Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (127)

Search Parameters:
Keywords = film-forming hydrogels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 5531 KiB  
Review
Polyethylenimine Carriers for Drug and Gene Delivery
by Ahmed Ismail and Shih-Feng Chou
Polymers 2025, 17(15), 2150; https://doi.org/10.3390/polym17152150 - 6 Aug 2025
Abstract
Polyethylenimine (PEI) is a cationic polymer with a high density of amine groups suitable for strong electrostatic interactions with biological molecules to preserve their bioactivities during encapsulation and after delivery for biomedical applications. This review provides a comprehensive overview of PEI as a [...] Read more.
Polyethylenimine (PEI) is a cationic polymer with a high density of amine groups suitable for strong electrostatic interactions with biological molecules to preserve their bioactivities during encapsulation and after delivery for biomedical applications. This review provides a comprehensive overview of PEI as a drug and gene carrier, describing its polymerization methods in both linear and branched forms while highlighting the processing methods to manufacture PEIs into drug carriers, such as nanoparticles, coatings, nanofibers, hydrogels, and films. These various PEI carriers enable applications in non-viral gene and small molecule drug deliveries. The structure–property relationships of PEI carriers are discussed with emphasis on how molecular weights, branching degrees, and surface modifications of PEI carriers impact biocompatibility, transfection efficiency, and cellular interactions. While PEI offers remarkable potential for drug and gene delivery, its clinical translation remains limited by challenges, including cytotoxicity, non-degradability, and serum instability. Our aim is to provide an understanding of PEI and the structure–property relationships of its carrier forms to inform future research directions that may enable safe and effective clinical use of PEI carriers for drug and gene delivery. Full article
(This article belongs to the Special Issue Biocompatible and Biodegradable Polymer Materials)
Show Figures

Figure 1

15 pages, 2179 KiB  
Review
From Nutrition to Innovation: Biomedical Applications of Egg Components
by Amin Mohseni Ghalehghazi and Wen Zhong
Molecules 2025, 30(15), 3260; https://doi.org/10.3390/molecules30153260 - 4 Aug 2025
Viewed by 245
Abstract
Valued for their nutritional content, eggs have recently gained attention as a versatile biomaterial owing to their biocompatibility, biodegradability, and unique structural and biochemical composition. This review highlights the biomedical potential of various egg components—eggshell, eggshell membrane, egg white, and egg yolk—and their [...] Read more.
Valued for their nutritional content, eggs have recently gained attention as a versatile biomaterial owing to their biocompatibility, biodegradability, and unique structural and biochemical composition. This review highlights the biomedical potential of various egg components—eggshell, eggshell membrane, egg white, and egg yolk—and their applications in bone grafting, tissue engineering, wound healing, drug delivery, and biosensors. Eggshells serve as a natural, calcium-rich source for bone tissue engineering and regenerative medicine. The eggshell membrane, with its antimicrobial and structural properties, offers promise as a wound healing scaffold. Egg white, known for its gelation and film-forming capabilities, is utilized in hydrogel-based systems for drug delivery and biosensing. Egg yolk, rich in lipids and immunoglobulin Y (IgY) antibodies, is being explored for diagnostic and therapeutic applications. This review critically examines the advantages and limitations of each egg-derived component and outlines current research gaps, offering insights into future directions for the development of egg-based biomaterials in biomedical engineering. Full article
Show Figures

Figure 1

35 pages, 1038 KiB  
Review
Hydrogels in Cardiac Surgery: Versatile Platforms for Tissue Repair, Adhesion Prevention, and Localized Therapeutics
by Seok Beom Hong, Jin-Oh Jeong and Hoon Choi
Gels 2025, 11(7), 564; https://doi.org/10.3390/gels11070564 - 21 Jul 2025
Viewed by 539
Abstract
Hydrogels have emerged as multifunctional biomaterials in cardiac surgery, offering promising solutions for myocardial regeneration, adhesion prevention, valve engineering, and localized drug and gene delivery. Their high water content, biocompatibility, and mechanical tunability enable close emulation of the cardiac extracellular matrix, supporting cellular [...] Read more.
Hydrogels have emerged as multifunctional biomaterials in cardiac surgery, offering promising solutions for myocardial regeneration, adhesion prevention, valve engineering, and localized drug and gene delivery. Their high water content, biocompatibility, and mechanical tunability enable close emulation of the cardiac extracellular matrix, supporting cellular viability and integration under dynamic physiological conditions. In myocardial repair, injectable and patch-forming hydrogels have been shown to be effective in reducing infarct size, promoting angiogenesis, and preserving contractile function. Hydrogel coatings and films have been designed as adhesion barriers to minimize pericardial adhesions after cardiotomy and improve reoperative safety. In heart valve and patch engineering, hydrogels contribute to scaffold design by providing bio-instructive, mechanically resilient, and printable matrices that are compatible with 3D fabrication. Furthermore, hydrogels serve as localized delivery platforms for small molecules, proteins, and nucleic acids, enabling sustained or stimuli-responsive release while minimizing systemic toxicity. Despite these advances, challenges such as mechanical durability, immune compatibility, and translational scalability persist. Ongoing innovations in smart polymer chemistry, hybrid composite design, and patient-specific manufacturing are addressing these limitations. This review aims to provide an integrated perspective on the application of hydrogels in cardiac surgery. The relevant literature was identified through a narrative search of PubMed, Scopus, Web of Science, Embase, and Google Scholar. Taken together, hydrogels offer a uniquely versatile and clinically translatable platform for addressing the multifaceted challenges of cardiac surgery. Hydrogels are poised to redefine clinical strategies in cardiac surgery by enabling tailored, bioresponsive, and functionally integrated therapies. Full article
(This article belongs to the Special Issue Recent Advances in Hydrogels for Tissue Engineering Applications)
Show Figures

Figure 1

19 pages, 8666 KiB  
Article
The Impact of PEO and PVP Additives on the Structure and Properties of Silk Fibroin Adsorption Layers
by Olga Yu. Milyaeva, Kseniya Yu. Rotanova, Anastasiya R. Rafikova, Reinhard Miller, Giuseppe Loglio and Boris A. Noskov
Polymers 2025, 17(13), 1733; https://doi.org/10.3390/polym17131733 - 21 Jun 2025
Viewed by 478
Abstract
Materials formed with a base of silk fibroin (SF) are successfully used in tissue engineering since their properties are similar to those of natural extracellular matrixes. Mixing SF with different polymers, for example, polyethylene oxide (PEO) and polyvinylpyrrolidone (PVP), allows the production of [...] Read more.
Materials formed with a base of silk fibroin (SF) are successfully used in tissue engineering since their properties are similar to those of natural extracellular matrixes. Mixing SF with different polymers, for example, polyethylene oxide (PEO) and polyvinylpyrrolidone (PVP), allows the production of fibers, hydrogels, and films and their morphology to be controlled. The impact of PEO and PVP on formation and structure of SF adsorption layers was studied at different was studied at different polymer concentrations (from 0.002 to 0.5 mg/mL) and surface lifetimes. The protein concentration was fixed at 0.02 and 0.2 mg/mL. These concentrations are characterized by different types of spontaneously formed structures at the air–water interface. Since both synthetic polymers possess surface activity, they can penetrate the fibroin adsorption layer, leading to a decrease in the dynamic surface elasticity at almost constant surface tension and a decrease in ellipsometric angle Δ and adsorption layer thickness. As shown by AFM, the presence of polymers increases the porosity of the adsorption layer, due to the possible arrangement of protein and polymer molecules into separate domains, and can result in various morphology types such as fibers or tree-like ribbons. Therefore, polymers like PEO and PVP can be used to regulate the SF self-assembly at the interface, which in turn can affect the properties of the materials with high surface areas like electrospun matts and scaffolds. Full article
(This article belongs to the Special Issue Development and Application of Polymer Scaffolds, 2nd Volume)
Show Figures

Graphical abstract

38 pages, 5897 KiB  
Review
Future-Oriented Biomaterials Based on Natural Polymer Resources: Characteristics, Application Innovations, and Development Trends
by Oscar Amponsah, Prince Sungdewie Adama Nopuo, Felista Adrehem Manga, Nicole Bianca Catli and Karolina Labus
Int. J. Mol. Sci. 2025, 26(12), 5518; https://doi.org/10.3390/ijms26125518 - 9 Jun 2025
Cited by 1 | Viewed by 1122
Abstract
This review comprehensively explores natural polymer-based materials, focusing on their characteristics, applications, and innovations across different sectors, including medicine, the environment, energy, textiles, and construction. With increasing concern about resource depletion and pollution, biomaterials offer a sustainable alternative to fossil-derived products. The review [...] Read more.
This review comprehensively explores natural polymer-based materials, focusing on their characteristics, applications, and innovations across different sectors, including medicine, the environment, energy, textiles, and construction. With increasing concern about resource depletion and pollution, biomaterials offer a sustainable alternative to fossil-derived products. The review highlights polysaccharide-based and protein-based biomaterials, as well as others, such as polyisoprene, rosin, and hyaluronic acid. Emphasis is laid on their compositions and attractive characteristics, including biocompatibility, biodegradability, and functional versatility. Moreover, the review deeply discusses the ability of natural polymers to form hydrogels, aerogels, films, nanocomposites, etc., enhanced by additives for innovative applications. Future development trends of biomaterials in biomedicine, sustainable materials, environmental biotechnology, and advanced manufacturing are also explored. Their growing potential in these sectors is driven by research advances in emerging technologies such as 3D bioprinting, nanotechnology, and hybrid material innovation, which are proven to enhance the performance, functionality, and scalability of biopolymers. The review suggests several strategies, including improvement in processing techniques and material engineering to overcome limitations associated with biomaterials, thereby reinforcing their suitability and role in a circular and sustainable economy. Full article
(This article belongs to the Special Issue Recent Advances in Polymeric Biomaterials)
Show Figures

Graphical abstract

19 pages, 5339 KiB  
Article
Effect of the Comonomer Nature on the Cytotoxicity and Mechanical Properties of a Cryogel Based on Sodium 2-Acrylamido-2-methyl-1-propanesulfonate Copolymers
by Olga Iakobson, Elena Ivan’kova, Yulia Nashchekina, Gleb Vaganov, Svetlana Laishevkina and Natalia Shevchenko
Colloids Interfaces 2025, 9(3), 34; https://doi.org/10.3390/colloids9030034 - 28 May 2025
Viewed by 490
Abstract
Currently, for the treatment of corneal diseases (keratitis–corneal opacities), synthetic corneal analogs based on polymer films or hydrogels are being developed. The requirements for the material include biocompatibility, the presence of a developed system of macropores, transparency, rapid swelling, and mechanical strength. Here, [...] Read more.
Currently, for the treatment of corneal diseases (keratitis–corneal opacities), synthetic corneal analogs based on polymer films or hydrogels are being developed. The requirements for the material include biocompatibility, the presence of a developed system of macropores, transparency, rapid swelling, and mechanical strength. Here, with the aim of preparing such materials, a series of gels based on a copolymer of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMP) and 2-hydroxyethyl methacrylate (or vinyl acetate, or ethyl acrylate) were obtained using cryotropic gelation. It was shown that transparent cryogels can be obtained based on the sulfonate-containing comonomer 2-acrylamido-2-methyl-1-propanesulfonic acid at a crosslinking agent concentration of 2.2 mol.%, while the nature of the acrylate comonomer did not show any effect on transparency. It was found that when using AMP and ethyl acrylate, cryogels with a developed system of macropores with a diameter of 50 to 250 μm were formed, and the mechanical strength of such cryogels was sufficient for their subsequent use as corneal implants. Moreover, the PAMP hydrogel containing 2-hydroxyethyl methacrylate or ethyl acrylate units did not affect the viability of cells even after 1 month. Full article
Show Figures

Graphical abstract

22 pages, 15068 KiB  
Article
Utilization of Cassava Starch–Glycerol Gel as a Sustainable Material to Decrease Metal Ion Surface Contamination
by Rezky Anggakusuma, Gemilang Lara Utama, Dadan Sumiarsa, Permata Apriliani Dewi Muslimah and Ali Asgar
Gels 2025, 11(5), 363; https://doi.org/10.3390/gels11050363 - 14 May 2025
Viewed by 665
Abstract
Many studies have examined the ability of polymer-based gels or hydrogels to serve various purposes, particularly as absorbents. Several studies have reported that polyvinyl alcohol (PVA), with specific compositions and additives, is an absorbent and a decontamination material usable for heavy metals and [...] Read more.
Many studies have examined the ability of polymer-based gels or hydrogels to serve various purposes, particularly as absorbents. Several studies have reported that polyvinyl alcohol (PVA), with specific compositions and additives, is an absorbent and a decontamination material usable for heavy metals and radioactive substances. PVA has a high cost and is slowly degradable under anaerobic conditions. This study investigated the potential of natural materials, namely cassava starch, which is an environmentally friendly, non-toxic, and readily available gel-forming polymer that, notably, is inexpensive in Indonesia. The FTIR analysis showed a bond and polymer formation between cassava starch and glycerol. The cassava starch–glycerol–water mixture was applied to media such as glass, aluminum plates, and ceramics contaminated with heavy-metal stable ions which correspond to a radionuclide. The media, stored at room temperature for 24 h, becomes a film. According to the SEM and XRF results, the gel becomes a film that binds and absorbs metals when dried. The SEM results showed the presence of metals corresponding with the sources of contamination, and the XRF results showed that the quantity of metals absorbed was large. The cassava starch gel absorption results indicated the formation of an amorphous compound, as indicated by the XRF results. Based on all the analyses, the cassava starch–glycerol gel has enormous potential. It is almost equivalent to a PVA gel as an absorbent material and heavy-metal decontamination material, when used for radioactive decontamination on the material’s surface. Full article
Show Figures

Graphical abstract

19 pages, 1286 KiB  
Review
Hydrogel Delivery Systems for Biological Active Substances: Properties and the Role of HPMC as a Carrier
by Arailym Amanzholkyzy, Shynar Zhumagaliyeva, Nurgul Sultanova, Zharylkasyn Abilov, Damira Ongalbek, Elvira Donbayeva, Aktoty Niyazbekova and Zhazira Mukazhanova
Molecules 2025, 30(6), 1354; https://doi.org/10.3390/molecules30061354 - 18 Mar 2025
Cited by 2 | Viewed by 2286
Abstract
Hydrogel delivery systems are popular dosage forms that have a number of advantages, such as ease of use, painlessness, increased efficiency due to prolongation of rheological, swelling and sorption characteristics, regulation of drug release, and stimulus sensitivity. Particular interest is shown in hydrogels [...] Read more.
Hydrogel delivery systems are popular dosage forms that have a number of advantages, such as ease of use, painlessness, increased efficiency due to prolongation of rheological, swelling and sorption characteristics, regulation of drug release, and stimulus sensitivity. Particular interest is shown in hydrogels of cellulose ether derivatives due to the possibility of obtaining their modified forms to vary the solubility, the degree of prolonged action, and the release of the active substance, as well as their widespread availability, affordability, and the possibility of sourcing raw materials from different sources. Hydroxypropyl methylcellulose (HPMC, “hypromellose”) is one of the most popular cellulose ethers in the production of medicines as a filler, coating and carrier. Research on hydrogel carriers based on polymer complexes and modified forms of HPMC using acrylic, citric, and lactic acids, PVP, chitosan, Na-CMC, and gelatin is of particular interest, as they provide the necessary rheological and swelling characteristics. There is growing interest in medical transdermal hydrogels, films, capsules, membranes, nanocrystals, and nanofibers based on HPMC with the incorporation of biologically active substances (BASs), especially those of plant origin, as antibacterial, wound-healing, antimicrobial, mucoadhesive, anti-inflammatory, and antioxidant agents. The aim of this article is to review modern research and achievements in the field of hydrogel systems based on cellulose ethers, particularly HPMC, analyzing their properties, methods of production, and prospects for application in medicine and pharmacy. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Figure 1

18 pages, 8141 KiB  
Article
Biodegradable 3D-Printed Conjunctival Inserts for the Treatment of Dry Eyes
by Piyush Garg, Parvin Shokrollahi, Chau-Minh Phan and Lyndon Jones
Polymers 2025, 17(5), 623; https://doi.org/10.3390/polym17050623 - 26 Feb 2025
Viewed by 1160
Abstract
Purpose: To fabricate 3D-printed, biodegradable conjunctival gelatin methacrylate (GelMA) inserts that can release polyvinyl alcohol (PVA) when exposed to an ocular surface enzyme. Method: In this work, biodegradable conjunctival inserts were 3D-printed using a stereolithography-based technique. The release of PVA from these insert [...] Read more.
Purpose: To fabricate 3D-printed, biodegradable conjunctival gelatin methacrylate (GelMA) inserts that can release polyvinyl alcohol (PVA) when exposed to an ocular surface enzyme. Method: In this work, biodegradable conjunctival inserts were 3D-printed using a stereolithography-based technique. The release of PVA from these insert formulations (containing 10% GelMA and 5% PVA (P-Gel-5%)) was assessed along with different mathematical models of drug release. The biodegradation rates of these inserts were studied in the presence of a tear-film enzyme (matrix metalloproteinase-9; MMP9). The morphology of the inserts before and after enzymatic degradation was monitored using scanning electron microscopy. Results: The 3D-printed P-Gel-5% inserts formed a semi-interpenetrating network, which was mechanically stronger than GelMA inserts. The PVA release graphs demonstrate that at the end of 24 h, 222.7 ± 20.3 µg, 265.5 ± 27.1 µg, and 242.7 ± 30.4 µg of PVA were released when exposed to 25, 50, and 100 µg/mL of MMP9, respectively. The release profiles of the P-Gel-5% containing hydrogels in the presence of different concentrations of MMP9 showed the highest linearity with the Korsmeyer–Peppas model. The results suggest that the degradation rate over 24 h is a function of MMP9 enzyme concentration. Over 80% of P-Gel-5% inserts were degraded at the end of 8 h, 12 h, and 24 h in the presence of 100, 50, and 25 µg/mL MMP9 enzyme solutions, respectively. Conclusions: These results demonstrate the potential for 3D printing of GelMA for use as conjunctival inserts. These inserts could be used to deliver PVA, which is a well-known therapeutic agent for dry eye disease. PVA release is influenced by multiple mechanisms, including diffusion and enzymatic degradation, which is supported by morphological studies and biodegradation results. Full article
(This article belongs to the Special Issue Advanced Biodegradable Polymers for Drug Delivery)
Show Figures

Figure 1

18 pages, 1206 KiB  
Review
Recent Advancements in Chitosan-Based Biomaterials for Wound Healing
by Jahnavi Shah, Dhruv Patel, Dnyaneshwari Rananavare, Dev Hudson, Maxwell Tran, Rene Schloss, Noshir Langrana, Francois Berthiaume and Suneel Kumar
J. Funct. Biomater. 2025, 16(2), 45; https://doi.org/10.3390/jfb16020045 - 30 Jan 2025
Cited by 9 | Viewed by 4229
Abstract
Chitosan is a positively charged natural polymer with several properties conducive to wound-healing applications, such as biodegradability, structural integrity, hydrophilicity, adhesiveness to tissue, and bacteriostatic potential. Along with other mechanical properties, some of the properties discussed in this review are antibacterial properties, mucoadhesive [...] Read more.
Chitosan is a positively charged natural polymer with several properties conducive to wound-healing applications, such as biodegradability, structural integrity, hydrophilicity, adhesiveness to tissue, and bacteriostatic potential. Along with other mechanical properties, some of the properties discussed in this review are antibacterial properties, mucoadhesive properties, biocompatibility, high fluid absorption capacity, and anti-inflammatory response. Chitosan forms stable complexes with oppositely charged polymers, arising from electrostatic interactions between (+) amino groups of chitosan and (−) groups of other polymers. These polyelectrolyte complexes (PECs) can be manufactured using various materials and methods, which brings a diversity of formulations and properties that can be optimized for specific wound healing as well as other applications. For example, chitosan-based PEC can be made into dressings/films, hydrogels, and membranes. There are various pros and cons associated with manufacturing the dressings; for instance, a layer-by-layer casting technique can optimize the nanoparticle release and affect the mechanical strength due to the formation of a heterostructure. Furthermore, chitosan’s molecular weight and degree of deacetylation, as well as the nature of the negatively charged biomaterial with which it is cross-linked, are major factors that govern the mechanical properties and biodegradation kinetics of the PEC dressing. The use of chitosan in wound care products is forecasted to drive the growth of the global chitosan market, which is expected to increase by approximately 14.3% within the next decade. This growth is driven by products such as chitoderm-containing ointments, which provide scaffolding for skin cell regeneration. Despite significant advancements, there remains a critical gap in translating chitosan-based biomaterials from research to clinical applications. Full article
(This article belongs to the Special Issue Functional Biomaterials for Skin Wound Healing)
Show Figures

Figure 1

15 pages, 2526 KiB  
Article
Development of Robust MWCNT Hydrogel Electrochemical Biosensor for Pyocyanin Detection by Phosphotungstic Acid Modification
by Ting Xue, Lei Gao, Xianying Dai, Shenhui Ma, Yuyu Bu and Yi Wan
Sensors 2025, 25(2), 557; https://doi.org/10.3390/s25020557 - 19 Jan 2025
Viewed by 950
Abstract
The trace detection of pyocyanin (PCN) is crucial for infection control, and electrochemical sensing technology holds strong potential for application in this field. A pivotal challenge in utilizing carbon materials within electrochemical sensors lies in constructing carbon-based films with robust adhesion. To address [...] Read more.
The trace detection of pyocyanin (PCN) is crucial for infection control, and electrochemical sensing technology holds strong potential for application in this field. A pivotal challenge in utilizing carbon materials within electrochemical sensors lies in constructing carbon-based films with robust adhesion. To address this issue, a novel composite hydrogel consisting of multi-walled carbon nanotubes/polyvinyl alcohol/phosphotungstic acid (MWCNTs/PVA/PTA) was proposed in this study, resulting in the preparation of a highly sensitive and stable PCN electrochemical sensor. The sensor is capable of achieving stable and continuous detection of PCN within the range of 5–100 μM across a variety of complex electrolyte environments. The limit of detection (LOD) is as low as 1.67 μM in PBS solution, 2.71 μM in LB broth, and 3.63 μM in artificial saliva. It was demonstrated that the introduction of PTA can complex with PVA through hydrogen bonding to form a stabilized hydrogel architecture, effectively addressing issues related to inadequate film adhesion and unstable sensing characteristics observed with MWCNTs/PVA alone. By adjusting the content of PTA within the hydrogel, an increase followed by a subsequent decrease in sensing current response was observed, elucidating how PTA regulates the active sites and conductive network of MWCNTs on the sensor surface. This study provides a new strategy for constructing stable carbon-based electrochemical sensors and offers feasible assistance towards advancing PCN electrochemical sensors for practical applications. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Graphical abstract

16 pages, 4236 KiB  
Article
Development of Scalable Elastic Gelatin Hydrogel Films Crosslinked with Waterborne Polyurethane for Enhanced Mechanical Properties and Strain Recovery
by Soon Mo Choi, Eun Joo Shin, Sun Mi Zo, Madhusudana Rao Kummara, Chul Min Kim, Anuj Kumar, Han Jo Bae, Ankur Sood and Sung Soo Han
Gels 2025, 11(1), 49; https://doi.org/10.3390/gels11010049 - 8 Jan 2025
Cited by 2 | Viewed by 1422
Abstract
Exploiting novel crosslinking chemistry, this study pioneers the use of waterborne polyurethane (WPU) to chemically crosslink porcine-derived gelatin, producing enhanced gelatin hydrogel films through a solvent-casting method. Our innovative approach harnesses the reactive isocyanate groups of WPU, coupling them effectively with gelatin’s hydroxyl [...] Read more.
Exploiting novel crosslinking chemistry, this study pioneers the use of waterborne polyurethane (WPU) to chemically crosslink porcine-derived gelatin, producing enhanced gelatin hydrogel films through a solvent-casting method. Our innovative approach harnesses the reactive isocyanate groups of WPU, coupling them effectively with gelatin’s hydroxyl and primary amino groups to form robust urea and urethane linkages within the hydrogel matrix. This method not only preserves the intrinsic elasticity of polyurethane but also significantly augments the films’ tensile strength and strain. Comprehensive characterizations of these hydrogel films and pre-formed hydrogel reaction mixtures were conducted using viscosity measurements, Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), and the universal testing machine (UTM) for tensile-recovery assessments, alongside evaluations of their biocompatibility. The results demonstrated a reduction in pore size with an increase in WPU concentration from 2 to 6% in the developed hydrogels with a decrease in the equilibrium swelling ratio from 15% to 9%, respectively. Further, hydrogels with 6% WPU exhibited the highest tensile stress in both a dry and wet state. The gelatin hydrogel formed with 6% WPU blend also demonstrated the growth and proliferation of CCD-986K (fibroblast) and CCD-1102 (keratinocyte) cells for up to 5 days of co-culturing. The results indicate a notable enhancement in the mechanical properties and biocompatibility of gelatin hydrogels upon the introduction of WPU, positioning these films as superior candidates for biomedical applications such as tissue engineering and wound dressing. Full article
Show Figures

Figure 1

35 pages, 7085 KiB  
Article
Developing and Characterizing a Biocompatible Hydrogel Obtained by Cross-Linking Gelatin with Oxidized Sodium Alginate for Potential Biomedical Applications
by Chahrazed Mahmoudi, Naïma Tahraoui Douma, Hacene Mahmoudi, Camelia Elena Iurciuc (Tincu), Marcel Popa, Mihaela Hamcerencu and Călin Vasile Andrițoiu
Polymers 2024, 16(22), 3143; https://doi.org/10.3390/polym16223143 - 11 Nov 2024
Cited by 4 | Viewed by 2625
Abstract
The main goal of this research was to create biocompatible hydrogels using gelatin and a double cross-linking technique involving both covalent and ionic bonds to immobilize propolis. The covalent bonds were formed through Schiff base cross-links between protein-free amino groups (NH2) [...] Read more.
The main goal of this research was to create biocompatible hydrogels using gelatin and a double cross-linking technique involving both covalent and ionic bonds to immobilize propolis. The covalent bonds were formed through Schiff base cross-links between protein-free amino groups (NH2) from the lysine residue and aldehyde groups (CHO) produced by oxidizing sodium alginate with NaIO4, while the ionic bonds were achieved using Mg2+ ions. Hydrogel films were obtained by varying the molar ratios of –CHO/–NH2 under different pH conditions (3.5 and 5.5). The presence of aldehyde groups in the oxidized sodium alginate (OSA) was confirmed using FTIR and NMR spectroscopy. The oxidation degree was monitored over 48 h, and the influence of temperature was examined. Results showed that higher –CHO/–NH2 molar ratios led to increased conversion index values of NH2 groups, and a decrease in swelling degree values was observed in mediums with pH values of 5.5 and 7.4. The encapsulation and release efficiency of propolis decreased with an increase in the hydrogel cross-linking degree. UV irradiation enhanced the antioxidant activity of both free and encapsulated propolis. These findings offer valuable insights for the biomedical and pharmaceutical fields into designing biocompatible hydrogels for propolis immobilization, with potential for controlled release. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Graphical abstract

18 pages, 3659 KiB  
Article
pH-Responsive Alginate/Chitosan Gel Films: An Alternative for Removing Cadmium and Lead from Water
by Silvia Carolina Moreno-Rivas, María José Ibarra-Gutiérrez, Daniel Fernández-Quiroz, Armando Lucero-Acuña, Alexel J. Burgara-Estrella and Paul Zavala-Rivera
Gels 2024, 10(10), 669; https://doi.org/10.3390/gels10100669 - 19 Oct 2024
Cited by 3 | Viewed by 2817
Abstract
Biosorption, a non-expensive and easy method for removing potentially toxic metal ions from water, has been the subject of extensive research. In this context, this study introduces a novel approach using sodium alginate and chitosan, versatile biopolymers that have shown excellent results as [...] Read more.
Biosorption, a non-expensive and easy method for removing potentially toxic metal ions from water, has been the subject of extensive research. In this context, this study introduces a novel approach using sodium alginate and chitosan, versatile biopolymers that have shown excellent results as biosorbents. The challenge of maintaining high efficiencies and reuse is addressed by developing alginate/chitosan-based films. These films, prepared using solvent casting and crosslinking methods, form a hydrogel network. The alginate/chitosan-based films, obtained using the eco-friendly polyelectrolyte complex method, were characterized by FTIR, SEM, TGA, and DSC. The study of their swelling pH response, adsorption, and desorption behavior revealed promising results. The adsorption of Pb was significantly enhanced by the presence of both biopolymers (98%) in a shorter time (15 min) at pH = 6.5. The adsorption of both ions followed a pseudo-second-order kinetic and the Langmuir isotherm model. The desorption efficiencies for Cd and Pb were 98.8% and 77.6% after five adsorption/desorption cycles, respectively. In conclusion, the alginate/chitosan-based films present a highly effective and novel approach for removing Cd and Pb from water, with a promising potential for reuse, demonstrating their strong potential in potentially toxic metal removal. Full article
(This article belongs to the Special Issue Advances in Gel Films)
Show Figures

Graphical abstract

37 pages, 16800 KiB  
Review
An Overview of Microorganisms Immobilized in a Gel Structure for the Production of Precursors, Antibiotics, and Valuable Products
by Dmitriy Berillo, Turganova Malika, Baiken B. Baimakhanova, Amankeldi K. Sadanov, Vladimir E. Berezin, Lyudmila P. Trenozhnikova, Gul B. Baimakhanova, Alma A. Amangeldi and Bakhytzhan Kerimzhanova
Gels 2024, 10(10), 646; https://doi.org/10.3390/gels10100646 - 10 Oct 2024
Cited by 7 | Viewed by 4876
Abstract
Using free microorganisms for industrial processes has some limitations, such as the extensive consumption of substrates for growth, significant sensitivity to the microenvironment, and the necessity of separation from the product and, therefore, the cyclic process. It is widely acknowledged that confining or [...] Read more.
Using free microorganisms for industrial processes has some limitations, such as the extensive consumption of substrates for growth, significant sensitivity to the microenvironment, and the necessity of separation from the product and, therefore, the cyclic process. It is widely acknowledged that confining or immobilizing cells in a matrix or support structure enhances enzyme stability, facilitates recycling, enhances rheological resilience, lowers bioprocess costs, and serves as a fundamental prerequisite for large-scale applications. This report summarizes the various cell immobilization methods, including several synthetic (polyvinylalcohol, polyethylenimine, polyacrylates, and Eudragit) and natural (gelatin, chitosan, alginate, cellulose, agar–agar, carboxymethylcellulose, and other polysaccharides) polymeric materials in the form of thin films, hydrogels, and cryogels. Advancements in the production of well-known antibiotics like penicillin and cephalosporin by various strains were discussed. Additionally, we highlighted cutting-edge research related to strain producers of peptide-based antibiotics (polymyxin B, Subtilin, Tyrothricin, varigomycin, gramicidin S, friulimicin, and bacteriocin), glusoseamines, and polyene derivatives. Crosslinking agents, especially covalent linkers, significantly affect the activity and stability of biocatalysts (penicillin G acylase, penicillinase, deacetoxycephalosporinase, L-asparaginase, β-glucosidase, Xylanase, and urease). The molecular weight of polymers is an important parameter influencing oxygen and nutrient diffusion, the kinetics of hydrogel formation, rigidity, rheology, elastic moduli, and other mechanical properties crucial for long-term utilization. A comparison of stability and enzymatic activity between immobilized enzymes and their free native counterparts was explored. The discussion was not limited to recent advancements in the biopharmaceutical field, such as microorganism or enzyme immobilization, but also extended to methods used in sensor and biosensor applications. In this study, we present data on the advantages of cell and enzyme immobilization over microorganism (bacteria and fungi) suspension states to produce various bioproducts and metabolites—such as antibiotics, enzymes, and precursors—and determine the efficiency of immobilization processes and the optimal conditions and process parameters to maximize the yield of the target products. Full article
(This article belongs to the Special Issue Gel Film and Its Wide Range of Applications)
Show Figures

Figure 1

Back to TopTop