Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (122)

Search Parameters:
Keywords = film thermal damage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 13038 KiB  
Article
Simulation and Analysis of Electric Thermal Coupling for Corrosion Damage of Metro Traction Motor Bearings
by Haisheng Yang, Zhanwang Shi, Xuelan Wang, Jiahang Zhang, Run Zhang and Hengdi Wang
Machines 2025, 13(8), 680; https://doi.org/10.3390/machines13080680 - 1 Aug 2025
Viewed by 183
Abstract
With the electrification of generator sets, electric locomotives, new energy vehicles, and other industries, AC motors subject bearings to an electric field environment, leading to galvanic corrosion due to the use of variable frequency power supply drives. The phenomenon of bearing discharge breakdown [...] Read more.
With the electrification of generator sets, electric locomotives, new energy vehicles, and other industries, AC motors subject bearings to an electric field environment, leading to galvanic corrosion due to the use of variable frequency power supply drives. The phenomenon of bearing discharge breakdown in subway traction motors is a critical issue in understanding the relationship between shaft current strength and the extent of bearing damage. This paper analyzes the mechanism of impulse discharge that leads to galvanic corrosion damage in bearings at a microscopic level and conducts electric thermal coupling simulations of the traction motor bearing discharge breakdown process. It examines the temperature rise associated with lubricant film discharge breakdown during the dynamic operation of the bearing and investigates how breakdown channel parameters and operational conditions affect the temperature rise in the micro-region of bearing lubrication. Ultimately, the results of the electric thermal coupling simulation are validated through experimental tests. This study revealed that in an electric field environment, the load-bearing area of the outer ring experiences significantly more severe corrosion damage than the inner ring, whereas non-bearing areas remain unaffected by electrolytic corrosion. When the inner ring reaches a speed of 4500_rpm, the maximum widths of electrolytic corrosion pits for the outer and inner rings are measured at 89 um and 51 um, respectively. Additionally, the highest recorded temperatures for the breakdown channels in the outer and inner rings are 932 °C and 802 °C, respectively. Furthermore, as the inner ring speed increases, both the width of the electrolytic corrosion pits and the temperature of the breakdown channels rise. Specifically, at inner ring speeds of 2500_rpm, 3500_rpm, and 4500_rpm, the widths of the electrolytic pits in the outer ring raceway load zone were measured at 34 um, 56 um, and 89 um, respectively. The highest temperatures of the lubrication film breakdown channels were recorded as 612 °C, 788 °C, and 932 °C, respectively. This study provides a theoretical basis and data support for the protective and maintenance practices of traction motor bearings. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

14 pages, 3135 KiB  
Article
Selective Gelation Patterning of Solution-Processed Indium Zinc Oxide Films via Photochemical Treatments
by Seullee Lee, Taehui Kim, Ye-Won Lee, Sooyoung Bae, Seungbeen Kim, Min Woo Oh, Doojae Park, Youngjun Yun, Dongwook Kim, Jin-Hyuk Bae and Jaehoon Park
Nanomaterials 2025, 15(15), 1147; https://doi.org/10.3390/nano15151147 - 24 Jul 2025
Viewed by 264
Abstract
This study presents a photoresist-free patterning method for solution-processed indium zinc oxide (IZO) thin films using two photochemical exposure techniques, namely pulsed ultraviolet (UV) light and UV-ozone, and a plasma-based method using oxygen (O2) plasma. Pulsed UV light delivers short, high-intensity [...] Read more.
This study presents a photoresist-free patterning method for solution-processed indium zinc oxide (IZO) thin films using two photochemical exposure techniques, namely pulsed ultraviolet (UV) light and UV-ozone, and a plasma-based method using oxygen (O2) plasma. Pulsed UV light delivers short, high-intensity flashes of light that induce localised photochemical reactions with minimal thermal damage, whereas UV-ozone enables smooth and uniform surface oxidation through continuous low-pressure UV irradiation combined with in situ ozone generation. By contrast, O2 plasma generates ionised oxygen species via radio frequency (RF) discharge, allowing rapid surface activation, although surface damage may occur because of energetic ion bombardment. All three approaches enabled pattern formation without the use of conventional photolithography or chemical developers, and the UV-ozone method produced the most uniform and clearly defined patterns. The patterned IZO films were applied as active layers in bottom-gate top-contact thin-film transistors, all of which exhibited functional operation, with the UV-ozone-patterned devices exhibiting the most favourable electrical performance. This comparative study demonstrates the potential of photochemical and plasma-assisted approaches as eco-friendly and scalable strategies for next-generation IZO patterning in electronic device applications. Full article
Show Figures

Graphical abstract

13 pages, 2390 KiB  
Article
Enhancing Laser Damage Resistance in TiO2 Films: Dual-Additive Strategy Using High Thermal Conductivity Agents and Long-Chain Organic Compounds
by Yan Zhang, Ming Ma, Zirun Peng, Na Liu, Hanzhuo Zhang, Peizhong Feng and Cheng Xu
Photonics 2025, 12(8), 742; https://doi.org/10.3390/photonics12080742 - 22 Jul 2025
Viewed by 208
Abstract
The laser damage resistance of optical films holds significant practical importance, as it largely determines both the maximum power output of laser systems and the overall stability of the entire optical assembly. A comprehensive investigation was conducted to examine the influence of both [...] Read more.
The laser damage resistance of optical films holds significant practical importance, as it largely determines both the maximum power output of laser systems and the overall stability of the entire optical assembly. A comprehensive investigation was conducted to examine the influence of both single additives—acetylacetone (ACAC) and diethanolamine (DEA)—and dual-additive systems, specifically ACAC combined with polyethylene glycol 200 (PEG 200) and DEA combined with PEG 200, on TiO2 film properties and their laser-induced damage behavior under 1064 nm irradiation. It demonstrated that the films fabricated using ACAC exhibited smoother surfaces. Nevertheless, the sol prepared with DEA was more stable, resulting in films with superior optical properties and an enhanced laser-induced damage threshold (LIDT). The incorporation of dual additives further improved the films’ LIDT. Specifically, the film with DEA and PEG 200 achieved the highest LIDT, reaching 21.5 J/cm2. Moreover, all films exhibited defect-induced damage, yet distinct damage morphologies were observed across different samples. The single-additive films predominantly displayed stress-type damage patterns, whereas the dual-additive films manifested melting-type damage characteristics. Furthermore, through a combination of experiments and calculations, it was revealed that the reasons why the film with DEA and PEG 200 achieved the highest LIDT were twofold: first, the high thermal conductivity of DEA reduced the maximum temperature at the defect center within the film; second, the long molecular chains of PEG 200 created a looser film structure that better mitigated damage caused by stress and expansion during laser irradiation. This study presents a promising approach to enhancing the LIDT through the strategic selection of additives with high thermal conductivity while simultaneously incorporating organic compounds with long molecular chains to develop effective dual-additive films. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

18 pages, 6926 KiB  
Article
Effect of Cerium Nitrate Content on the Performance of Ce(III)/CF/BN/EPN Heat Exchanger Coatings
by Yongbo Yan, Jirong Wu, Mingxing Liu, Qinghua Meng, Jing Zhou, Danyang Feng, Yi Li, Zhijie Xie, Jinyang Li, Xinhui Jiang, Jun Tang, Xuezhi Shi and Jianfeng Zhang
Coatings 2025, 15(7), 818; https://doi.org/10.3390/coatings15070818 - 13 Jul 2025
Viewed by 250
Abstract
This study investigates the influence of cerium nitrate (Ce(NO3)3·6H2O) content on the performance of Ce(III)/CF/BN/EPN coatings intended for heat exchangers. A series of Ce(III)/carbon fibre (CF)/boron nitride (BN)/epoxy phenolic (EPN) coatings are fabricated with varying concentrations of [...] Read more.
This study investigates the influence of cerium nitrate (Ce(NO3)3·6H2O) content on the performance of Ce(III)/CF/BN/EPN coatings intended for heat exchangers. A series of Ce(III)/carbon fibre (CF)/boron nitride (BN)/epoxy phenolic (EPN) coatings are fabricated with varying concentrations of Ce(NO3)3·6H2O. The results of SEM and EDS show that the dissolution of cerium nitrate in acetone due to the particulate form causes it to be distributed in a diffuse state in the coating. This diffuse distribution does not significantly alter the porosity or structural morphology of the coating. With the increase in cerium nitrate content, both the EIS test results and mechanical damage tests indicate a progressive improvement in the corrosion resistance and self-healing properties of the coatings, while the thermal conductivity (TC) remains largely unaffected. The Ce in the coating reacts with the water molecules penetrating into the coating to generate Ce2O3 and CeO2 with protective properties to fill the permeable pores inside the coating or to form a passivation film at the damaged metal–coating interface, which enhances the anticorrosive and self-repairing properties of the coating. However, the incorporation of Ce(NO3)3·6H2O does not change the distribution structure of the filler inside the coating. As a result, the phonon propagation path, rate, and distance remain unchanged, leading to negligible variation in the thermal conductivity. Therefore, at a cerium nitrate content of 2.5 wt%, the coating exhibits the best overall performance, characterised by a |Z|0.1Hz value of 6.08 × 109 Ω·cm2 and a thermal conductivity of approximately 1.4 W/(m·K). Full article
Show Figures

Figure 1

20 pages, 4487 KiB  
Article
Investigation on Corrosion-Induced Wall-Thinning Mechanisms in High-Pressure Steam Pipelines Based on Gas–Liquid Two-Phase Flow Characteristics
by Guangyin Li, Wei He, Pengyu Zhang, Hu Wang and Zhengxin Wei
Processes 2025, 13(7), 2096; https://doi.org/10.3390/pr13072096 - 2 Jul 2025
Viewed by 316
Abstract
In high-pressure thermal power systems, corrosion-induced wall thinning in steam pipelines poses a significant threat to operational safety and efficiency. This study investigates the effects of gas–liquid two-phase flow on corrosion-induced wall thinning in pipe bends of high-pressure heaters in power plants, with [...] Read more.
In high-pressure thermal power systems, corrosion-induced wall thinning in steam pipelines poses a significant threat to operational safety and efficiency. This study investigates the effects of gas–liquid two-phase flow on corrosion-induced wall thinning in pipe bends of high-pressure heaters in power plants, with particular emphasis on the mechanisms of void fraction and inner wall surface roughness. Research reveals that an increased void fraction significantly enhances flow turbulence and centrifugal effects, resulting in elevated pressure and Discrete Phase Model (DPM) concentration at the bend, thereby intensifying erosion phenomena. Simultaneously, the turbulence generated by bubble collapse at the bend promotes the accumulation and detachment of corrosion products, maintaining a cyclic process of erosion and corrosion that accelerates wall thinning. Furthermore, the increased surface roughness of the inner bend wall exacerbates the corrosion process. The rough surface alters local flow characteristics, leading to changes in pressure distribution and DPM concentration accumulation points, subsequently accelerating corrosion progression. Energy-Dispersive Spectroscopy (EDS) and Scanning Electron Microscopy (SEM) analyses reveal changes in the chemical composition and microstructural characteristics of corrosion products. The results indicate that the porous structure of oxide films fails to effectively protect against corrosive media, while bubble impact forces damage the oxide films, exposing fresh metal surfaces and further accelerating the corrosion process. Comprehensive analysis demonstrates that the interaction between void fraction and surface roughness significantly intensifies wall thinning, particularly under conditions of high void fraction and high roughness, where pressure and DPM concentration at the bend may reach extreme values, further increasing corrosion risk. Therefore, optimization of void fraction and surface roughness, along with the application of corrosion-resistant materials and surface treatment technologies, should be considered in pipeline design and operation to mitigate corrosion risks. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

15 pages, 14270 KiB  
Article
Repetition Frequency-Dependent Formation of Oxidized LIPSSs on Amorphous Silicon Films
by Liye Xu, Wei Yan, Weicheng Cui and Min Qiu
Photonics 2025, 12(7), 667; https://doi.org/10.3390/photonics12070667 - 1 Jul 2025
Viewed by 323
Abstract
Laser-induced periodic surface structures (LIPSSs) produced via ultrafast laser-induced oxidation offer a promising route for high-quality nanostructuring, with reduced thermal damage compared to conventional ablation-based methods. However, the influence of laser repetition frequency on the formation and morphology of oxidized LIPSSs remains insufficiently [...] Read more.
Laser-induced periodic surface structures (LIPSSs) produced via ultrafast laser-induced oxidation offer a promising route for high-quality nanostructuring, with reduced thermal damage compared to conventional ablation-based methods. However, the influence of laser repetition frequency on the formation and morphology of oxidized LIPSSs remains insufficiently explored. In this study, we systematically investigate the effects of varying the femtosecond laser repetition frequency from 1 kHz to 100 kHz while keeping the total pulse number constant on the oxidation-induced LIPSSs formed on amorphous silicon films. Scanning electron microscopy and Fourier analysis reveal a transition between two morphological regimes with increasing repetition frequency: at low frequencies, the long inter-pulse intervals result in irregular, disordered oxidation patterns; at high frequencies, closely spaced pulses promote the formation of highly ordered, periodic surface structures. Statistical measurements show that the laser-modified area decreases with frequency, while the LIPSS period remains relatively stable and the ridge width exhibits a peak at 10 kHz. Finite-difference time-domain (FDTD) and finite-element simulations suggest that the observed patterns result from a dynamic balance between light-field modulation and oxidation kinetics, rather than thermal accumulation. These findings advance the understanding of oxidation-driven LIPSS formation dynamics and provide guidance for optimizing femtosecond laser parameters for precise surface nanopatterning. Full article
Show Figures

Figure 1

18 pages, 3845 KiB  
Article
Electrospun Nanofibers of Polyvinylidene Fluoride Enriched with Active Antimicrobial Tannic Acid for the Improvement of the Shelf Life of Cherry Tomatoes
by Rajaram Rajamohan, Ajmal P. Muhammed, Chaitany Jayprakash Raorane, Subramaniyan Ramasundaram, Iruthayapandi Selestin Raja, Sivakumar Allur Subramanian, Seong Cheol Kim, Tae Hwan Oh and Seho Sun
Materials 2025, 18(13), 3112; https://doi.org/10.3390/ma18133112 - 1 Jul 2025
Viewed by 407
Abstract
Active packaging films have been an essential component in food material research to ensure the safe and efficient preservation of food, fruit, and vegetables. The shelf life of fruits and vegetables may likely be extended by covering them with high-performance nanofiber (NF) films. [...] Read more.
Active packaging films have been an essential component in food material research to ensure the safe and efficient preservation of food, fruit, and vegetables. The shelf life of fruits and vegetables may likely be extended by covering them with high-performance nanofiber (NF) films. The selection of materials for active packaging film has been a critical factor in preventing food materials from environmental contaminants (microbes) and extending the shelf life. This study aims to develop NF-based materials for cherry tomatoes to prevent fungal and bacterial damage. Bioactive NFs were produced through an electrospinning process using tannic acid (TA) within a polyvinylidene fluoride (PVDF) template. These NFs offer a sustainable alternative to synthetic packaging for food preservation. TA was incorporated into the PVDF matrix at varying concentrations (0.4 to 1.2%). Key parameters, including moisture content, thickness, opacity, water-contact angle, and thermal shrinkage, were assessed. The physicochemical results indicate that the TA NFs are suitable for further shelf-life performance evaluations. The antifungal and antibiofilm activity of the NFs was tested, showing that the TA1.2 in the PVDF matrix was more effective than other concentrations. Shelf-life tests demonstrated that cherry tomatoes covered with TA1.2 NFs showed no surface changes for up to 4 days. Importantly, the NFs were confirmed to be non-toxic to normal cells, as evidenced by tests on mouse 3T3-L1 fibroblast cells. In summary, we have developed bioactive NFs composed of TA in a PVDF matrix that enhance the shelf life of cherry tomatoes by preventing bacterial and fungal attacks on the fruit surfaces. Full article
Show Figures

Figure 1

22 pages, 6517 KiB  
Article
Study on the Impact of Cooling Air Parameter Changes on the Thermal Fatigue Life of Film Cooling Turbine Blades
by Huayang Sun, Xinlong Yang, Yingtao Chen, Yanting Ai and Wanlin Zhang
Aerospace 2025, 12(6), 512; https://doi.org/10.3390/aerospace12060512 - 6 Jun 2025
Viewed by 442
Abstract
Film cooling has been increasingly applied in turbine blade cooling design due to its excellent cooling performance. Although film-cooled blades demonstrate superior cooling effectiveness, the perforation design on blade surfaces compromises structural integrity, making fatigue failure prone to occur at cooling holes. Previous [...] Read more.
Film cooling has been increasingly applied in turbine blade cooling design due to its excellent cooling performance. Although film-cooled blades demonstrate superior cooling effectiveness, the perforation design on blade surfaces compromises structural integrity, making fatigue failure prone to occur at cooling holes. Previous studies by domestic and international scholars have extensively investigated factors influencing film cooling effectiveness, including blowing ratio and hole geometry configurations. However, most research has overlooked the investigation of fatigue life in film-cooled blades. This paper systematically investigates blade fatigue life under various cooling air parameters by analyzing the relationships among cooling effectiveness, stress distribution, and fatigue life. Results indicate that maximum stress concentrations occur at cooling hole locations and near the blade root at trailing edge regions. While cooling holes effectively reduce blade surface temperature, they simultaneously create stress concentration zones around the apertures. Both excessive and insufficient cooling air pressure and temperature reduce thermal fatigue life, with optimal parameters identified as 600 K cooling temperature and 0.75 MPa pressure, achieving a maximum thermal fatigue life of 3400 cycles for this blade configuration. A thermal shock test platform was established to conduct fatigue experiments under selected cooling conditions. Initial fatigue damage traces emerged at cooling holes after 1000 cycles, with progressive damage expansion observed. By 3000 cycles, cooling holes near blade tip regions exhibited the most severe failure, demonstrating near-complete functional degradation. These findings provide critical references for cooling parameter selection in practical aeroengine applications of film-cooled blades. Full article
Show Figures

Figure 1

14 pages, 3948 KiB  
Article
Effect of Deposits on Micron Particle Collision and Deposition in Cooling Duct of Turbine Blades
by Shihong Xin, Chuqi Peng, Junchao Qi, Baiwan Su and Yan Xiao
Crystals 2025, 15(6), 510; https://doi.org/10.3390/cryst15060510 - 26 May 2025
Viewed by 352
Abstract
Aerospace engines ingest small particles when operating in a particulate-rich environment, such as sandstorms, atmospheric pollution, and volcanic ash clouds. These micron particles enter their cooling channels, leading to film-cooling hole blockage and thus thermal damage to turbine blades made of nickel-based single-crystal [...] Read more.
Aerospace engines ingest small particles when operating in a particulate-rich environment, such as sandstorms, atmospheric pollution, and volcanic ash clouds. These micron particles enter their cooling channels, leading to film-cooling hole blockage and thus thermal damage to turbine blades made of nickel-based single-crystal superalloy materials. This work studied the collision and deposition mechanisms between the micron particles and structure surface. A combined theoretical and numerical study was conducted to investigate the effect of deposits on particle collision and deposition. Finite element models of deposits with flat and rough surfaces were generated and analyzed for comparison. The results show that the normal restitution coefficient is much lower when a micron particle impacts a deposit compared to that of particle collisions with DD3 nickel-based single-crystal wall surfaces. The critical deposition velocity of a micron particle is much higher for particle–deposit collisions than for particle–wall collision. The critical deposition velocity decreases with the increase in particle size. When micron particles deposit on the wall surface of the structure, early-stage particle–wall collision becomes particle–deposit collision when the height of the deposits is greater than twice the particle diameter. For contact between particles and rough surface deposits, surfaces with a shorter correlation length, representing a higher density of asperities and a steeper surface, have a much longer contact time but a lower contact area. The coefficient of restitution of the particle reduces as the surface roughness of the deposits increase. The characteristic length of the roughness has little effect on the rebounding rotation velocity of the particle. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

14 pages, 3791 KiB  
Article
Deposition of HfO2 by Remote Plasma ALD for High-Aspect-Ratio Trench Capacitors in DRAM
by Jiwon Kim, Inkook Hwang, Byungwook Kim, Wookyung Lee, Juha Song, Yeonwoong Jung and Changbun Yoon
Nanomaterials 2025, 15(11), 783; https://doi.org/10.3390/nano15110783 - 23 May 2025
Viewed by 1075
Abstract
Dynamic random-access memory (DRAM) is a vital component in modern computing systems. Enhancing memory performance requires maximizing capacitor capacitance within DRAM cells, which is achieved using high-k dielectric materials deposited as thin, uniform films via atomic layer deposition (ALD). Precise film deposition that [...] Read more.
Dynamic random-access memory (DRAM) is a vital component in modern computing systems. Enhancing memory performance requires maximizing capacitor capacitance within DRAM cells, which is achieved using high-k dielectric materials deposited as thin, uniform films via atomic layer deposition (ALD). Precise film deposition that minimizes electronic defects caused by charged vacancies is essential for reducing leakage current and ensuring high dielectric strength. In this study, we fabricated metal–insulator–metal (MIM) capacitors in high-aspect-ratio trench structures using remote plasma ALD (RP-ALD) and direct plasma ALD (DP-ALD). The trenches, etched into silicon, featured a 7:1 aspect ratio, 76 nm pitch, and 38 nm critical dimension. We evaluated the electrical characteristics of HfO2-based capacitors with TiN top and bottom electrodes, focusing on leakage current density and equivalent oxide thickness. Capacitance–voltage analysis and X-ray photoelectron spectroscopy (XPS) revealed that RP-ALD effectively suppressed plasma-induced damage, reducing defect density and leakage current. While DP-ALD offered excellent film properties, it suffered from degraded lateral uniformity due to direct plasma exposure. Given its superior lateral uniformity, lower leakage, and defect suppression, RP-ALD shows strong potential for improving DRAM capacitor performance and serves as a promising alternative to the currently adopted thermal ALD process. Full article
Show Figures

Graphical abstract

19 pages, 31637 KiB  
Article
Effect of Bio-Based, Mixed Ester Lubricant in Minimum Quantity Lubrication on Tool Wear and Surface Integrity in Ultra-Precision Fly-Cutting of KDP Crystals
by Xuelian Yao, Feihu Zhang, Shuai Zhang, Jianfeng Zhang, Defeng Liao, Xiangyang Lei, Jian Wang and Jianbiao Du
Lubricants 2025, 13(4), 156; https://doi.org/10.3390/lubricants13040156 - 1 Apr 2025
Cited by 2 | Viewed by 692
Abstract
Potassium dihydrogen phosphate (KDP) crystals, vital for high-power laser systems, pose significant machining challenges due to their brittleness, low hardness, and hygroscopic properties. Achieving crack-free, high-precision surfaces is essential but complex. Single-point diamond fly-cutting (SPDF) is the primary method, yet it exposes tools [...] Read more.
Potassium dihydrogen phosphate (KDP) crystals, vital for high-power laser systems, pose significant machining challenges due to their brittleness, low hardness, and hygroscopic properties. Achieving crack-free, high-precision surfaces is essential but complex. Single-point diamond fly-cutting (SPDF) is the primary method, yet it exposes tools to high mechanical stress and heat, accelerating wear. In dry cutting, worn tools develop adhesive layers that detach, causing scratches and degrading surface quality. Traditional wet cutting improves surface finish but leaves residual fluids that contaminate the surface with metal ions, leading to optical degradation and fogging. To address these issues, this study explores mixed-fat-based minimum quantity lubrication (MQL) as a sustainable alternative, comparing two lubricants: biodegradable-base mixed ester lubrication (BBMEL) and hydrocarbon-based synthetic lubricant (HCBSL). A comprehensive evaluation method was developed to analyze surface roughness, tool wear, and subsurface damage under dry cutting, MQL-BBMEL, and MQL-HCBSL conditions. Experimental results show that MQL-BBMEL significantly enhances machining performance, reducing average surface roughness by 27.77% (Sa) and 44.77% (Sq) and decreasing tool wear by 25.16% compared to dry cutting, outperforming MQL-HCBSL. This improvement is attributed to BBMEL’s lower viscosity and higher proportion of polar functional groups, which form stable lubricating films, minimizing friction and thermal effects. Structural analyses confirm that MQL-BBMEL prevents KDP crystal deliquescence and surface fogging. These findings establish MQL-BBMEL as an eco-friendly, high-performance solution for machining brittle optical materials, offering significant advancements in precision machining for high-power laser systems. Full article
(This article belongs to the Special Issue High Performance Machining and Surface Tribology)
Show Figures

Figure 1

21 pages, 5221 KiB  
Article
Biocomposites of Starch Industry Residues from Cassava and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) for Food Packaging
by Flávia Rocha Drummond, Paulo Henrique Machado Cardoso, Javier Mauricio Anaya-Mancipe and Rossana Mara da Silva Moreira Thiré
Processes 2025, 13(3), 719; https://doi.org/10.3390/pr13030719 - 2 Mar 2025
Cited by 1 | Viewed by 1345
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is thermoplastic, biodegradable, and derived from renewable-source polymers; thus, it can be used as an alternative to traditional synthetic polymers to reduce damage to the environment. The production of cassava starch generates a high amount of cassava bagasse (about 93% of [...] Read more.
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is thermoplastic, biodegradable, and derived from renewable-source polymers; thus, it can be used as an alternative to traditional synthetic polymers to reduce damage to the environment. The production of cassava starch generates a high amount of cassava bagasse (about 93% of processed roots) in the separation step of starch. The utilization of this waste is essential due to the difficulty of transportation and storage, besides the detriment caused to the environment by its incorrect disposal. This work aimed to evaluate the possibility of using cassava bagasse as a reinforcement in the production of biocomposites with PHBV matrices by compression molding. The physical–chemical and thermal properties of these biocomposites were characterized. The residue can be used as a filler in compression-molded PHBV biocomposites. The most suitable formulation was 10 wt. %, despite the presence of some cassava bagasse (CB) agglomerations. This film could be used as rigid packaging for chilled or shelf-aqueous food. Full article
Show Figures

Figure 1

14 pages, 5735 KiB  
Article
Defect Tailoring in HfO2/Si Films upon Post-Deposition Annealing and Ultraviolet Irradiation
by Silvestre Salas-Rodríguez, Fernanda I. González-Moreno, Rosa M. Woo-García, Agustín L. Herrera-May, Francisco López-Huerta and Felipe Caballero-Briones
Appl. Sci. 2025, 15(3), 1573; https://doi.org/10.3390/app15031573 - 4 Feb 2025
Viewed by 1521
Abstract
In the present work, a study of the structural defects in HfO2 thin films deposited by dip-coating on p-type silicon substrates treated under different conditions, such as air-annealing, ultraviolet irradiation, and simultaneous annealing–UV irradiation, is presented. HfO2 thin films were analyzed [...] Read more.
In the present work, a study of the structural defects in HfO2 thin films deposited by dip-coating on p-type silicon substrates treated under different conditions, such as air-annealing, ultraviolet irradiation, and simultaneous annealing–UV irradiation, is presented. HfO2 thin films were analyzed by grazing incidence X-ray diffraction, Raman spectroscopy, optical fluorescence, atomic force microscopy, and UV-Vis diffuse reflectance. Films treated at 200 °C and 350 °C present peaks corresponding to monoclinic HfO2. After UV treatment, the films became amorphous. The combination of annealing at 350 °C with UV treatment does not lead to crystalline peaks, suggesting that UV treatment causes extensive structural damage. Fluorescence spectroscopy and UV-Vis spectroscopy suggest that films present oxygen vacancies as their main structural defects. A reduction in oxygen vacancies after the second thermal treatment was observed, but in contrast, after UV irradiation, fluorescence spectroscopy indicated that more defects are created within the mobility gap, irrespective of the simultaneous annealing at 350 °C. An electronic band diagram was proposed assigning the observed fluorescence bands and optical transitions, which, in turn, explain the electrical properties of the films. The results suggest that the electronic structure of HfO2 films can be tailored with a careful choice of thermal annealing conditions along with the controlled creation of defects using UV irradiation, which could open the way to multiple applications of the materials either in microelectronics, optoelectronics, as well as in photocatalytic/electrocatalytic applications such as photodegradation and hydrogen generation. Full article
Show Figures

Figure 1

20 pages, 5459 KiB  
Article
Potential Molecular Interactions and In Vitro Hyperthermia, Thermal, and Magnetic Studies of Bioactive Nickel-Doped Hydroxyapatite Thin Films
by Muhammad Sohail Asghar, Uzma Ghazanfar, Muhammad Rizwan, Muhammad Qasim Manan, Athar Baig, Muhammad Adnan Qaiser, Zeenat Haq, Lei Wang and Liviu Duta
Int. J. Mol. Sci. 2025, 26(3), 1095; https://doi.org/10.3390/ijms26031095 - 27 Jan 2025
Cited by 3 | Viewed by 1362
Abstract
The treatment of bone cancer often necessitates the surgical removal of affected tissues, with artificial implants playing a critical role in replacing lost bone structure. Functionalized implants represent an innovative approach to improve bio-integration and the long-term effectiveness of surgery in treating cancer-damaged [...] Read more.
The treatment of bone cancer often necessitates the surgical removal of affected tissues, with artificial implants playing a critical role in replacing lost bone structure. Functionalized implants represent an innovative approach to improve bio-integration and the long-term effectiveness of surgery in treating cancer-damaged bones. In this study, nickel-substituted hydroxyapatite (Ni:HAp) nanoparticles were deposited as thin films using laser pulses in the range of 30,000–60,000. Comprehensive structural, infrared, optical, morphological, surface, and magnetic evaluations were conducted on the synthesized Ni:HAp thin films. The magnetic hysteresis (M-H) loop demonstrated an increase in the saturation magnetization of the films with a higher number of laser pulses. A minimum squareness ratio of 0.7 was observed at 45,000 laser pulses, and the M-H characteristics indicated a shift toward ferromagnetic behavior, achieving the desired thermal response through an alternating magnetic field application within 80 s. Thermogravimetric analysis revealed distinct thermal stability, with the material structure exhibiting 46% degradation at 800 °C. The incorporation of bioactive magnetic nanoparticles in the thin film holds significant promise for magnetic hyperthermia treatment. Using HDOCK simulations, the interactions between ligand molecules and proteins were also explored. Strong binding affinities with a docking score of −67.73 were thus observed. The presence of Ca2+ ions enhances electrostatic interactions, providing valuable insights into the biochemical roles of the ligand in therapeutic applications. Intravenous administration of magnetic nanoparticles, which subsequently aggregate within the tumor tissue, combined with an applied alternating magnetic field, enable targeted heating of the tumor to 45 °C. This focused heating approach selectively targets cancer cells while preserving the surrounding healthy tissue, thereby potentially enhancing the effectiveness of hyperthermia therapy in cancer treatment. Full article
(This article belongs to the Special Issue Biofunctional Coatings for Medical Applications)
Show Figures

Figure 1

21 pages, 6841 KiB  
Article
Effect of Centrifugal Load on Residual Stresses in Nickel-Based Single-Crystal Substrate and Thermal Barrier Coating System
by Liming Yu, Yifei Zhang, Rujuan Zhao, Yi Wang and Qingmin Yu
Processes 2025, 13(1), 269; https://doi.org/10.3390/pr13010269 - 18 Jan 2025
Viewed by 924
Abstract
Thermal barrier coatings (TBCs) and air film-cooling technology have been extensively utilized in nickel-based, single-crystal turbine blades to enhance their heat resistance. However, structural complexity and material property mismatches between layers can affect residual stresses and potentially lead to coating failure. In this [...] Read more.
Thermal barrier coatings (TBCs) and air film-cooling technology have been extensively utilized in nickel-based, single-crystal turbine blades to enhance their heat resistance. However, structural complexity and material property mismatches between layers can affect residual stresses and potentially lead to coating failure. In this study, a three-dimensional finite element model with atmospheric plasma-spraying thermal barrier coatings (APS-TBCs) deposited on air-cooled, nickel-based, single-crystal blades was established to investigate residual stress character under centrifugal load, considering the effect of temperature, crystal orientation deviation angle, oxide layer thickness, and the number of cycles. The results show that when the centrifugal load is increased from 300 MPa to 700 MPa, the absolute value of the residual stress at the crest of the interface between Top Coat (TC) and Thermally Grown Oxide (TGO) increases by only 8.5%, whereas in the region of compressive to tensile stress conversion, residual stress decreases by 100.9%. As the crystal orientation deviation angle increases, the absolute value of the residual compressive stress increases and the absolute value of the residual tensile stress decreases, but the performance is more special in the valley region, where the absolute value of the residual stress increases with the increase in the deviation angle. Special attention is required, as the increase in temperature leads to a rise in the absolute value of residual stress. For example, at the trough of the TC–TGO interface, when the temperature increases from 910 °C to 1100 °C, the residual stress increases by 9.8%. The effect of the number of cycles on residual stress is relatively weak. For instance, at the wave crest of the TC–TGO interface, the residual stress differs by only 0.6 MPa between one cycle and three cycles. The effect of oxide layer thickness on residual stress in the TBCs after a single cycle is nonlinear. When the oxide layer thickness is 0, 4, and 7 μm, the residual stress undergoes a transition between tensile and compressive directions at different locations. The exploration of these results has yielded some valuable laws that can provide a reference for the study of the damage mechanism of TBCs, as well as a guide for the optimization of nickel-based turbine blades in the manufacturing and use processes. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

Back to TopTop