Hydrogel Delivery Systems for Biological Active Substances: Properties and the Role of HPMC as a Carrier
Abstract
:1. Introduction
2. Cellulose Ether Derivatives as Hydrogel Bases
3. Methods for Obtaining Hydrogels Based on HPMC
- The active ingredients are dissolved or suspended in the hydrophilic phase necessary for preparing the gel.
- Other additives are dissolved in the obtained solution or in a small amount of the hydrophilic phase, accordingly.
- If necessary, the dispersion of the active ingredient is mixed with the solution of additives.
- The gelling agent powder is added to the resulting dispersion solution with gentle stirring and left to swell.
4. Important Physicochemical Properties of HPMC and Its Hydrogels
5. Relevance of Pharmaceutical Application of HPMC with BAS
- (1)
- The diversity of both the chemical structures and biological activities of naturally occurring secondary metabolites;
- (2)
- The use of new bioactive natural compounds as biochemical probes;
- (3)
- The development of new and sensitive methods for detecting biologically active natural products;
- (4)
- Improved isolation methods;
- (5)
- Purification and structural characterization of these active components, as well as the demand for natural products [76].
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
HPMC | Hydroxypropyl Methylcellulose |
Na-CMC | Sodium Carboxymethyl Cellulose |
PVP | Polyvinylpyrrolidone |
MC | Methylcellulose |
HPC | Hydroxypropyl Cellulose |
HEC | Hydroxyethyl Cellulose |
PAA | Polyacrylic Acid |
References
- Vlaia, L.; Coneac, G.; Olariu, I.; Vlaia, V.; Lupuleasa, D. Cellulose-Derivatives-Based Hydrogels as Vehicles for Dermal and Transdermal Drug Delivery. In Emerging Concepts in Analysis and Applications of Hydrogels; IntechOpen: London, UK, 2016. [Google Scholar]
- Yang, Z.; Peng, H.; Wang, W.; Liu, T. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 2010, 116, 2658–2667. [Google Scholar] [CrossRef]
- Duan, J.J.; Zhang, L.N. Robust and smart hydrogels based on natural polymers. Chin. J. Polym. Sci. 2017, 35, 1165–1180. [Google Scholar] [CrossRef]
- Hoare, T.R.; Kohane, D.S. Hydrogels in drug delivery: Progress and challenges. Polymer 2008, 49, 1993–2007. [Google Scholar] [CrossRef]
- Yudaev, P.; Semenova, A.; Chistyakov, E. Gel based on modified chitosan for oil spill cleanup. J. Appl. Polym. Sci. 2024, 141, e54838. [Google Scholar] [CrossRef]
- Leyva-Jiménez, F.J.; Oliver-Simancas, R.; Castangia, I.; Rodríguez-García, A.M.; Alañón, M.E. Comprehensive review of natural based hydrogels as an upcoming trend for food packing. Food Hydrocoll. 2023, 135, 108124. [Google Scholar] [CrossRef]
- Mohammadinejad, R.; Maleki, H.; Larrañeta, E.; Fajardo, A.R.; Nik, A.B.; Shavandi, A.; Sheikhi, A.; Ghorbanpour, M.; Farokhi, M.; Govindh, P.; et al. Status and future scope of plant-based green hydrogels in biomedical engineering. Appl. Mater. Today 2019, 16, 213–246. [Google Scholar] [CrossRef]
- Caló, E.; Khutoryanskiy, V.V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 2015, 65, 252–267. [Google Scholar] [CrossRef]
- Ma, S.; Yu, B.; Pei, X.; Zhou, F. Structural hydrogels. Polymer 2016, 98, 516–535. [Google Scholar] [CrossRef]
- Chang, C.; Zhang, L. Cellulose-based hydrogels: Present status and application prospects. Carbohydr. Polym. 2011, 84, 40–53. [Google Scholar] [CrossRef]
- Ito, T.; Yeo, Y.; Highley, C.B.; Bellas, E.; Benitez, C.A.; Kohane, D.S. The prevention of peritoneal adhesions by in situ cross-linking hydrogels of hyaluronic acid and cellulose derivatives. Biomaterials 2007, 28, 975–983. [Google Scholar] [CrossRef]
- Maulvi, F.A.; Pillai, L.V.; Patel, K.P.; Desai, A.R.; Shukla, M.R.; Desai, D.T.; Patel, H.P.; Ranch, K.M.; Shah, S.A.; Shah, D.O. Lidocaine tripotassium phosphate complex laden microemulsion for prolonged local anaesthesia: In vitro and in vivo studies. Colloids Surf. B Biointerfaces 2020, 185, 110632. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Dang, M.; Zhang, W.; Lei, Y.; Zhou, W. Sustained delivery of prilocaine and lidocaine using depot microemulsion system: In vitro, ex vivo and in vivo animal studies. Drug Dev. Ind. Pharm. 2020, 46, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Michida, N.; Hayashi, M.; Hori, T. Comparison of event related potentials with and without hypnagogic imagery. Psychiatry Clin. Neurosci. 1998, 52, 145–147. [Google Scholar] [CrossRef]
- Siepmann, J.; Peppas, N.A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Deliv. Rev. 2001, 48, 139–157. [Google Scholar] [CrossRef]
- Sadeghi, E. Effect of Strong Electrolyte Containing Gelling Aids on the Sol-Gel Transition Temperature of Hypromellose 2910. Master’s Thesis, University of New Mexico, Albuquerque, NM, USA, 2018. [Google Scholar]
- Mašková, E.; Kubová, K.; Raimi-Abraham, B.T.; Vllasaliu, D.; Vohlídalová, E.; Turánek, J.; Mašek, J. Hypromellose—A traditional pharmaceutical excipient with modern applications in oral and oromucosal drug delivery. J. Control. Release 2020, 324, 695–727. [Google Scholar] [CrossRef] [PubMed]
- Kabir, S.M.F.; Sikdar, P.P.; Haque, B.; Bhuiyan, M.A.R.; Ali, A.; Islam, M.N. Cellulose-based hydrogel materials: Chemistry, properties and their prospective applications. Prog. Biomater. 2018, 7, 153–174. [Google Scholar] [CrossRef]
- Ciolacu, D.; Oprea, A.M.; Anghel, N.; Cazacu, G.; Cazacu, M. New cellulose-lignin hydrogels and their application in controlled release of polyphenols. Mater. Sci. Eng. C 2012, 32, 452–463. [Google Scholar] [CrossRef]
- De Sousa Moraes, P.R.F.; Saska, S.; Barud, H.; De Lima, L.R.; Da Conceicao Amaro Martins, V.; De Guzzi Plepis, A.M.; Ribeiro, S.J.L.; Gaspar, A.M.M. Bacterial cellulose/collagen hydrogel for wound healing. Mater. Res. 2016, 19, 106–116. [Google Scholar] [CrossRef]
- Zhumagalieva, S.N.; Kudaibergenova, B.M.; Beisebekov, M.K.; Abilov, Z.A. Properties of bentonite and local anesthetics composition. J. Appl. Polym. Sci. 2007, 106, 1601–1605. [Google Scholar] [CrossRef]
- Zhumagalieva, S.N.; Beisebekov, M.K.; Abilov, Z.A. Immobilization of 2,5-dimethyl-4-benzoyl-oxypiperidine succinate over polyacrylic acid (PAA) gels. I. Study of interaction between linear and network PAA with succinate of 2,5-dimethyl-4-benzoyl-oxypiperidine. J. Appl. Polym. Sci. 2005, 96, 1183–1186. [Google Scholar] [CrossRef]
- Zhumagalieva, S.N.; Beisebekov, M.K.; Abilov, Z.A. Immobilization of 2,5-dimethyl-4-benzoyl-oxypiperldine succinate over polyacrylic acid (PAA) gels. II. Study of quantitative characteristics of immobilization of succinate of 2,5-dimethyl-4-benzoyl-oxypiperidine over PAA. J. Appl. Polym. Sci. 2005, 96, 1187–1192. [Google Scholar] [CrossRef]
- Temirkhanova, G.; Burasheva, G.; Abilov, Z.; Irmukhametova, G.; Mun, A.; Beksultanov, Z.; Myktybaeva, Z.; Shnaukshta, V. Creation of polymer hydrogel dressings with herbal medicinal substsnce “Alkhydin” and their properties. Eurasian Chem.-Technol. J. 2017, 19, 57–62. [Google Scholar] [CrossRef]
- Zhumagaliyeva, S.N.; Amanzholkyzy, A.; Sultanova, N.A.; Abilov, Z.A. Use of ultrasound for extraction of biologically active substances from tamarix hispida willd. Chem. Plant Raw Mater. 2021, 3, 283–289. [Google Scholar] [CrossRef]
- Zhumagaliyeva, S.N.; Abdikarim, G.G.; Berikova, A.B.; Abilov, Z.A.; Koetz, J.; Kopbayeva, M.T. Study of the Mechanical Properties of Gelatin Films with Natural Compounds of Tamarix hispida. Eurasian Chem.-Technol. J. 2023, 25, 165–171. [Google Scholar] [CrossRef]
- Bahramsoltani, R.; Kalkhorani, M.; Abbas Zaidi, S.M.; Farzaei, M.H.; Rahimi, R. The genus Tamarix: Traditional uses, phytochemistry, and pharmacology. J. Ethnopharmacol. 2020, 246, 112245. [Google Scholar] [CrossRef] [PubMed]
- Drury, J.L.; Mooney, D.J. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 2003, 24, 4337–4351. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J.; Kang, Y.; Wang, A. Synthesis, swelling and responsive properties of a new composite hydrogel based on hydroxyethyl cellulose and medicinal stone. Compos. Part B Eng. 2011, 42, 809–818. [Google Scholar] [CrossRef]
- Kryazhev, D.V.; Smirnov, V.F.; Mochalova, A.E.; Smirnova, O.N.; Zakharova, E.A.; Zotov, K.A.; Smirnova, L.A. Stability of synthetic and natural polymer composite materials to the action of micromyccetes under natural conditions. Bull. N.I. Lobachevsky Nizhny Novgorod Univ. 2010, 2, 536–540. [Google Scholar]
- Li, X.; Wan, C.; Tao, T.; Chai, H.; Huang, Q.; Chai, Y.; Wu, Y. An overview of the development status and applications of cellulose-based functional materials. Cellulose 2024, 31, 61–99. [Google Scholar] [CrossRef]
- Zhao, J.; Li, S.; Zhao, Y.; Peng, Z. Effects of cellulose nanocrystal polymorphs and initial state of hydrogels on swelling and drug release behavior of alginate-based hydrogels. Polym. Bull. 2020, 77, 4401–4416. [Google Scholar] [CrossRef]
- Gupta, Y.; Khan, M.S.; Bansal, M.; Singh, M.K.; Pragatheesh, K.; Thakur, A. A review of carboxymethyl cellulose composite-based hydrogels in drug delivery applications. Results Chem. 2024, 10, 101695. [Google Scholar] [CrossRef]
- Do, M.P.; Neut, C.; Metz, H.; Delcourt, E.; Siepmann, J.; Mäder, K.; Siepmann, F. Mechanistic analysis of PLGA/HPMC-based in-situ forming implants for periodontitis treatment. Eur. J. Pharm. Biopharm. 2015, 94, 273–283. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; He, Y.; Lu, Q.; Chen, R.; Zhao, C.; Dong, D.; Sun, Y.; He, H. Dual light-responsive cellulose nanofibril-based in situ hydrogel for drug-resistant bacteria infected wound healing. Carbohydr. Polym. 2022, 297, 120042. [Google Scholar] [CrossRef]
- Chen, Y.C.; Chen, Y.H. Thermo and pH-responsive methylcellulose and hydroxypropyl methylcellulose hydrogels containing K2SO4 for water retention and a controlled-release water-soluble fertilizer. Sci. Total Environ. 2019, 655, 958–967. [Google Scholar] [CrossRef]
- Selvaraj, S.; Chauhan, A.; Dutta, V.; Verma, R.; Rao, S.K.; Radhakrishnan, A.; Ghotekar, S. A state-of-the-art review on plant-derived cellulose-based green hydrogels and their multifunctional role in advanced biomedical applications. Int. J. Biol. Macromol. 2024, 265 Pt 2, 130991. [Google Scholar] [CrossRef]
- Heinze, T.; Liebert, T. Unconventional methods in cellulose functionalization. Prog. Polym. Sci. 2001, 26, 1689–1762. [Google Scholar] [CrossRef]
- Li, C.L.; Martini, L.G.; Ford, J.L.; Roberts, M. The use of hypromellose in oral drug delivery. J. Pharm. Pharmacol. 2010, 57, 533–546. [Google Scholar] [CrossRef]
- Smith, A.M.; Moxon, S.; Morris, G.A. Biopolymers as wound healing materials. Wound Heal. Biomater. 2016, 2, 261–287. [Google Scholar]
- Karimian, A.; Parsian, H.; Majidinia, M.; Rahimi, M.; Mir, S.M.; Samadi Kafil, H.; Shafiei-Irannejad, V.; Kheyrollah, M.; Ostadi, H.; Yousefi, B. Nanocrystalline cellulose: Preparation, physicochemical properties, and applications in drug delivery systems. Int. J. Biol. Macromol. 2019, 133, 850–859. [Google Scholar] [CrossRef] [PubMed]
- Liebner, F.; Pircher, N.; Schimper, C.; Haimer, E.; Rosenau, T. Aerogels: Cellulose-Based. In Concise Encyclopedia of Biomedical Polymers and Polymeric Biomaterials; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Pan, P.; Svirskis, D.; Waterhouse, G.I.N.; Wu, Z. Hydroxypropyl Methylcellulose Bioadhesive Hydrogels for Topical Application and Sustained Drug Release: The Effect of Polyvinylpyrrolidone on the Physicomechanical Properties of Hydrogel. Pharmaceutics 2023, 15, 2360. [Google Scholar] [CrossRef]
- dos Santos Carvalho, J.D.; Rabelo, R.S.; Hubinger, M.D. Thermo-rheological properties of chitosan hydrogels with hydroxypropyl methylcellulose and methylcellulose. Int. J. Biol. Macromol. 2022, 209, 367–375. [Google Scholar] [CrossRef]
- Ranjha, N.M.; Qureshi, U.F. Preparation and characterization of crosslinked acrylic acid/hydroxypropyl methyl cellulose hydrogels for drug delivery. Int. J. Pharm. Pharm. Sci. 2014, 6, 400–410. [Google Scholar]
- Bashir, S.; Zafar, N.; Lebaz, N.; Mahmood, A.; Elaissari, A. Hydroxypropyl Methylcellulose-Based Hydrogel Copolymeric for Controlled Delivery of Galantamine Hydrobromide in Dementia. Processes 2020, 8, 1350. [Google Scholar] [CrossRef]
- Lamberti, G.; Cascone, S.; Cafaro, M.M.; Titomanlio, G.; d’Amore, M.; Barba, A.A. Measurements of water content in hydroxypropyl-methyl-cellulose based hydrogels via texture analysis. Carbohydr. Polym. 2013, 92, 765–768. [Google Scholar] [CrossRef]
- Kopeček, J. Hydrogel biomaterials: A smart future? Biomaterials 2007, 28, 5185–5192. [Google Scholar] [CrossRef]
- Ghorbani, S.; Eyni, H.; Bazaz, S.R.; Nazari, H.; Asl, L.S.; Zaferani, H.; Kiani, V.; Mehrizi, A.A.; Soleimani, M. Hydrogels Based on Cellulose and its Derivatives: Applications, Synthesis, and Characteristics. Polym. Sci. Ser. A 2018, 60, 707–722. [Google Scholar] [CrossRef]
- Mahdavinia, G.R.; Ettehadi, S.; Amini, M.; Sabzi, M. Synthesis and characterization of hydroxypropyl methylcellulose-g-poly(acrylamide)/LAPONITE® RD nanocomposites as novel magnetic- and pH-sensitive carriers for controlled drug release. RSC Adv. 2015, 5, 44516–44523. [Google Scholar] [CrossRef]
- Wen, H.; Park, K. Oral Controlled Release Formulation Design and Drug Delivery: Theory to Practice; Wiley: Hoboken, NJ, USA, 2010; 363p. [Google Scholar]
- Haque, A.; Morris, E.R. Thermogelation of methylcellulose. Part I: Molecular structures and processes. Carbohydr. Polym. 1993, 22, 161–173. [Google Scholar] [CrossRef]
- Mitchell, K.; Ford, J.L.; Armstrong, D.J.; Elliott, P.N.C.; Rostron, C.; Hogan, J.E. The influence of additives on the cloud point, disintegration and dissolution of hydroxypropylmethylcellulose gels and matrix tablets. Int. J. Pharm. 1990, 66, 233–242. [Google Scholar] [CrossRef]
- Rowe, R.C.; Sheskey, P.J.; Owen, S.C. Handbook of Pharmaceutical Excipients, 5th ed.; Libros Digitales-Pharmaceutical Press: London, UK, 2009. [Google Scholar]
- Joshi, S.C. Sol-gel behavior of hydroxypropyl methylcellulose (HPMC) in ionic media including drug release. Materials 2011, 4, 1861–1905. [Google Scholar] [CrossRef]
- Sarkar, N. Thermal Gelation Properties of Methyl and Hydroxypropyl Methylcellulose. J. Appl. Polym. Sci. 1979, 24, 1073–1087. [Google Scholar] [CrossRef]
- Jani, R.; Patel, D. Hot melt extrusion: An industrially feasible approach for casting orodispersible film. Asian J. Pharm. Sci. 2014, 10, 292–305. [Google Scholar] [CrossRef]
- Huang, S.; O’Donnell, K.P.; Keen, J.M.; Rickard, M.A.; McGinity, J.W.; Williams, R.O. A New Extrudable Form of Hypromellose: AFFINISOLTM HPMC HME. AAPS PharmSciTech 2016, 17, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Doelker, E. Cellulose derivatives. Adv. Polym. Sci. 1993, 107, 198–265. [Google Scholar]
- Jana, P.; Shyam, M.; Singh, S.; Jayaprakash, V.; Dev, A. Biodegradable polymers in drug delivery and oral vaccination. Eur. Polym. J. 2021, 142, 110155. [Google Scholar] [CrossRef]
- Sannino, A.; Demitri, C.; Madaghiele, M. Biodegradable Cellulose-based Hydrogels: Design and Applications. Materials 2009, 2, 353–373. [Google Scholar] [CrossRef]
- Ghiorghita, C.A.; Platon, I.V.; Lazar, M.M.; Dinu, M.V.; Aprotosoaie, A.C. Trends in polysaccharide-based hydrogels and their role in enhancing the bioavailability and bioactivity of phytocompounds. Carbohydr. Polym. 2024, 334, 122033. [Google Scholar] [CrossRef]
- Kim, S.; Song, M.; Lee, M.; Kwon, S. Controlled release of quercetin from HPMC/gellan gum hydrogel for inhibiting melanogenesis in murine melanoma cells. Korean J. Chem. Eng. 2023, 40, 337–343. [Google Scholar] [CrossRef]
- Abou-Taleb, H.A.; Mohamed, M.S.; Zayed, G.M.; Abdelaty, L.N.; Makki, M.A.; Abdel-Aleem, H.L.; El-Mokhtar, M.A.; Hetta, H.F.; Abdullah, N.; Saddik, M.S. HPMC-Zein Film-forming Gel Loaded with 5-Fluorouracil Coupled with CO2 Laser Dermabrasion for Managing Stable Vitiligo. AAPS PharmSciTech 2024, 25, 225. [Google Scholar] [CrossRef]
- Barros, S.C.; da Silva, A.A.; Costa, D.B.; Cesarino, I.; Costa, C.M.; Lanceros-Méndez, S.; Pawlicka, A.; Silva, M.M. Thermo-sensitive chitosan–cellulose derivative hydrogels: Swelling behaviour and morphologic studies. Cellulose 2014, 21, 4531–4544. [Google Scholar] [CrossRef]
- Mu, A.M.; Vlaia, L.; Coneac, G.; Olariu, I.; Vlaia, I.; St, C.; Mitu, M.A.; Lupuliasa, D. Chitosan/HPMC-based hydrogels containing essential oils for topical delivery of fluconazole: Preliminary studies. Farmacia 2018, 66, 248–256. [Google Scholar]
- Agubata, C.O.; Okereke, C.; Nzekwe, I.T.; Onoja, R.I.; Obitte, N.C. Development and evaluation of wound healing hydrogels based on a quinolone, hydroxypropyl methylcellulose and biodegradable microfibres. Eur. J. Pharm. Sci. 2016, 89, 1–10. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Mu, H.; Genina, N. Bespoke hydroxypropyl methylcellulose-based solid foams loaded with poorly soluble drugs by tunable modular design. Carbohydr. Polym. 2025, 357, 123397. [Google Scholar] [CrossRef]
- Silva, G.D.A.; Campelo, M.D.S.; Lima, A.B.N.; Mattos, A.L.A.; De Sousa, V.C.; Dutra, P.G.P.; Leal, L.K.A.M.; Ricardo, N.M.P.S.; Ribeiro, M.E.N.P. Rheological and osteogenic effect of Agaricus blazei Murill polysaccharides on composite hydrogels based on HPMC/graphene oxide—A preliminary study. Mater. Today Commun. 2024, 40, 109986. [Google Scholar] [CrossRef]
- Knarr, M.; Rogers, T.L.; Petermann, O.; Adden, R. Investigation and rank-ordering of hydroxypropyl methylcellulose (HPMC) properties impacting controlled release performance. J. Drug Deliv. Sci. Technol. 2025, 104, 106425. [Google Scholar] [CrossRef]
- Ellakwa, T.E.; Abu-Khadra, A.S.; Ellakwa, D.E.S. Influence of physico-chemical properties of hydroxypropyl methylcellulose on quetiapine fumarate release from sustained release matrix tablets. BMC Chem. 2024, 18, 219. [Google Scholar] [CrossRef]
- Liu, T.; Wang, J.; Feng, Y.; Wang, H.; Xu, Y.; Yin, T.; Zhang, Y.; He, H.; Gou, J.; Tang, X. Further enhancement of the sustained-release properties and stability of direct compression gel matrix bilayer tablets by controlling the particle size of HPMC and drug microencapsulation. Powder Technol. 2024, 448, 120256. [Google Scholar] [CrossRef]
- Kim, C.-J. Release kinetics of coated, donut-shaped tablets for water soluble drugs. Eur. J. Pharm. Sci. 1999, 7, 237–242. [Google Scholar] [CrossRef]
- Elena Campos-Aldrete, M. Influence of the viscosity grade and the particle size of HPMC on metronidazole release from matrix tablets. Eur. J. Pharm. Biopharm. 1997, 43, 173–178. [Google Scholar] [CrossRef]
- Melia, C.D.; Rajabi-Siahboomi, A.R.; Hodsdon, A.C.; Adler, J.; Mitchell, J.R. Structure and behaviour of hydrophilic matrix sustained release dosage forms: 1. The origin and mechanism of formation of gas bubbles in the hydrated surface layer. Int. J. Fharmaceutics 1993, 100, 263–269. [Google Scholar] [CrossRef]
- Hosseinzadeh, S.; Jafarikukhdan, A.; Hosseini, A.; Armand, R. The Application of Medicinal Plants in Traditional and Modern Medicine: A Review of Thymus vulgaris. Int. J. Clin. Med. 2015, 6, 635–642. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M.; Snader, K.M. The influence of natural products upon drug discovery. Nat. Prod. Rep. 2000, 17, 215–234. [Google Scholar] [CrossRef]
- Rasouli, H.; Farzaei, M.H.; Khodarahmi, R. Polyphenols and their benefits: A review. Int. J. Food Prop. 2017, 20, 1700–1741. [Google Scholar] [CrossRef]
- Sun, J.; Tan, H. Alginate-based biomaterials for regenerative medicine applications. Materials 2013, 6, 1285–1309. [Google Scholar] [CrossRef]
- Obradovic, J.; Wondraczek, H.; Fardim, P.; Lassila, L.; Navard, P. Preparation of three-dimensional cellulose objects previously swollen in a DMAc/LiCl solvent system. Cellulose 2014, 21, 4029–4038. [Google Scholar] [CrossRef]
- Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef]
- Kouchak, M.; Rezaee, S.; Moshabeh, N.; Handali, S. Preparation and evaluation of matrix containing lidocaine and prilocaine for using in transdermal films. J. Rep. Pharm. Sci. 2019, 8, 270–276. [Google Scholar]
- Bagheri, M.; Shokoohinia, Y.; Pourmanouchehri, Z.; Jalilian, F.; Khaledian, S.; Mirzaie, S.; Behbood, L. Formulation and evaluation of the novel herbal antibacterial gel to the treatment of cutaneous burn infections. J. Rep. Pharm. Sci. 2021, 10, 93–100. [Google Scholar]
- Wu, Y.C.; Wu, G.X.; Huang, H.H.; Kuo, S.M. Liposome-encapsulated farnesol accelerated tissue repair in third-degree burns on a rat model. Burns 2019, 45, 1139–1151. [Google Scholar] [CrossRef]
- Chang, R.Y.K.; Morales, S.; Okamoto, Y.; Chan, H.K. Topical application of bacteriophages for treatment of wound infections. Transl. Res. 2020, 220, 153–166. [Google Scholar] [CrossRef]
- Saddik, M.S.; Alsharif, F.M.; El-Mokhtar, M.A.; Al-Hakkani, M.F.; El-Mahdy, M.M.; Farghaly, H.S.; Abou-Taleb, H.A. Biosynthesis, Characterization, and Wound-Healing Activity of Phenytoin-Loaded Copper Nanoparticles. AAPS PharmSciTech 2020, 21, 175. [Google Scholar] [CrossRef]
- Kumari, S.; Harjai, K.; Chhibber, S. Topical treatment of Klebsiella pneumoniae B5055 induced burn wound infection in mice using natural products. J. Infect. Dev. Ctries. 2010, 4, 367–377. [Google Scholar] [CrossRef]
- Zakaria, A.S.; Afifi, S.A.; Elkhodairy, K.A. Newly Developed Topical Cefotaxime Sodium Hydrogels: Antibacterial Activity and in Vivo Evaluation. BioMed Res. Int. 2016, 2016, 6525163. [Google Scholar] [CrossRef] [PubMed]
- Mohd Noor, A.; Bin Bai, S. Mechanical properties and water vapour permeability of film from haruan (channa striatus) and fusidic acid spray for wound dressing and wound healing. Pak. J. Pharm. Sci. 2010, 23, 155–159. [Google Scholar]
- Huang, T.W.; Lu, H.T.; Ho, Y.C.; Lu, K.Y.; Wang, P.; Mi, F.L. A smart and active film with tunable drug release and color change abilities for detection and inhibition of bacterial growth. Mater. Sci. Eng. C 2021, 118, 111396. [Google Scholar] [CrossRef]
- Jayaramudu, T.; Varaprasad, K.; Pyarasani, R.D.; Reddy, K.K.; Akbari-Fakhrabadi, A.; Carrasco-Sánchez, V.; Amalraj, J. Hydroxypropyl methylcellulose-copper nanoparticle and its nanocomposite hydrogel films for antibacterial application. Carbohydr. Polym. 2021, 254, 117302. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Gokhale, R.; Burgess, D.J. A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. Int. J. Pharm. 2009, 380, 216–222. [Google Scholar] [CrossRef]
- Oliveira, D.M.L.; Rezende, P.S.; Barbosa, T.C.; Andrade, L.N.; Bani, C.; Tavares, D.S.; Da Silva, C.F.; Chaud, M.V.; Padilha, F.; Cano, A.; et al. Double membrane based on lidocaine-coated polymyxin-alginate nanoparticles for wound healing: In vitro characterization and in vivo tissue repair. Int. J. Pharm. 2020, 591, 120001. [Google Scholar] [CrossRef]
- Uslu, I.; Aytimur, A. Production and characterization of poly(vinyl alcohol)/poly(vinylpyrrolidone) iodine/poly(ethylene glycol) electrospun fibers with (hydroxypropyl)methyl cellulose and aloe vera as promising material for wound dressing. J. Appl. Polym. Sci. 2012, 124, 3520–3524. [Google Scholar] [CrossRef]
- Bilbao-Sainz, C.; Chiou B sen Valenzuela-Medina, D.; Du, W.X.; Gregorski, K.S.; Williams, T.G.; Wood, D.F.; Glenn, G.M.; Orts, W.J. Solution blow spun poly(lactic acid)/hydroxypropyl methylcellulose nanofibers with antimicrobial properties. Eur. Polym. J. 2014, 54, 1–10. [Google Scholar] [CrossRef]
- Das, S.; De, A.; Das, B.; Mukherjee, B.; Samanta, A. Development of gum odina-gelatin based antimicrobial loaded biodegradable spongy scaffold: A promising wound care tool. J. Appl. Polym. Sci. 2021, 138, 50057. [Google Scholar] [CrossRef]
- Dharmalingam, K.; Anandalakshmi, R. Fabrication, characterization and drug loading efficiency of citric acid crosslinked NaCMC-HPMC hydrogel films for wound healing drug delivery applications. Int. J. Biol. Macromol. 2019, 134, 815–829. [Google Scholar] [CrossRef] [PubMed]
- Khanum, H.; Ullah, K.; Murtaza, G.; Khan, S.A. Fabrication and in vitro characterization of HPMC-g-poly(AMPS) hydrogels loaded with loxoprofen sodium. Int. J. Biol. Macromol. 2018, 120, 1624–1631. [Google Scholar] [CrossRef]
- Tagami, T.; Ito, E.; Kida, R.; Hirose, K.; Noda, T.; Ozeki, T. 3D printing of gummy drug formulations composed of gelatin and an HPMC-based hydrogel for pediatric use. Int. J. Pharm. 2021, 594, 120118. [Google Scholar] [CrossRef]
- Nochos, A.; Douroumis, D.; Bouropoulos, N. In vitro release of bovine serum albumin from alginate/HPMC hydrogel beads. Carbohydr. Polym. 2008, 74, 451–457. [Google Scholar] [CrossRef]
- Kundu, J.; Patra, C.; Kundu, S.C. Design, fabrication and characterization of silk fibroin-HPMC-PEG blended films as vehicle for transmucosal delivery. Mater. Sci. Eng. C 2008, 28, 1376–1380. [Google Scholar] [CrossRef]
- Ghosal, K.; Ray, S.D. Alginate/hydrophobic HPMC (60M) particulate systems: New matrix for site-specific and controlled drug delivery. Braz. J. Pharm. Sci. 2011, 47, 833–844. [Google Scholar] [CrossRef]
- Natori, N.; Shibano, Y.; Hiroki, A.; Taguchi, M.; Miyajima, A.; Yoshizawa, K.; Kawano, Y.; Hanawa, T. Preparation and Evaluation of Hydrogel Film Containing Tramadol for Reduction of Peripheral Neuropathic Pain. J. Pharm. Sci. 2023, 112, 132–137. [Google Scholar] [CrossRef]
- Shi, Y.; Xue, J.; Sang, Y.; Xu, X.; Shang, Q. Insulin-loaded hydroxypropyl methyl cellulose-co-polyacrylamide-co-methacrylic acid hydrogels used as rectal suppositories to regulate the blood glucose of diabetic rats. Int. J. Biol. Macromol. 2019, 121, 1346–1353. [Google Scholar] [CrossRef]
- Corredor-Chaparro, M.Y.; Vargas-Riveros, D.; Mora-Huertas, C.E. Hypromellose–Collagen hydrogels/sesame oil organogel based bigels as controlled drug delivery systems. J. Drug Deliv. Sci. Technol. 2022, 75, 103637. [Google Scholar] [CrossRef]
- Abazari, M.; Akbari, T.; Hasani, M.; Sharifikolouei, E.; Raoufi, M.; Foroumadi, A.; Sharifzadeh, M.; Firoozpour, L.; Khoobi, M. Polysaccharide-based hydrogels containing herbal extracts for wound healing applications. Carbohydr. Polym. 2022, 294, 119808. [Google Scholar] [CrossRef]
- Yazarlu, O.; Iranshahi, M.; Kashani, H.R.K.; Reshadat, S.; Habtemariam, S.; Iranshahy, M.; Hasanpour, M. Perspective on the application of medicinal plants and natural products in wound healing: A mechanistic review. Pharmacol. Res. 2021, 174, 105841. [Google Scholar] [CrossRef]
- Nishadani, D.K.S.; Gunathilake, T.M.S.U.; Ching, Y.C.; Noothalapati, H. Carboxymethyl cellulose hydrogel for pH-responsive drug release of curcumin. Iran. Polym. J. 2024, 33, 1449–1467. [Google Scholar] [CrossRef]
- Younis, N.A.; Hemdan, A.; Zafer, M.M.; Abd-Elsalam, W.H.; Abouelatta, S.M. Standardization and quantitative analysis of Araucaria heterophylla extract via an UPLC-MS/MS method and its formulation as an antibacterial phytonanoemulsion gel. Sci. Rep. 2022, 12, 12557. [Google Scholar] [CrossRef]
- Gonfa, Y.H.; Tessema, F.B.; Bachheti, A.; Rai, N.; Tadesse, M.G.; Singab, A.N.; Chaubey, K.K.; Bachheti, R.K. Anti-inflammatory activity of phytochemicals from medicinal plants and their nanoparticles: A review. Curr. Res. Biotechnol. 2023, 6, 100152. [Google Scholar] [CrossRef]
- Baymiev, A.K.; Chuvatkina, A.K.; Vladimirova, A.A.; Matniyazov, R.T.; Mavzyutov, A.R.; Baymiev, A.K. Analysis of Antibacterial Action Mechanisms of Medicinal Plant Extracts Using Dual Reporter System Dualrep2. Antibiot Khimioter = Antibiot. Chemother. 2023, 68, 11–16. [Google Scholar] [CrossRef]
- Nesterovich, V.M.; Belykh, D.A.; Gorokhovets, N.V.; Kurbatov, L.K.; Zamyatnin, A.A.; Ikryannikova, L.N. Secondary metabolites of plants and their possible role in the “age of superbugs”. Biomeditsinskaya Khimiya 2023, 69, 371–382. [Google Scholar] [CrossRef]
- Keerthana, S.; Charumathy, M.; Gangadhar, L.; Anooj, E.S. Comparision of in vitro and ex vivo experimental analysis of aloe vera extracts on the antioxidant and antimicrobial activity. Int. J. Manag. Technol. Eng. 2019, IX, 3531–3540. [Google Scholar]
Carriers | Active Pharmaceutical Ingredient (Natural and Synthetic) | Type of Wound Dressing | Advantages and Application | References |
---|---|---|---|---|
HPMC/CH | Essential oil/Fluconazole | Hydrogel | Treatment of superficial fungal infections | [66] |
HPMC/PG | Lidocaine and prilocaine | Film | A hydrophilic additive (propylene glycol), when used in a water-insoluble membrane, acts as a channelizer, and increases the rate of release of the drug. | [82] |
HPMC | Lawsonia inermis (henna) and Matricaria chamomilla | Gel | Stability, good viscosity, uniformity, extrudability, good extract release, effectiveness in the treatment of burns. | [83] |
Liposomal farnesol | Gel | HPMC with farnesol in the ratios of 1:2 and 2:1 had a good effect in the treatment of burns of the third degree. | [84] | |
Bacteriophage | Gel | The gel obtained at a temperature of 37 °C in a percentage of 3% HPMC was found to be stable, effective in the treatment of wounds with an antibacterial effect, especially against Klebsiella pneumoniae bacteria. | [85] | |
CuNPs-licorice and phenytoin | Gel | It is effective in acute inflammation by suppressing JAK 3 inflammation and synthesis of type I procollagen. | [86] | |
Honey and Aloe vera | Hydrogel | The hydrogel obtained in a percentage of 3% HPMC was found to be quite viscous when applied to the wound after a burn. The hydrogel showed good antibacterial activity on Klebsiella pneumoniae. | [87] | |
Cefotaxime sodium | Hydrogel | After 4 h, the hydrogel containing 3 percent HPMC 400 had a strong spread ability and had released all of the medication content. | [88] | |
Haruan/fusidic acid | Film | Elongation at break and water vapor permeability were acceptable in films containing 1% and 2% plasticizers, respectively. | [89] | |
Epigallocatechin-3-gallate | Film | Tensile strength and water vapor barrier properties were improved. | [90] | |
Coper nanoparticles | Film | Antibacterial activity that is appropriate. | [91] | |
Ibuprofen | Nanocrystals | To make nanosuspensions of several polymers, microfluidization and sonication were used. | [92] | |
HPMC/Chitosan/Sodium alginate | Lidocaine chloride and polymyxin B sulphate | Bio membrane | Mechanical parameters (elasticity, tension, stiffness) and thickness are appropriate; in vivo, the material has a strong antibacterial action that aids tissue regeneration. | [93] |
HPMC/PVA/PVP-I/PEG | Aloe vera (2%, 4%, 6%) | Fibers | Fibers containing 6% aloe vera were thinner and lacked beading, resulting in a larger porosity of the fibers. | [94] |
HPMC/Poly(lactic acid) | Tetracycline hydrochloride | Nanofibers | Antimicrobial activity and high water sorption rate. | [95] |
HPMC K100M/Gum Odina/Gelatin | Fluconazole and ofloxacin | Sponge | The gum Odina-HPMC K100M: gelatin (1:1) formulation cured chronic wounds with good physicochemical qualities and antibacterial activity. | [96] |
Na-CMC/ HPMC Citric Acid | Tetracycline Methylene Blue | Hydrogel films | Inhibitory activity against pathogenic microbes S. aureus and E. coli | [97] |
HPMC/AMPS | Loxoprofen sodium | Hydrogel | pH-sensitive hydrogel with controlled drug release, exhibiting intense release in alkaline environment. | [98] |
HPMC/Gelatin | Lamontrigin | Hydrogel | Hydrogel-based material produced using 3D printing for pediatrics. | [99] |
HPMC/alginate | Albumin | Hydrogel | Controlled release of albumin | [100] |
HPMC/PEG | Fibrion, extract of B. mori silkworm cocoons | Film | It possesses stability, rapid swelling, and bioadhesiveness, suitable for transmucosal delivery. | [101] |
Hydrofobic HPMC/alginate | Diclofenac | Capsules | Controlled release of diclofenac | [102] |
HPMC | Tramadol Hydrochloride | Film | Hydrogel film, analgesic agent for peripheral neurotherapy. | [103] |
HPMC/co-PAA-co-MAA | Insulin | Hydrogel | Hydrogel, rectal suppositories for regulating blood glucose levels, hypoglycemic effect. | [104] |
HPMC/collagen/sesame oil | Diclofenac | Hydrogel, Emulgel, Bigele | The best properties for a diclofenac carrier are exhibited by a bigele. | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amanzholkyzy, A.; Zhumagaliyeva, S.; Sultanova, N.; Abilov, Z.; Ongalbek, D.; Donbayeva, E.; Niyazbekova, A.; Mukazhanova, Z. Hydrogel Delivery Systems for Biological Active Substances: Properties and the Role of HPMC as a Carrier. Molecules 2025, 30, 1354. https://doi.org/10.3390/molecules30061354
Amanzholkyzy A, Zhumagaliyeva S, Sultanova N, Abilov Z, Ongalbek D, Donbayeva E, Niyazbekova A, Mukazhanova Z. Hydrogel Delivery Systems for Biological Active Substances: Properties and the Role of HPMC as a Carrier. Molecules. 2025; 30(6):1354. https://doi.org/10.3390/molecules30061354
Chicago/Turabian StyleAmanzholkyzy, Arailym, Shynar Zhumagaliyeva, Nurgul Sultanova, Zharylkasyn Abilov, Damira Ongalbek, Elvira Donbayeva, Aktoty Niyazbekova, and Zhazira Mukazhanova. 2025. "Hydrogel Delivery Systems for Biological Active Substances: Properties and the Role of HPMC as a Carrier" Molecules 30, no. 6: 1354. https://doi.org/10.3390/molecules30061354
APA StyleAmanzholkyzy, A., Zhumagaliyeva, S., Sultanova, N., Abilov, Z., Ongalbek, D., Donbayeva, E., Niyazbekova, A., & Mukazhanova, Z. (2025). Hydrogel Delivery Systems for Biological Active Substances: Properties and the Role of HPMC as a Carrier. Molecules, 30(6), 1354. https://doi.org/10.3390/molecules30061354