A Modified Sample Preparation Protocol for High-Efficiency Lab-on-a-Disk-Based Separation and Single-Image Quantification of Soil-Transmitted Helminth Parasite Eggs in Stool
Abstract
1. Introduction
2. Materials and Methods
2.1. Disk Description and Imaging Set-Up
2.2. Flotation Solution and Polystyrene Particles
2.3. Stool Samples and Purified Helminth Eggs
2.4. Stool Sample Analysis Using the Standard Protocol
3. Results
3.1. Protocol Improvement to Enhance Particle Retention in Samples During Preparation
3.2. Polystyrene (PS) Particle Distribution in the SIMPAQ Disk
3.3. Capture Efficiency of the SIMPAQ Disks in the FOV
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Soil-Transmitted Helminth Infections. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/soil-transmitted-helminth-infections (accessed on 25 February 2025).
- Riaz, M.; Aslam, N.; Zainab, R.; Rasool, G.; Ullah, M.I.; Daniyal, M.; Akram, M. Prevalence, risk factors, challenges, and the currently available diagnostic tools for the determination of helminths infections in human. Eur. J. Inflamm. 2020, 18, 2058739220959915. [Google Scholar] [CrossRef]
- Servián, A.; Garimano, N.; Santini, M.S. Systematic Review and Meta-Analysis of Soil-Transmitted Helminth Infections in South America (2000–2024). Acta Trop. 2024, 260, 107400. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Guideline: Preventive Chemotherapy to Control Soil-Transmitted Helminth Infections in At-Risk Population Groups; World Health Organization: Geneva, Switzerland, 2017; Available online: https://www.who.int/publications/i/item/9789241550116 (accessed on 25 February 2025).
- Brooker, S.; Clements, A.; Bundy, D. Global Epidemiology, Ecology and Control of Soil-Transmitted Helminth Infections. Parasitology 2006, 62, 221–261. [Google Scholar] [CrossRef]
- Cringoli, G.; Maurelli, M.P.; Levecke, B.; Bosco, A.; Vercruysse, J.; Utzinger, J.; Rinaldi, L. The Mini-FLOTAC technique for the diagnosis of helminth and protozoan infections in humans and animals. Nat. Protoc. 2017, 12, 1723–1732. [Google Scholar] [CrossRef] [PubMed]
- Khurana, S.; Singh, S.; Mewara, A. Diagnostic techniques for Soil-Transmitted Helminths—Recent advances. Res. Rep. Trop. Med. 2021, 12, 181–196. [Google Scholar] [CrossRef] [PubMed]
- Ngwese, M.M.; Manouana, G.P.; Moure, P.A.N.; Ramharter, M.; Esen, M.; Adégnika, A.A. Diagnostic techniques of Soil-Transmitted Helminths: Impact on control measures. Trop. Med. Infect. Dis. 2020, 5, 93. [Google Scholar] [CrossRef] [PubMed]
- Mazigo, H.D.; Justine, N.C.; Bhuko, J.; Rubagumya, S.; Basinda, N.; Zinga, M.M.; Ruganuza, D.; Misko, V.R.; Briet, M.; Legein, F.; et al. High Specificity but Low Sensitivity of Lab-on-a-Disk Technique in Detecting Soil-Transmitted Helminth Eggs among Pre- and School-Aged Children in North-Western Tanzania. Trop. Med. Infect. Dis. 2023, 9, 5. [Google Scholar] [CrossRef] [PubMed]
- Sukas, S.; Van Dorst, B.; Kryj, A.; Lagatie, O.; De Malsche, W.; Stuyver, L.J. Development of a Lab-on-a-Disk Platform with Digital Imaging for Identification and Counting of Parasite Eggs in Human and Animal Stool. Micromachines 2019, 10, 852. [Google Scholar] [CrossRef] [PubMed]
- Madou, M.; Zoval, J.; Jia, G.G.; Kido, H.; Kim, J.; Kim, N. Lab on a CD. Annu. Rev. Biomed. Eng. 2006, 8, 601–628. [Google Scholar] [CrossRef] [PubMed]
- HKido; Micic, M.; Smith, D.; Zoval, J.; Norton, J.; Madou, M. A novel, compact disk-like centrifugal microfluidics system for cell lysis and sample homogenization. Colloids Surf. B Biointerfaces 2007, 58, 44–51. [Google Scholar] [CrossRef]
- Gorkin, R.; Park, J.; Siegrist, J.; Amasia, M.; Lee, B.S.; Park, J.-M.; Kim, J.; Kim, H.; Madou, M.; Cho, Y.-K. Centrifugal microfluidics for biomedical applications. Lab Chip 2010, 10, 1758–1773. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-H.; Park, J.; Kim, C.-J.; Cho, Y.-K. Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens. Anal Chem. 2014, 86, 3841–3848. [Google Scholar] [CrossRef] [PubMed]
- Roy, E.; Stewart, G.; Mounier, M.; Malic, L.; Peytavi, R.; Clime, L.; Madou, M.; Bossinot, M.; Bergeronb, M.G.; Veres, T. From cellular lysis to microarray detection, an integrated thermoplastic elastomer (TPE) point of care Lab on a Disc. Lab Chip 2015, 15, 406. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.; Mager, D.; Perebikovsky, A.; Shamloo, E.; Kinahan, D.; Mishra, R.; Delgado, S.M.T.; Kido, H.; Saha, S.; Ducrée, J.; et al. CD-Based Microfluidics for Primary Care in Extreme Point-of-Care Settings. Micromachines 2016, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.X.; Perebikovsky, A.; Moebius, J.; Kulinsky, L.; Madou, M. Lab-on-a-CD: A Fully Integrated Molecular Diagnostic System. J. Lab. Autom. 2016, 21, 323–355. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Sunkara, V.; Park, J.; Kim, C.; Woo, H.; Cho, Y. Lab-on-a-disc with reversible and thermally stable diaphragm valves. Lab Chip 2016, 16, 3741–3749. [Google Scholar] [CrossRef] [PubMed]
- Sayad, A.A.; Ibrahim, F.; Uddin, S.M.; Pei, K.X.; Mohktar, M.S.; Madou, M.; Thong, K.L. A microfluidic lab-on-a-disc integrated loop mediated isothermal amplification for foodborne pathogen detection. Sens. Actuators B 2016, 227, 600–609. [Google Scholar] [CrossRef]
- Rahman, N.A.; Ibrahim, F.; Aeinehvand, M.M.; Yusof, R.; Madou, M. A Microfluidic Lab-on-a-Disc (LOD) for Antioxidant Activities of Plant Extracts. Micromachines 2018, 9, 140. [Google Scholar] [CrossRef] [PubMed]
- Jahromi, A.K.; Saadatmand, M.; Eghbal, M.; Yeganeh, L.P. Development of simple and efficient Lab-on-a-Disc platforms for automated chemical cell lysis. Sci. Rep. 2020, 10, 11039. [Google Scholar] [CrossRef] [PubMed]
- Ducrée, J. Secure Air Traffic Control at the Hub of Multiplexing on the Centrifugo-Pneumatic Lab-on-a-Disc Platform. Micromachines 2021, 12, 700. [Google Scholar] [CrossRef] [PubMed]
- Ducrée, J. Design Optimization of Centrifugal Microfluidic “Lab-on-a-Disc” Systems towards Fluidic Larger-Scale Integration. Appl. Sci. 2021, 11, 5839. [Google Scholar] [CrossRef]
- Misko, V.R.; Kryj, A.; Ngansop, A.-M.T.; Yazdani, S.; Briet, M.; Basinda, N.; Mazigo, H.D.; De Malsche, W. Migration Behavior of Low-Density Particles in Lab-on-a-Disc Devices: Effect of Walls. Micromachines 2021, 12, 1032. [Google Scholar] [CrossRef] [PubMed]
- Rubagumya, S.L.; Nzalawahe, J.; Misinzo, G.; Mazigo, H.D.; Briet, M.; Misko, V.R.; De Malsche, W.; Legein, F.; Justine, N.C.; Basinda, N.; et al. Evaluation of Lab-on-a-Disc Technique Performance for Soil-Transmitted Helminth Diagnosis in Animals in Tanzania. Vet. Sci. 2024, 11, 174. [Google Scholar] [CrossRef] [PubMed]
- Misko, V.R.; Makasali, R.J.; Briet, M.; Legein, F.; Levecke, B.; De Malsche, W. Enhancing the yield of a Lab-on-a-Disk-Based Single-Image parasite quantification device. Micromachines 2023, 14, 2087. [Google Scholar] [CrossRef] [PubMed]
- Center for Disease Control (CDC). Ascariasis, DPDx—Laboratory Identification of Parasites of Public Health Concern. 2019. Available online: https://www.cdc.gov/dpdx/ascariasis/index.html (accessed on 31 March 2025).
- Center for Disease Control (CDC). Hookworm (Intestinal), DPDx—Laboratory Identification of Parasites of Public Health Concern. 2019. Available online: https://www.cdc.gov/dpdx/hookworm/index.html (accessed on 31 March 2025).
- Center for Disease Control (CDC). Trichuriasis, DPDx—Laboratory Identification of Parasites of Public Health Concern. 2019. Available online: https://www.cdc.gov/dpdx/trichuriasis/index.html (accessed on 31 March 2025).
- Montresor, A.; Crompton, D.W.T.; Hall, A.; Bundy, D.A.P.; Savioli, L. Guidelines for the Evaluation of Soil-Transmitted Helminthiasis and Schistosomiasis at Community Level: A Guide for Managers of Control Programmes. 1998. Available online: https://iris.who.int/handle/10665/63821 (accessed on 2 April 2025).
- DATRON Dynamics. 4 Ways to Ensure Consistent Depth of Cut. DATRON. 2025. Available online: https://www.datron.com/resources/blog/4-ways-to-ensure-consistent-depth-of-cut/ (accessed on 1 April 2025).
Goat Sample | Human Sample | |||
---|---|---|---|---|
PS (%) (±SD) Standard Protocol | PS (%) (±SD) Modified Protocol | PS (%) (±SD) Standard Protocol | PS (%) (±SD) Modified Protocol | |
Falcon tube | 5.0 (±1.0) | 1.3 (±0.6) | 3.7 (±1.5) | 1.7 (±1.5) |
First filter | 32.0 (±6.6) | 17.3 (±7.8) | 23.7 (±8.6) | 13.3 (±4.5) |
Second filter | 6.0 (±1.7) | 2.7 (±1.5) | 4.7 (±2.5) | 2.0 (±1.0) |
Six-well plate | 8.0 (±2.0) | 4.3 (±1.2) | 8.7 (±3.8) | 3.7 (±1.5) |
Eppendorf | 6.0 (±1.0) | 3.0 (±2.0) | 6.7 (±2.1) | 3.0 (±1.0) |
Total particles lost | 57.0 (±11.6) | 28.7 (±6.6) | 47.3 (±8.2) | 23.7 (±4.9) |
Particles entering the FOV of the disk | 43.0 (±7.0) | 71.3 (±4.7) | 52.7 (±6.8) | 76.3 (±8.7) |
Attempts | 1 g Stool | 0.5 g Stool | 0.25 g Stool |
---|---|---|---|
1 | 51 | 48 | 61 |
2 | 40 | 67 | 64 |
3 | 38 | 64 | 75 |
Mean (±SD) | 43.0 (±7.0) | 59.7 (±10.2) | 66.7 (±7.4) |
Location in the Disk | Mean ± SD | Percentage (n = 200) |
---|---|---|
FOV | 164.7 ± 13.0 | 82.3 |
In front of the FOV | 16.7 ± 6.1 | 8.3 |
Behind the FOV | 7.3 ± 1.2 | 3.7 |
Near the borders | 10.7 ± 3.1 | 5.3 |
Mean Number of Spiked Polystyrene Particles | Mean Number of Particles in FOV (±SD) | Capture Efficiency (%) |
---|---|---|
100 | 76.3 (±4.0) | 76.3 |
50 | 40.7 (±3.1) | 81.3 |
25 | 19.0 (±3.0) | 76.0 |
10 | 5.0 (±2.6) | 50.0 |
Mean Number of Spiked Eggs | Mean Number of Eggs in FOV (±SD) | Capture Efficiency (%) |
100 | 73.7 (±4.5) | 73.7 |
50 | 30.0 (±4.0) | 60.0 |
25 | 12.0 (±1.7) | 48.0 |
10 | 2.0 (±2.0) | 20.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wahba, M.; Chitemo, H.D.; Misko, V.R.; Kinabo, D.; Briet, M.; Vicca, J.; Levecke, B.; Mazigo, H.D.; De Malsche, W. A Modified Sample Preparation Protocol for High-Efficiency Lab-on-a-Disk-Based Separation and Single-Image Quantification of Soil-Transmitted Helminth Parasite Eggs in Stool. Micromachines 2025, 16, 847. https://doi.org/10.3390/mi16080847
Wahba M, Chitemo HD, Misko VR, Kinabo D, Briet M, Vicca J, Levecke B, Mazigo HD, De Malsche W. A Modified Sample Preparation Protocol for High-Efficiency Lab-on-a-Disk-Based Separation and Single-Image Quantification of Soil-Transmitted Helminth Parasite Eggs in Stool. Micromachines. 2025; 16(8):847. https://doi.org/10.3390/mi16080847
Chicago/Turabian StyleWahba, Mina, Heaven D. Chitemo, Vyacheslav R. Misko, Doris Kinabo, Matthieu Briet, Jo Vicca, Bruno Levecke, Humphrey D. Mazigo, and Wim De Malsche. 2025. "A Modified Sample Preparation Protocol for High-Efficiency Lab-on-a-Disk-Based Separation and Single-Image Quantification of Soil-Transmitted Helminth Parasite Eggs in Stool" Micromachines 16, no. 8: 847. https://doi.org/10.3390/mi16080847
APA StyleWahba, M., Chitemo, H. D., Misko, V. R., Kinabo, D., Briet, M., Vicca, J., Levecke, B., Mazigo, H. D., & De Malsche, W. (2025). A Modified Sample Preparation Protocol for High-Efficiency Lab-on-a-Disk-Based Separation and Single-Image Quantification of Soil-Transmitted Helminth Parasite Eggs in Stool. Micromachines, 16(8), 847. https://doi.org/10.3390/mi16080847