMC-OQAM system based on frequency spreading. In Proceedings of the Second International Conference on Physics, Photonics, and Optical Engineering (ICPPOE 2023), Kunming, China, 10–12 November 2023; SPIE: Bellingham, WA, USA, 2024; Volume 13075, pp. 682–689. [Google Scholar]
- Hashimoto, N.; Osawa, N.; Yamazaki, K.; Ibi, S. Channel estimation and equalization for CP-OFDM-based OTFS in fractional doppler channels. In Proceedings of the 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, QC, Canada, 14–23 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–7. [Google Scholar]
- Liu, Y.; Yi, J.; Wan, X.; Zhang, X.; Ke, H. Evaluation of clutter suppression in CP-OFDM-based passive radar. IEEE Sens. J. 2019, 19, 5572–5586. [Google Scholar] [CrossRef]
- Yli-Kaakinen, J.; Loulou, A.; Levanen, T.; Pajukoski, K.; Palin, A.; Renfors, M.; Valkama, M. Frequency-domain signal processing for spectrally-enhanced CP-OFDM waveforms in 5G new radio. IEEE Trans. Wirel. Commun. 2021, 20, 6867–6883. [Google Scholar] [CrossRef]
- Nadal, J.; Nour, C.A.; Baghdadi, A. Low-complexity pipelined architecture for FBMC/OQAM transmitter. IEEE Trans. Circuits Syst. II Express Briefs 2015, 63, 19–23. [Google Scholar] [CrossRef]
- Rottenberg, F.; Nguyen, T.H.; Gorza, S.P.; Horlin, F.; Louveaux, J. Advanced chromatic dispersion compensation in optical fiber FBMC-OQAM systems. IEEE Photonics J. 2017, 9, 7204710. [Google Scholar] [CrossRef]
- Bellanger, M.; Le Ruyet, D.; Roviras, D.; Terré, M.; Nossek, J.; Baltar, L.; Bai, Q.; Waldhauser, D.; Renfors, M.; Ihalainen, T. FBMC physical layer: A primer. PHYDYAS 2010, 25, 7–10. [Google Scholar]
- Cui, W.; Qu, D.; Jiang, T.; Farhang-Boroujeny, B. Coded auxiliary pilots for channel estimation in FBMC-OQAM systems. IEEE Trans. Veh. Technol. 2015, 65, 2936–2946. [Google Scholar] [CrossRef]
- Cheng, X.; Liu, D.; Wang, C.; Yan, S.; Zhu, Z. Deep learning-based channel estimation and equalization scheme for FBMC/OQAM systems. IEEE Wirel. Commun. Lett. 2019, 8, 881–884. [Google Scholar] [CrossRef]
- Laabidi, M.; Zayani, R.; Bouallegue, R. A novel multi-block selective mapping scheme for PAPR reduction in FBMC/OQAM systems. In Proceedings of the 2015 World Congress on Information Technology and Computer Applications (WCITCA), Hammamet, Tunisia, 11–13 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–5. [Google Scholar]
- Nguyen, T.H.; Gorza, S.P.; Louveaux, J.; Horlin, F. Low-complexity blind phase search for filter bank multicarrier offset-QAM optical fiber systems. In Proceedings of the Signal Processing in Photonic Communications, Vancouver, BC, Canada, 18–20 July 2016; Optica Publishing Group: Washington, DC, USA, 2016. SpW2G. 2. [Google Scholar]
- Lu, Y.; Dai, L. Near-Field Channel Estimation in Mixed LoS/NLoS Environments for Extremely Large-Scale MIMO Systems. IEEE Trans. Commun. 2023, 71, 3694–3707. [Google Scholar] [CrossRef]
- Alkama, D.; Ouamri, M.A.; Alzaidi, M.S.; Shaw, R.N.; Azni, M.; Ghoneim, S.S.M. Downlink performance analysis in MIMO UAV-cellular communication with LOS/NLOS propagation under 3D beamforming. IEEE Access 2022, 10, 6650–6659. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Y.; Seow, C.K.; Sun, M.; Si, M.; Huang, L. UWB sensor-based indoor LOS/NLOS localization with support vector machine learning. IEEE Sens. J. 2023, 23, 2988–3004. [Google Scholar] [CrossRef]
- Cevik, T.; Yilmaz, S. An overview of visible light communication systems. arXiv 2015, arXiv:1512.03568. [Google Scholar] [CrossRef]
- Choi, S.J.; Lee, D.S.; Jo, J.H. Lighting and cooling energy assessment of multi-purpose control strategies for external movable shading devices by using shaded fraction. Energy Build. 2017, 150, 328–338. [Google Scholar] [CrossRef]
2 | 1 | / | / | −35 | |
3 | 1 | 0.911438 | 0.411438 | / | −44 |
4 | 1 | 0.971960 | 0.235147 | −64 |
Parameter | Value | |
---|---|---|
Room | Size | 4.5 m × 4.5 m × 3 m |
Space Position | (−1.125, −1.125, 3) (−1.125, 1.25, 3) (1.125, 1.125, 3) (1.125, −1.125, 3) | |
Optical Transmitter | Semi-angle at half power | 70° |
Transmit Power | 30 mW | |
LED Array | 60 × 60 | |
Center Emission Intensity | 300~900 lx | |
Optical Receiver | Effective Area | 1 cm2 |
FOV | 70° | |
Elevation | 90° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Y.; Li, Y.; Wang, A.; Zhu, Y.; Li, C.; Chen, P.; Zuo, R.; Yuan, J.; Liu, S. A Novel 4 × 1 MISO-VLC System with FBMC-OQAM Downlink Signals. Photonics 2024, 11, 415. https://doi.org/10.3390/photonics11050415
Shao Y, Li Y, Wang A, Zhu Y, Li C, Chen P, Zuo R, Yuan J, Liu S. A Novel 4 × 1 MISO-VLC System with FBMC-OQAM Downlink Signals. Photonics. 2024; 11(5):415. https://doi.org/10.3390/photonics11050415
Chicago/Turabian StyleShao, Yufeng, Yanlin Li, Anrong Wang, Yaodong Zhu, Chong Li, Peng Chen, Renjie Zuo, Jie Yuan, and Shuanfan Liu. 2024. "A Novel 4 × 1 MISO-VLC System with FBMC-OQAM Downlink Signals" Photonics 11, no. 5: 415. https://doi.org/10.3390/photonics11050415
APA StyleShao, Y., Li, Y., Wang, A., Zhu, Y., Li, C., Chen, P., Zuo, R., Yuan, J., & Liu, S. (2024). A Novel 4 × 1 MISO-VLC System with FBMC-OQAM Downlink Signals. Photonics, 11(5), 415. https://doi.org/10.3390/photonics11050415