Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,300)

Search Parameters:
Keywords = field of view

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 3150 KiB  
Review
Making the Connection Between PFASs and Agriculture Using the Example of Minnesota, USA: A Review
by Sven Reetz, Joel Tallaksen, John Larson and Christof Wetter
Agriculture 2025, 15(15), 1676; https://doi.org/10.3390/agriculture15151676 (registering DOI) - 2 Aug 2025
Abstract
Exposure to per- and polyfluoroalkyl substances (PFASs) can cause detrimental health effects. The consumption of contaminated food is viewed as a major exposure pathway for humans, but the relationship between agriculture and PFASs has not been investigated thoroughly, and it is becoming a [...] Read more.
Exposure to per- and polyfluoroalkyl substances (PFASs) can cause detrimental health effects. The consumption of contaminated food is viewed as a major exposure pathway for humans, but the relationship between agriculture and PFASs has not been investigated thoroughly, and it is becoming a pressing issue since health advisories are continuously being reassessed. This semi-systematic literature review connects the release, environmental fate, and agriculture uptake of PFASs to enhance comprehension and identify knowledge gaps which limit accurate risk assessment. It focuses on the heavily agricultural state of Minnesota, USA, which is representative of the large Midwestern US Corn Belt in terms of agricultural activities, because PFASs have been monitored in Minnesota since the beginning of the 21st century. PFAS contamination is a complex issue due to the over 14,000 individual PFAS compounds which have unique chemical properties that interact differently with air, water, soil, and biological systems. Moreover, the lack of field studies and monitoring of agricultural sites makes accurate risk assessments challenging. Researchers, policymakers, and farmers must work closely together to reduce the risk of PFAS exposure as the understanding of their potential health effects increases and legacy PFASs are displaced with shorter fluorinated replacements. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

31 pages, 1370 KiB  
Article
AIM-Net: A Resource-Efficient Self-Supervised Learning Model for Automated Red Spider Mite Severity Classification in Tea Cultivation
by Malathi Kanagarajan, Mohanasundaram Natarajan, Santhosh Rajendran, Parthasarathy Velusamy, Saravana Kumar Ganesan, Manikandan Bose, Ranjithkumar Sakthivel and Baskaran Stephen Inbaraj
AgriEngineering 2025, 7(8), 247; https://doi.org/10.3390/agriengineering7080247 (registering DOI) - 1 Aug 2025
Abstract
Tea cultivation faces significant threats from red spider mite (RSM: Oligonychus coffeae) infestations, which reduce yields and economic viability in major tea-producing regions. Current automated detection methods rely on supervised deep learning models requiring extensive labeled data, limiting scalability for smallholder farmers. [...] Read more.
Tea cultivation faces significant threats from red spider mite (RSM: Oligonychus coffeae) infestations, which reduce yields and economic viability in major tea-producing regions. Current automated detection methods rely on supervised deep learning models requiring extensive labeled data, limiting scalability for smallholder farmers. This article proposes AIM-Net (AI-based Infestation Mapping Network) by evaluating SwAV (Swapping Assignments between Views), a self-supervised learning framework, for classifying RSM infestation severity (Mild, Moderate, Severe) using a geo-referenced, field-acquired dataset of RSM infested tea-leaves, Cam-RSM. The methodology combines SwAV pre-training on unlabeled data with fine-tuning on labeled subsets, employing multi-crop augmentation and online clustering to learn discriminative features without full supervision. Comparative analysis against a fully supervised ResNet-50 baseline utilized 5-fold cross-validation, assessing accuracy, F1-scores, and computational efficiency. Results demonstrate SwAV’s superiority, achieving 98.7% overall accuracy (vs. 92.1% for ResNet-50) and macro-average F1-scores of 98.3% across classes, with a 62% reduction in labeled data requirements. The model showed particular strength in Mild_RSM-class detection (F1-score: 98.5%) and computational efficiency, enabling deployment on edge devices. Statistical validation confirmed significant improvements (p < 0.001) over baseline approaches. These findings establish self-supervised learning as a transformative tool for precision pest management, offering resource-efficient solutions for early infestation detection while maintaining high accuracy. Full article
27 pages, 5743 KiB  
Article
In-Field Load Acquisitions on a Variable Chamber Round Baler Using Instrumented Hub Carriers and a Dynamometric Towing Pin
by Filippo Coppola, Andrea Ruffin and Giovanni Meneghetti
Appl. Sci. 2025, 15(15), 8579; https://doi.org/10.3390/app15158579 (registering DOI) - 1 Aug 2025
Abstract
In this work, the load spectra acting in the vertical direction on the hub carriers and in the horizontal longitudinal direction on the drawbar of a trailed variable chamber round baler were evaluated. To this end, each hub carrier was instrumented with appropriately [...] Read more.
In this work, the load spectra acting in the vertical direction on the hub carriers and in the horizontal longitudinal direction on the drawbar of a trailed variable chamber round baler were evaluated. To this end, each hub carrier was instrumented with appropriately calibrated strain gauge bridges. Similarly, the baler was equipped with a dynamometric towing pin, instrumented with strain gauge sensors and calibrated in the laboratory, which replaced the original pin connecting the baler and the tractor during the in-field load acquisitions. In both cases, the calibration tests returned the relationship between applied forces and output signals of the strain gauge bridges. Multiple in-field load acquisitions were carried out under typical maneuvers and operating conditions. The synchronous acquisition of a video via an onboard camera and Global Positioning System (GPS) signal allowed to observe the behaviour of the baler in correspondence of particular trends of the vertical and horizontal loads and to point out the most demanding maneuver in view of the fatigue resistance of the baler. Finally, through the application of a rainflow cycle counting algorithm according to ASTM E1049-85, the load spectrum for each maneuver was derived. Full article
(This article belongs to the Section Mechanical Engineering)
65 pages, 8546 KiB  
Review
Quantum Machine Learning and Deep Learning: Fundamentals, Algorithms, Techniques, and Real-World Applications
by Maria Revythi and Georgia Koukiou
Mach. Learn. Knowl. Extr. 2025, 7(3), 75; https://doi.org/10.3390/make7030075 (registering DOI) - 1 Aug 2025
Abstract
Quantum computing, with its foundational principles of superposition and entanglement, has the potential to provide significant quantum advantages, addressing challenges that classical computing may struggle to overcome. As data generation continues to grow exponentially and technological advancements accelerate, classical machine learning algorithms increasingly [...] Read more.
Quantum computing, with its foundational principles of superposition and entanglement, has the potential to provide significant quantum advantages, addressing challenges that classical computing may struggle to overcome. As data generation continues to grow exponentially and technological advancements accelerate, classical machine learning algorithms increasingly face difficulties in solving complex real-world problems. The integration of classical machine learning with quantum information processing has led to the emergence of quantum machine learning, a promising interdisciplinary field. This work provides the reader with a bottom-up view of quantum circuits starting from quantum data representation, quantum gates, the fundamental quantum algorithms, and more complex quantum processes. Thoroughly studying the mathematics behind them is a powerful tool to guide scientists entering this domain and exploring their connection to quantum machine learning. Quantum algorithms such as Shor’s algorithm, Grover’s algorithm, and the Harrow–Hassidim–Lloyd (HHL) algorithm are discussed in detail. Furthermore, real-world implementations of quantum machine learning and quantum deep learning are presented in fields such as healthcare, bioinformatics and finance. These implementations aim to enhance time efficiency and reduce algorithmic complexity through the development of more effective quantum algorithms. Therefore, a comprehensive understanding of the fundamentals of these algorithms is crucial. Full article
(This article belongs to the Section Learning)
Show Figures

Figure 1

24 pages, 756 KiB  
Article
Designs and Interactions for Near-Field Augmented Reality: A Scoping Review
by Jacob Hobbs and Christopher Bull
Informatics 2025, 12(3), 77; https://doi.org/10.3390/informatics12030077 (registering DOI) - 1 Aug 2025
Abstract
Augmented reality (AR), which overlays digital content within the user’s view, is gaining traction across domains such as education, healthcare, manufacturing, and entertainment. The hardware constraints of commercially available HMDs are well acknowledged, but little work addresses what design or interactions techniques developers [...] Read more.
Augmented reality (AR), which overlays digital content within the user’s view, is gaining traction across domains such as education, healthcare, manufacturing, and entertainment. The hardware constraints of commercially available HMDs are well acknowledged, but little work addresses what design or interactions techniques developers can employ or build into experiences to work around these limitations. We conducted a scoping literature review, with the aim of mapping the current landscape of design principles and interaction techniques employed in near-field AR environments. We searched for literature published between 2016 and 2025 across major databases, including the ACM Digital Library and IEEE Xplore. Studies were included if they explicitly employed design or interaction techniques with a commercially available HMD for near-field AR experiences. A total of 780 articles were returned by the search, but just 7 articles met the inclusion criteria. Our review identifies key themes around how existing techniques are employed and the two competing goals of AR experiences, and we highlight the importance of embodiment in interaction efficacy. We present directions for future research based on and justified by our review. The findings offer a comprehensive overview for researchers, designers, and developers aiming to create more intuitive, effective, and context-aware near-field AR experiences. This review also provides a foundation for future research by outlining underexplored areas and recommending research directions for near-field AR interaction design. Full article
Show Figures

Figure 1

13 pages, 11739 KiB  
Article
DeepVinci: Organ and Tool Segmentation with Edge Supervision and a Densely Multi-Scale Pyramid Module for Robot-Assisted Surgery
by Li-An Tseng, Yuan-Chih Tsai, Meng-Yi Bai, Mei-Fang Li, Yi-Liang Lee, Kai-Jo Chiang, Yu-Chi Wang and Jing-Ming Guo
Diagnostics 2025, 15(15), 1917; https://doi.org/10.3390/diagnostics15151917 - 30 Jul 2025
Viewed by 167
Abstract
Background: Automated surgical navigation can be separated into three stages: (1) organ identification and localization, (2) identification of the organs requiring further surgery, and (3) automated planning of the operation path and steps. With its ideal visual and operating system, the da [...] Read more.
Background: Automated surgical navigation can be separated into three stages: (1) organ identification and localization, (2) identification of the organs requiring further surgery, and (3) automated planning of the operation path and steps. With its ideal visual and operating system, the da Vinci surgical system provides a promising platform for automated surgical navigation. This study focuses on the first step in automated surgical navigation by identifying organs in gynecological surgery. Methods: Due to the difficulty of collecting da Vinci gynecological endoscopy data, we propose DeepVinci, a novel end-to-end high-performance encoder–decoder network based on convolutional neural networks (CNNs) for pixel-level organ semantic segmentation. Specifically, to overcome the drawback of a limited field of view, we incorporate a densely multi-scale pyramid module and feature fusion module, which can also enhance the global context information. In addition, the system integrates an edge supervision network to refine the segmented results on the decoding side. Results: Experimental results show that DeepVinci can achieve state-of-the-art accuracy, obtaining dice similarity coefficient and mean pixel accuracy values of 0.684 and 0.700, respectively. Conclusions: The proposed DeepVinci network presents a practical and competitive semantic segmentation solution for da Vinci gynecological surgery. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

34 pages, 725 KiB  
Article
A Qualitative Exploration of the Lived Experiences and Perspectives of Equine-Assisted Services Practitioners in the UK and Ireland
by Rita Seery, Lisa Graham-Wisener and Deborah L. Wells
Animals 2025, 15(15), 2240; https://doi.org/10.3390/ani15152240 - 30 Jul 2025
Viewed by 237
Abstract
Equine-Assisted Services (EAS), which incorporate horses in a variety of ways in an effort to improve human wellbeing, have grown in popularity in recent years. Although much research has been conducted regarding the benefits that horses may provide for human health and wellbeing, [...] Read more.
Equine-Assisted Services (EAS), which incorporate horses in a variety of ways in an effort to improve human wellbeing, have grown in popularity in recent years. Although much research has been conducted regarding the benefits that horses may provide for human health and wellbeing, little attention has been paid to practitioners’ experiences and perspectives of the field, despite the fact they are uniquely positioned to advance our understanding of this area. This study aimed to explore practitioners’ lived experiences of EAS, focusing on the benefits they observed, possible underlying mechanisms for any health benefits witnessed, and challenges faced in the area. Fifteen EAS practitioners from the UK/Ireland took part in qualitative semi-structured interviews, analysed using reflexive thematic analysis. Five themes were identified, three of which related to the horse’s influence on building connections, relationships, and enriching the process, whilst the remainder explored challenges within the field of EAS. These themes were explored through the practitioners’ lens, where possible linking them to our current understanding of human–animal interactions and related fields in the literature. Findings showed that horses, through EAS, were considered invaluable for building relationships, relational skills, and motivation to engage in whichever service was being provided. However, EAS was also viewed as complex. Concerns regarding competencies to practice, training, and lack of governance were expressed. These areas need further exploration and progress if EAS is to grow in efficacy and attain professional status. Full article
(This article belongs to the Special Issue Animal-Assisted Interventions: Effects and Mechanisms of Action)
Show Figures

Figure 1

14 pages, 17389 KiB  
Article
A Distortion Image Correction Method for Wide-Angle Cameras Based on Track Visual Detection
by Quanxin Liu, Xiang Sun and Yuanyuan Peng
Photonics 2025, 12(8), 767; https://doi.org/10.3390/photonics12080767 - 30 Jul 2025
Viewed by 148
Abstract
Regarding the distortion correction problem of large field of view wide-angle cameras commonly used in railway visual inspection systems, this paper proposes a novel online calibration method for non-specially made cooperative calibration objects. Based on the radial distortion divisor model, first, the spatial [...] Read more.
Regarding the distortion correction problem of large field of view wide-angle cameras commonly used in railway visual inspection systems, this paper proposes a novel online calibration method for non-specially made cooperative calibration objects. Based on the radial distortion divisor model, first, the spatial coordinates of natural spatial landmark points are constructed according to the known track gauge value between two parallel rails and the spacing value between sleepers. By using the image coordinate relationships corresponding to these spatial coordinates, the coordinates of the distortion center point are solved according to the radial distortion fundamental matrix. Then, a constraint equation is constructed based on the collinear constraint of vanishing points in railway images, and the Levenberg–Marquardt algorithm is used to found the radial distortion coefficients. Moreover, the distortion coefficients and the coordinates of the distortion center are re-optimized according to the least squares method (LSM) between points and the fitted straight line. Finally, based on the above, the distortion correction is carried out for the distorted railway images captured by the camera. The experimental results show that the above method can efficiently and accurately perform online distortion correction for large field of view wide-angle cameras used in railway inspection without the participation of specially made cooperative calibration objects. The whole method is simple and easy to implement, with high correction accuracy, and is suitable for the rapid distortion correction of camera images in railway online visual inspection. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

27 pages, 5776 KiB  
Review
From “Information” to Configuration and Meaning: In Living Systems, the Structure Is the Function
by Paolo Renati and Pierre Madl
Int. J. Mol. Sci. 2025, 26(15), 7319; https://doi.org/10.3390/ijms26157319 - 29 Jul 2025
Viewed by 129
Abstract
In this position paper, we argue that the conventional understanding of ‘information’ (as generally conceived in science, in a digital fashion) is overly simplistic and not consistently applicable to living systems, which are open systems that cannot be reduced to any kind of [...] Read more.
In this position paper, we argue that the conventional understanding of ‘information’ (as generally conceived in science, in a digital fashion) is overly simplistic and not consistently applicable to living systems, which are open systems that cannot be reduced to any kind of ‘portion’ (building block) ascribed to the category of quantity. Instead, it is a matter of relationships and qualities in an indivisible analogical (and ontological) relationship between any presumed ‘software’ and ‘hardware’ (information/matter, psyche/soma). Furthermore, in biological systems, contrary to Shannon’s definition, which is well-suited to telecommunications and informatics, any kind of ‘information’ is the opposite of internal entropy, as it depends directly on order: it is associated with distinction and differentiation, rather than flattening and homogenisation. Moreover, the high degree of structural compartmentalisation of living matter prevents its energetics from being thermodynamically described by using a macroscopic, bulk state function. This requires the Second Principle of Thermodynamics to be redefined in order to make it applicable to living systems. For these reasons, any static, bit-related concept of ‘information’ is inadequate, as it fails to consider the system’s evolution, it being, in essence, the organized coupling to its own environment. From the perspective of quantum field theory (QFT), where many vacuum levels, symmetry breaking, dissipation, coherence and phase transitions can be described, a consistent picture emerges that portrays any living system as a relational process that exists as a flux of context-dependent meanings. This epistemological shift is also associated with a transition away from the ‘particle view’ (first quantisation) characteristic of quantum mechanics (QM) towards the ‘field view’ possible only in QFT (second quantisation). This crucial transition must take place in life sciences, particularly regarding the methodological approaches. Foremost because biological systems cannot be conceived as ‘objects’, but rather as non-confinable processes and relationships. Full article
Show Figures

Figure 1

9 pages, 2434 KiB  
Article
Locally Generated Whistler-Mode Waves Before Dipolarization Fronts
by Boning Zhao, Chengming Liu, Jinbin Cao, Yangyang Liu and Xining Xing
Universe 2025, 11(8), 249; https://doi.org/10.3390/universe11080249 - 29 Jul 2025
Viewed by 145
Abstract
Whistler-mode waves, electromagnetic emissions with frequencies between the lower hybrid and electron cyclotron frequencies, are ubiquitous in planetary magnetotails. They are known to play a vital role in electron scattering and acceleration, originating primarily within strong magnetic field regions behind dipolarization fronts (DFs). [...] Read more.
Whistler-mode waves, electromagnetic emissions with frequencies between the lower hybrid and electron cyclotron frequencies, are ubiquitous in planetary magnetotails. They are known to play a vital role in electron scattering and acceleration, originating primarily within strong magnetic field regions behind dipolarization fronts (DFs). In contrast to this established knowledge, we present a comprehensive analysis of whistler-mode waves generated locally within weak magnetic field regions ahead of DFs, utilizing high-cadence measurements from the MMS mission. By resolving the wave dispersion relations, we demonstrate that these emissions arise from cyclotron resonance with local electrons exhibiting weak perpendicular temperature anisotropy (Ae < 1.2). We further propose that this anisotropy may develop due to magnetic mirror structures forming upstream of DFs. Our findings challenge the conventional view that whistler-mode generation requires strong magnetic fields near DFs, providing new insights into understanding wave excitation mechanisms in planetary magnetotails. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2025—Space Science)
Show Figures

Figure 1

24 pages, 4396 KiB  
Article
Study of the Characteristics of a Co-Seismic Displacement Field Based on High-Resolution Stereo Imagery: A Case Study of the 2024 MS7.1 Wushi Earthquake, Xinjiang
by Chenyu Ma, Zhanyu Wei, Li Qian, Tao Li, Chenglong Li, Xi Xi, Yating Deng and Shuang Geng
Remote Sens. 2025, 17(15), 2625; https://doi.org/10.3390/rs17152625 - 29 Jul 2025
Viewed by 197
Abstract
The precise characterization of surface rupture zones and associated co-seismic displacement fields from large earthquakes provides critical insights into seismic rupture mechanisms, earthquake dynamics, and hazard assessments. Stereo-photogrammetric digital elevation models (DEMs), produced from high-resolution satellite stereo imagery, offer reliable global datasets that [...] Read more.
The precise characterization of surface rupture zones and associated co-seismic displacement fields from large earthquakes provides critical insights into seismic rupture mechanisms, earthquake dynamics, and hazard assessments. Stereo-photogrammetric digital elevation models (DEMs), produced from high-resolution satellite stereo imagery, offer reliable global datasets that are suitable for the detailed extraction and quantification of vertical co-seismic displacements. In this study, we utilized pre- and post-event WorldView-2 stereo images of the 2024 Ms7.1 Wushi earthquake in Xinjiang to generate DEMs with a spatial resolution of 0.5 m and corresponding terrain point clouds with an average density of approximately 4 points/m2. Subsequently, we applied the Iterative Closest Point (ICP) algorithm to perform differencing analysis on these datasets. Special care was taken to reduce influences from terrain changes such as vegetation growth and anthropogenic structures. Ultimately, by maintaining sufficient spatial detail, we obtained a three-dimensional co-seismic displacement field with a resolution of 15 m within grid cells measuring 30 m near the fault trace. The results indicate a clear vertical displacement distribution pattern along the causative sinistral–thrust fault, exhibiting alternating uplift and subsidence zones that follow a characteristic “high-in-center and low-at-ends” profile, along with localized peak displacement clusters. Vertical displacements range from approximately 0.2 to 1.4 m, with a maximum displacement of ~1.46 m located in the piedmont region north of the Qialemati River, near the transition between alluvial fan deposits and bedrock. Horizontal displacement components in the east-west and north-south directions are negligible, consistent with focal mechanism solutions and surface rupture observations from field investigations. The successful extraction of this high-resolution vertical displacement field validates the efficacy of satellite-based high-resolution stereo-imaging methods for overcoming the limitations of GNSS and InSAR techniques in characterizing near-field surface displacements associated with earthquake ruptures. Moreover, this dataset provides robust constraints for investigating fault-slip mechanisms within near-surface geological contexts. Full article
Show Figures

Figure 1

22 pages, 6689 KiB  
Article
Design and Implementation of a Sun Outage Simulation System with High Uniformity and Stray Light Suppression Capability
by Zhen Mao, Zhaohui Li, Yong Liu, Limin Gao and Jianke Zhao
Sensors 2025, 25(15), 4655; https://doi.org/10.3390/s25154655 - 27 Jul 2025
Viewed by 317
Abstract
To enable accurate evaluation of satellite laser communication terminals under solar outage interference, this paper presents the design and implementation of a solar radiation simulation system targeting the 1540–1560 nm communication band. The system reconstructs co-propagating interference conditions through standardized and continuously tunable [...] Read more.
To enable accurate evaluation of satellite laser communication terminals under solar outage interference, this paper presents the design and implementation of a solar radiation simulation system targeting the 1540–1560 nm communication band. The system reconstructs co-propagating interference conditions through standardized and continuously tunable output, based on high irradiance and spectral uniformity. A compound beam homogenization structure—combining a multimode fiber and an apodizator—achieves 85.8% far-field uniformity over a 200 mm aperture. A power–spectrum co-optimization strategy is introduced for filter design, achieving a spectral matching degree of 78%. The system supports a tunable output from 2.5 to 130 mW with a 50× dynamic range and maintains power control accuracy within ±0.9%. To suppress internal background interference, a BRDF-based optical scattering model is established to trace primary and secondary stray light paths. Simulation results show that by maintaining the surface roughness of key mirrors below 2 nm and incorporating a U-shaped reflective light trap, stray light levels can be reduced to 5.13 × 10−12 W, ensuring stable detection of a 10−10 W signal at a 10:1 signal-to-background ratio. Experimental validation confirms that the system can faithfully reproduce solar outage conditions within a ±3° field of view, achieving consistent performance in spectrum shaping, irradiance uniformity, and background suppression. The proposed platform provides a standardized and practical testbed for ground-based anti-interference assessment of optical communication terminals. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

17 pages, 2000 KiB  
Article
Can 3D Exoscopy-Assisted Surgery Replace the Traditional Endoscopy in Septoplasty? Analysis of Our Two-Year Experience
by Luciano Catalfamo, Alessandro Calvo, Samuele Cicchiello, Antonino La Fauci, Francesco Saverio De Ponte, Calogero Scozzaro and Danilo De Rinaldis
J. Clin. Med. 2025, 14(15), 5279; https://doi.org/10.3390/jcm14155279 - 25 Jul 2025
Viewed by 291
Abstract
Background/Objectives: Septoplasty is a commonly performed surgical procedure aimed at correcting nasal septal deviations, to improve nasal airflow and respiratory function. Traditional approaches to septal correction rely on either direct visualization or endoscopic guidance. Recently, a novel technology known as exoscopy has [...] Read more.
Background/Objectives: Septoplasty is a commonly performed surgical procedure aimed at correcting nasal septal deviations, to improve nasal airflow and respiratory function. Traditional approaches to septal correction rely on either direct visualization or endoscopic guidance. Recently, a novel technology known as exoscopy has been introduced into surgical practice. Exoscopy is an “advanced magnification system” that provides an enlarged, three-dimensional view of the operating field. In this article, we present our experience with exoscope-assisted septoplasty, developed over the last two years, and compare it with our extensive experience using the endoscopic approach. Methods: Our case series includes 26 patients, predominantly males and young adults, who underwent exoscope-assisted septoplasty. We discuss the primary advantages of this technique and, most importantly, provide an analysis of its learning curve. The cohort of patients treated using the exoscopic approach was compared with a control group of 26 patients who underwent endoscope-guided septoplasty, randomly selected from our broader clinical database. Finally, we present a representative surgical case that details all phases of the exoscope-assisted procedure. Results: Our surgical experience has demonstrated that exoscopy is a safe and effective tool for performing septoplasty. Moreover, the learning curve associated with this technique exhibits a rapid and progressive improvement. Notably, exoscopy provides a substantial educational benefit for trainees and medical students, as it enables them to share the same visual perspective as the lead surgeon. Conclusions: Although further studies are required to validate this approach, we believe that exoscopy represents a promising advancement for a wide range of head and neck procedures, and certainly for septoplasty. Full article
(This article belongs to the Special Issue Recent Advances in Reconstructive Oral and Maxillofacial Surgery)
Show Figures

Figure 1

14 pages, 4483 KiB  
Article
A Modified Sample Preparation Protocol for High-Efficiency Lab-on-a-Disk-Based Separation and Single-Image Quantification of Soil-Transmitted Helminth Parasite Eggs in Stool
by Mina Wahba, Heaven D. Chitemo, Vyacheslav R. Misko, Doris Kinabo, Matthieu Briet, Jo Vicca, Bruno Levecke, Humphrey D. Mazigo and Wim De Malsche
Micromachines 2025, 16(8), 847; https://doi.org/10.3390/mi16080847 - 24 Jul 2025
Viewed by 297
Abstract
Soil-transmitted helminths (STHs) present a significant global health challenge, particularly in tropical and subtropical regions. The current diagnostic standard involves the microscopic examination of a stool smear but it lacks sensitivity to detect infections of low intensity. Innovative solutions like lab-on-a-disk (LoD) technologies [...] Read more.
Soil-transmitted helminths (STHs) present a significant global health challenge, particularly in tropical and subtropical regions. The current diagnostic standard involves the microscopic examination of a stool smear but it lacks sensitivity to detect infections of low intensity. Innovative solutions like lab-on-a-disk (LoD) technologies are emerging, showing promise in detecting low-intensity infections. Field tests conducted using our SIMPAQ (single-image parasite quantification) LoD device have demonstrated its potential as a diagnostic tool, especially for such low-intensity infections. Nevertheless, the device’s efficiency has been limited by significant egg loss during sample preparation, low capture efficiency of eggs within the Field of View (FOV), and the presence of larger fecal debris that obstructs effective egg trapping and imaging. In this study, we conducted a set of laboratory experiments using model polystyrene particles and purified STH eggs to improve the sample preparation protocol. These experiments include the entire SIMPAQ procedure starting from sample preparation, infusing it into the LoD device, centrifugation, delivering the (model) eggs to the FOV, capturing an image, and analyzing it. We analyzed egg losses at each step of the procedure following the “standard” protocol, then elaborated and tested alternative, more efficient procedures. The resulting modified protocol significantly minimized particle and egg loss and reduced the amount of debris in the disk, thus enabling effective egg capture and clear images in the FOV, increasing the reliability of the diagnostic results. Full article
(This article belongs to the Section B:Biology and Biomedicine)
Show Figures

Figure 1

18 pages, 12540 KiB  
Article
SS-LIO: Robust Tightly Coupled Solid-State LiDAR–Inertial Odometry for Indoor Degraded Environments
by Yongle Zou, Peipei Meng, Jianqiang Xiong and Xinglin Wan
Electronics 2025, 14(15), 2951; https://doi.org/10.3390/electronics14152951 - 24 Jul 2025
Viewed by 207
Abstract
Solid-state LiDAR systems are widely recognized for their high reliability, low cost, and lightweight design, but they encounter significant challenges in SLAM tasks due to their limited field of view and uneven horizontal scanning patterns, especially in indoor environments with geometric constraints. To [...] Read more.
Solid-state LiDAR systems are widely recognized for their high reliability, low cost, and lightweight design, but they encounter significant challenges in SLAM tasks due to their limited field of view and uneven horizontal scanning patterns, especially in indoor environments with geometric constraints. To address these challenges, this paper proposes SS-LIO, a precise, robust, and real-time LiDAR–Inertial odometry solution designed for solid-state LiDAR systems. SS-LIO uses uncertainty propagation in LiDAR point-cloud modeling and a tightly coupled iterative extended Kalman filter to fuse LiDAR feature points with IMU data for reliable localization. It also employs voxels to encapsulate planar features for accurate map construction. Experimental results from open-source datasets and self-collected data demonstrate that SS-LIO achieves superior accuracy and robustness compared to state-of-the-art methods, with an end-to-end drift of only 0.2 m in indoor degraded scenarios. The detailed and accurate point-cloud maps generated by SS-LIO reflect the smoothness and precision of trajectory estimation, with significantly reduced drift and deviation. These outcomes highlight the effectiveness of SS-LIO in addressing the SLAM challenges posed by solid-state LiDAR systems and its capability to produce reliable maps in complex indoor settings. Full article
(This article belongs to the Special Issue Advancements in Robotics: Perception, Manipulation, and Interaction)
Show Figures

Figure 1

Back to TopTop