Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = fibre-metal laminate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8506 KiB  
Article
Destructive and Non-Destructive Analysis of Lightning-Induced Damage in Protected and Painted Composite Aircraft Laminates
by Audrey Bigand, Christine Espinosa and Jean-Marc Bauchire
Aerospace 2025, 12(5), 446; https://doi.org/10.3390/aerospace12050446 - 19 May 2025
Cited by 1 | Viewed by 465
Abstract
The use of CFRP composite increased significantly since the last 40 years for aircraft structure. Unfortunately, such structures are subjected to significant damages if struck by lightning compared to metallic structure. This is mainly due to the low conductivity of this material, which [...] Read more.
The use of CFRP composite increased significantly since the last 40 years for aircraft structure. Unfortunately, such structures are subjected to significant damages if struck by lightning compared to metallic structure. This is mainly due to the low conductivity of this material, which cannot evacuate the current without high Joule heating. Lightning strike-induced damage in a composite laminate is composed of in-depth delamination, fibre breakage, and resin deterioration due to the surface explosion and the core current flow linked to interaction of the arc with the surface. But very rare previous studies dedicated to the analysis of damage as a direct effect of lightning have considered the spurious effect of the paint that always covers real aeronautic structures neither on the thermal nor the mechanical loads that are the root cause of these damages. We present in this paper a coupled non-destructive and destructive damage analysis to support the proposition of damage scenarios depending on the presence and thickness of the paint. The mechanical and thermal sources contribution in the global loading on the core damage is discussed, which confirms previous studies’ analysis and modelling and is in accordance with existing works in the literature. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

28 pages, 14370 KiB  
Article
Experimental Study on Mechanical Performance of Single-Side Bonded Carbon Fibre-Reinforced Plywood for Wood-Based Structures
by Krzysztof Szwajka, Joanna Zielińska-Szwajka, Tomasz Trzepieciński and Marek Szewczyk
Materials 2025, 18(1), 207; https://doi.org/10.3390/ma18010207 - 6 Jan 2025
Viewed by 1080
Abstract
In addition to the traditional uses of plywood, such as furniture and construction, it is also widely used in areas that benefit from its special combination of strength and lightness, particularly as a construction material for the production of finishing elements of campervans [...] Read more.
In addition to the traditional uses of plywood, such as furniture and construction, it is also widely used in areas that benefit from its special combination of strength and lightness, particularly as a construction material for the production of finishing elements of campervans and yachts. In light of the current need to reduce emissions of climate-damaging gases such as CO2, the use of lightweight construction materials is very important. In recent years, hybrid structures made of carbon fibre-reinforced plastics (CFRPs) and metals have attracted much attention in many industries. In contrast to hybrid metal/carbon fibre composites, research relating to laminates consisting of CFRPs and wood-based materials shows less interest. This article analyses the hybrid laminate resulting from bonding a CFRP panel to plywood in terms of strength and performance using a three-point bending test, a static tensile test and a dynamic analysis. Knowledge of the dynamic characteristics of carbon fibre-reinforced plywood allows for the adoption of such cutting parameters that will help prevent the occurrence of self-excited vibrations in the cutting process. Therefore, in this work, it was decided to determine the effect of using CFRP laminate on both the static and dynamic stiffness of the structure. Most studies in this field concern improving the strength of the structure without analysing the dynamic properties. This article proposes a simple and user-friendly methodology for determining the damping of a sandwich-type system. The results of strength tests were used to determine the modulus of elasticity, modulus of rupture, the position of the neutral axis and the frequency domain characteristics of the laminate obtained. The results show that the use of a CFRP-reinforced plywood panel not only improves the visual aspect but also improves the strength properties of such a hybrid material. In the case of a CFRP-reinforced plywood panel, the value of tensile stresses decreased by sixteen-fold (from 1.95 N/mm2 to 0.12 N/mm2), and the value of compressive stresses decreased by more than seven-fold (from 1.95 N/mm2 to 0.27 N/mm2) compared to unreinforced plywood. Based on the stress occurring at the tensile and compressive sides of the CFRP-reinforced plywood sample surface during a cantilever bending text, it was found that the value of modulus of rupture decreased by three-fold and the value of the modulus of elasticity decreased by more than five-fold compared to the unreinforced plywood sample. A dynamic analysis allowed us to determine that the frequency of natural vibrations of the CFRP-reinforced plywood panel increased by about 33% (from 30 Hz to 40 Hz) compared to the beam made only of plywood. Full article
Show Figures

Figure 1

15 pages, 5543 KiB  
Article
Low-Velocity Impact Behaviour of Titanium-Based Carbon-Fibre/Epoxy Laminate
by Jing Sun, Weilin Chen, Hongjie Luo, Xingfang Xie, Jingzhou Zhang and Chao Ding
Materials 2024, 17(21), 5380; https://doi.org/10.3390/ma17215380 - 4 Nov 2024
Cited by 3 | Viewed by 1022
Abstract
This study investigated the low-velocity impact response of titanium-based carbon-fibre/epoxy laminate (TI-CF FML). A comprehensive experimental study was carried out with impact energies ranging from 16.9 J to 91.9 J. Finite element analysis, performed using ABAQUS, was employed to elucidate the failure mechanisms [...] Read more.
This study investigated the low-velocity impact response of titanium-based carbon-fibre/epoxy laminate (TI-CF FML). A comprehensive experimental study was carried out with impact energies ranging from 16.9 J to 91.9 J. Finite element analysis, performed using ABAQUS, was employed to elucidate the failure mechanisms of the laminate. Three distinct damage modes were identified based on the impact energy levels. The energy absorption characteristics of the TI-CF FML were analysed, revealing that maximum energy absorption is achieved and remains constant after penetration occurs. The relationship between impact force and displacement was also explored, showing that the laminate can withstand a peak force of 13.1 kN. The research on the impact resistance, damage mechanisms and energy absorption capacity of TI-CF FML provides an in-depth understanding of the impact behaviour of the laminate and its suitability for various industrial applications. Full article
Show Figures

Figure 1

19 pages, 3111 KiB  
Article
Development of a Tool Concept for Prestressed Fibre Metal Laminates and Their Effect on Interface Failure
by Hayrettin Irmak, Steffen Tinkloh, Thorsten Marten and Thomas Tröster
J. Compos. Sci. 2024, 8(8), 316; https://doi.org/10.3390/jcs8080316 - 10 Aug 2024
Viewed by 841
Abstract
The use of hybrid materials as a combination of fibre-reinforced plastic (FRP) and metal is of great interest in order to meet the increasing demands for sustainability, efficiency, and emission reduction based on the principle of lightweight design. These two components can therefore [...] Read more.
The use of hybrid materials as a combination of fibre-reinforced plastic (FRP) and metal is of great interest in order to meet the increasing demands for sustainability, efficiency, and emission reduction based on the principle of lightweight design. These two components can therefore be joined using the intrinsic joining technique, which is formed by curing the matrix of the FRP component. In this study, for the hybrid joint, unidirectionally pre-impregnated semi-finished products (prepregs) with duromer matrix resin and micro-alloyed HC340LA steel were used. In order to conduct a detailed investigation, the damage mechanisms of intrinsically produced fibre metal laminates (FMLs), a new clamping device, and a novel pressing tool were designed and put into operation. The prepregs were prestressed by applying a preloading force using a specially designed prestressing frame. Hybrid specimens were then produced and subjected to nanoindentation and a shear tensile test. In particular, the effect of the residual stress state by varying the defined prestressing force on the damage mechanisms was studied. The results showed that no fracture patterns occurred in the interface of the specimens without preloading as a result of curing at 120 °C, whereas specimens with preloading failed at the boundary layer in the tensile range. Nevertheless, all specimens cured at 160 °C failed at the boundary layer in the tensile range. Furthermore, it was proven that the force and displacement of the preloaded specimens were promisingly higher than those of the unpreloaded specimens. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

14 pages, 5281 KiB  
Article
The Effect of Self-Healing Microcapsules in Corrosion Testing on Magnesium AZ31 Alloy and Fibre Metal Laminates
by Monika Ostapiuk, Jarosław Bieniaś, Mónica V. Loureiro and Ana C. Marques
Coatings 2024, 14(6), 653; https://doi.org/10.3390/coatings14060653 - 21 May 2024
Cited by 4 | Viewed by 1425
Abstract
Fibre metal laminates (FMLs) are the most interesting composite materials of the past decade. They possess the properties of both polymer composites and metallic alloys. However, there is a problem with corrosion when the outer layers are made of aluminium or magnesium. The [...] Read more.
Fibre metal laminates (FMLs) are the most interesting composite materials of the past decade. They possess the properties of both polymer composites and metallic alloys. However, there is a problem with corrosion when the outer layers are made of aluminium or magnesium. The electrochemical changes that occur during the corrosion process and the mechanisms associated with the corrosion phenomenon are still being investigated. Recently, self-healing phenomena have emerged as a useful approach to prevent corrosion. However, there is limited research on the combination of FMLs and self-healing layers. Therefore, the main purpose of this article is to evaluate the self-healing ability of a magnesium/PEO layer based on microcapsules in a corrosion environment. It was observed that the corrosion mechanism in magnesium alloys is very complex. However, the use of a barrier layer with PEO treatment and microcapsules yielded positive anti-corrosion results. The FML samples were subjected to a 6-week corrosion test, and the addition of microcapsules to the layers showed positive results. In contrast, the samples without microcapsules exhibited intergranular corrosion. In the future, comprehensive tests using self-healing microcapsules in FMLs could greatly enhance their anti-corrosion properties and improve the integrity of the structure. Full article
(This article belongs to the Section Plasma Coatings, Surfaces & Interfaces)
Show Figures

Figure 1

26 pages, 7615 KiB  
Article
Multi-Response Optimization of Abrasive Waterjet Cutting on r-GO-Reinforced Fibre Intermetallic Laminates through Moth–Flame Optimization Algorithm
by Devaraj Rajamani, Mahalingam Siva Kumar and Esakki Balasubramanian
J. Compos. Sci. 2023, 7(11), 462; https://doi.org/10.3390/jcs7110462 - 3 Nov 2023
Cited by 2 | Viewed by 1622
Abstract
Laminated metal-composite structures, also known as fibre metal laminates (FMLs), have emerged as prominent engineering materials in various industries, particularly in the domains of aircraft and automobile manufacturing. These materials are sought after due to their enhanced impact and fatigue resistance capabilities. The [...] Read more.
Laminated metal-composite structures, also known as fibre metal laminates (FMLs), have emerged as prominent engineering materials in various industries, particularly in the domains of aircraft and automobile manufacturing. These materials are sought after due to their enhanced impact and fatigue resistance capabilities. The machining of FMLs plays a crucial role in achieving near-net shapes for the purpose of joining and assembling components. Delamination is a prevalent issue encountered during the process of conventional machining, thus rendering FMLs are challenging materials to machine. This study aims to investigate the cutting process of novel fibre intermetallic laminates (FILs) using the abrasive water jet (AWJ) cutting technique. The FILs consists of carbon and aramid fibers that are adhesively bonded with a resin matrix filled with reduced graphene oxide (r-GO) nano fillers. Moreover, these laminates contain embedded Nitinol shape memory alloy sheets as the skin materials. Specifically, the study aims to investigate the impact of different factors, such as the addition of reduced graphene oxide (r-GO) in the laminates (ranging from 0 to 2 wt%), traverse speed (ranging from 400 to 600 mm/min), waterjet pressure (ranging from 200 to 300 MPa), and nozzle height (ranging from 2 to 4 mm), on the material removal rate (MRR), delamination factor (FD), and kerf deviation (KD). ANOVA was used in the statistical analysis to determine the most influential parameters and their effects on the selected responses. The optimal AWJC parameters are determined using a metaheuristic-based moth–flame optimization (MFO) algorithm in order to enhance cut quality. The efficacy of MFO is subsequently compared with similar well-established metaheuristics such as the genetic algorithm, particle swarm algorithm, dragonfly algorithm, and grey-wolf algorithm. MFO was found to outperform in terms of several performance indices, including rapid divergence, diversity, spacing, and hypervolume values, among the algorithms compared. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

12 pages, 4611 KiB  
Article
Analysis of Hydrothermal Ageing on Mechanical Performances of Fibre Metal Laminates
by Costanzo Bellini, Vittorio Di Cocco, Francesco Iacoviello, Larisa Patricia Mocanu, Gianluca Parodo, Luca Sorrentino and Sandro Turchetta
Processes 2023, 11(8), 2413; https://doi.org/10.3390/pr11082413 - 10 Aug 2023
Viewed by 1261
Abstract
Fibre Metal Laminates (FMLs) are very interesting materials due to their light weight coupled with their high stiffness, high fatigue resistance, and high damage tolerance. However, the presence of the polymeric matrix in the composite layers and of polymeric adhesive at the metal/composite [...] Read more.
Fibre Metal Laminates (FMLs) are very interesting materials due to their light weight coupled with their high stiffness, high fatigue resistance, and high damage tolerance. However, the presence of the polymeric matrix in the composite layers and of polymeric adhesive at the metal/composite interface can constitute an Achille’s heel for this class of materials, especially when exposed to a hot environment or water. Therefore, in the present article, aluminium/carbon fibre FML specimens were produced, aged by considering different hydrothermal conditions, and then, subjected to mechanical testing. The End-Notched Flexure (ENF) test was considered for this activity. It was found that the first ageing stage, consisting of submersion in saltwater, was very detrimental to the specimens, while the second stage, composed of high and low temperature cycles, showed an increase in the maximum load, probably due to a post-curing effect of the resin during the higher temperatures of the ageing cycles and to the dissolution of salt crystals during the subsequently ageing stages in distilled water. Full article
(This article belongs to the Special Issue Design of Adhesive Bonded Joints)
Show Figures

Figure 1

23 pages, 16409 KiB  
Article
Tensile and Bending Behaviour of Steel–Glass Fibre-Reinforced and Non-Reinforced Steel–Polyamide Sandwich Materials
by Wei Hua, Mohamed Harhash, Gerhard Ziegmann, Adele Carradò and Heinz Palkowski
Metals 2023, 13(7), 1291; https://doi.org/10.3390/met13071291 - 18 Jul 2023
Cited by 4 | Viewed by 1804
Abstract
The newly-developed thermoplastic-based fibre metal laminates (T-FML) show good prospects for their application in the automotive industry because of their lightweight potential and thermal formability. This paper focuses on describing the tensile and bending properties of this hybrid material as structural components for [...] Read more.
The newly-developed thermoplastic-based fibre metal laminates (T-FML) show good prospects for their application in the automotive industry because of their lightweight potential and thermal formability. This paper focuses on describing the tensile and bending properties of this hybrid material as structural components for load-bearing parts in vehicles. For this purpose, the uniaxial tensile and four-point bending behaviours of steel/glass fibre-reinforced polyamide 6 (GF-PA6)/steel-laminates are investigated. The effects of cover/core layer thickness ratio and fibre weaving style on their tensile and bending properties are considered, while the span-to-thickness ratio was kept constant. Testing of the mono-materials and laminates of Metal/PA6/Metal (MPM) is performed to be considered as a reference. Further, the analytical method is validated to predict the bending properties of the laminates. A good agreement between the analytical values and experimental results regarding the bending strength and modulus is revealed. T-FML showed better tensile and bending properties with increasing fibre content compared to the GF-PA6 mono-organosheet and MPM. Full article
Show Figures

Figure 1

15 pages, 6263 KiB  
Communication
Multivariable Signal Processing for Characterization of Failure Modes in Thin-Ply Hybrid Laminates Using Acoustic Emission Sensors
by Sakineh Fotouhi, Maher Assaad, Mohamed Nasor, Ahmed Imran, Akram Ashames and Mohammad Fotouhi
Sensors 2023, 23(11), 5244; https://doi.org/10.3390/s23115244 - 31 May 2023
Cited by 1 | Viewed by 2120
Abstract
The aim of this study was to find the correlation between failure modes and acoustic emission (AE) events in a comprehensive range of thin-ply pseudo-ductile hybrid composite laminates when loaded under uniaxial tension. The investigated hybrid laminates were Unidirectional (UD), Quasi-Isotropic (QI) and [...] Read more.
The aim of this study was to find the correlation between failure modes and acoustic emission (AE) events in a comprehensive range of thin-ply pseudo-ductile hybrid composite laminates when loaded under uniaxial tension. The investigated hybrid laminates were Unidirectional (UD), Quasi-Isotropic (QI) and open-hole QI configurations composed of S-glass and several thin carbon prepregs. The laminates exhibited stress-strain responses that follow the elastic-yielding-hardening pattern commonly observed in ductile metals. The laminates experienced different sizes of gradual failure modes of carbon ply fragmentation and dispersed delamination. To analyze the correlation between these failure modes and AE signals, a multivariable clustering method was employed using Gaussian mixture model. The clustering results and visual observations were used to determine two AE clusters, corresponding to fragmentation and delamination modes, with high amplitude, energy, and duration signals linked to fragmentation. In contrast to the common belief, there was no correlation between the high frequency signals and the carbon fibre fragmentation. The multivariable AE analysis was able to identify fibre fracture and delamination and their sequence. However, the quantitative assessment of these failure modes was influenced by the nature of failure that depends on various factors, such as stacking sequence, material properties, energy release rate, and geometry. Full article
(This article belongs to the Special Issue Damage Assessment and Structural Health Monitoring of Composites)
Show Figures

Figure 1

27 pages, 12482 KiB  
Article
Deep Drawing Behaviour of Steel–Glass Fibre-Reinforced and Non-Reinforced Polyamide–Steel Sandwich Materials
by Wei Hua, Mohamed Harhash, Gerhard Ziegmann, Adele Carradò and Heinz Palkowski
Appl. Sci. 2023, 13(11), 6629; https://doi.org/10.3390/app13116629 - 30 May 2023
Cited by 3 | Viewed by 2137
Abstract
Thermoplastic-based fibre metal laminates (FMLs) have gained increasing interest in the automotive industry due to their forming potential—especially at higher temperatures—into complex components compared to thermoset-based ones. However, several challenges arise while processing thermoplastic-based FMLs. One the one hand, forming at room temperature [...] Read more.
Thermoplastic-based fibre metal laminates (FMLs) have gained increasing interest in the automotive industry due to their forming potential—especially at higher temperatures—into complex components compared to thermoset-based ones. However, several challenges arise while processing thermoplastic-based FMLs. One the one hand, forming at room temperature (RT) leads to early failure modes, e.g., fracture and delamination. On the other hand, warm forming can extend their forming limits, although further defects arise, such as severe thickness irregularities and wrinkling problems. Therefore, this study focuses on developing different approaches for deep drawing conditions to deliver a promising, feasible, and cost-effective method for deep-drawn FML parts. We also describe the defects experimentally and numerically via the finite element method (FEM). The FMLs based on steel/glass fibre-reinforced polyamide 6 (GF-PA6/steel) are studied under different deep drawing conditions (temperatures, punch, and die dimensions). In addition, mono-materials and sandwich materials without fibre reinforcement are investigated as benchmarks. The results showed that the best deep drawing condition was at a temperature of 200 °C and a die/punch radius ratio of 0.67, with a gap/thickness ratio of ≤2.0. The FEM simulation via Abaqus 6.14 was able to successfully replicate the anisotropic properties and wrinkling of the GF-PA6 core in an FML, resembling the experimental results. Full article
(This article belongs to the Special Issue Processing, Properties and Applications of Composite Materials)
Show Figures

Figure 1

24 pages, 12779 KiB  
Article
Stretching and Forming Limit Curve of Steel–Glass Fibre Reinforced and Non-Reinforced Polyamide–Steel Sandwich Materials
by Wei Hua, Mohamed Harhash, Gerhard Ziegmann, Adele Carradò and Heinz Palkowski
Appl. Sci. 2023, 13(11), 6611; https://doi.org/10.3390/app13116611 - 29 May 2023
Cited by 3 | Viewed by 2124
Abstract
This paper focuses on investigating the forming behaviour of sandwich materials composed of steel sheets and glass fibre-reinforced polyamide 6 (GF-PA6), i.e., thermoplastic-based fibre metal laminates (FML). Stretching and forming limit curve (FLC) determination of FML with different cover/core layer thickness ratios at [...] Read more.
This paper focuses on investigating the forming behaviour of sandwich materials composed of steel sheets and glass fibre-reinforced polyamide 6 (GF-PA6), i.e., thermoplastic-based fibre metal laminates (FML). Stretching and forming limit curve (FLC) determination of FML with different cover/core layer thickness ratios at various forming temperatures, i.e., at room temperature (RT), 200 and 235 °C, are the main approaches for characterizing their formability. In addition, the formability of mono-materials and non-reinforced sandwich materials is investigated as a reference. For a successful test and reliable results, several technical issues are considered, such as the suitable lubrication configuration and digital image correlation at elevated forming temperatures. The results revealed that the formability of non-reinforced sandwich materials with different core layer thicknesses exhibited compared formability to their monolithic steel sheet and no remarkable improvement in their formability with increasing the temperature up to 200 °C. Conversely, the formability of FML shows significant improvement (approx. 300%) with increasing temperature with a forming depth of about 33 mm at 235 °C compared to only 12 mm at RT. Full article
(This article belongs to the Special Issue Processing, Properties and Applications of Composite Materials)
Show Figures

Figure 1

20 pages, 21934 KiB  
Article
The Correlation of LVI Parameters and CAI Behaviour in Aluminium-Based FML
by Piotr Podolak, Magda Droździel-Jurkiewicz, Patryk Jakubczak and Jarosław Bieniaś
Materials 2023, 16(8), 3224; https://doi.org/10.3390/ma16083224 - 19 Apr 2023
Cited by 5 | Viewed by 1612
Abstract
An experimental analysis of mechanical behaviour for aluminium-based fibre metal laminates under compression after impact was conducted. Damage initiation and propagation were evaluated for critical state and force thresholds. Parametrization of laminates was done to compare their damage tolerance. Relatively low-energy impact had [...] Read more.
An experimental analysis of mechanical behaviour for aluminium-based fibre metal laminates under compression after impact was conducted. Damage initiation and propagation were evaluated for critical state and force thresholds. Parametrization of laminates was done to compare their damage tolerance. Relatively low-energy impact had a marginal effect on fibre metal laminates compressive strength. Aluminium–glass laminate was more damage-resistant than one reinforced with carbon fibres (6% vs. 17% of compressive strength loss); however, aluminium–carbon laminate presented greater energy dissipation ability (around 30%). Significant damage propagation before the critical load was found (up to 100 times the initial damaged area). Damage propagation for assumed load thresholds was minor in comparison to the initial damage size. Metal plastic strain and delaminations are dominant failure modes for compression after impact. Full article
(This article belongs to the Special Issue Advanced Manufacturing Processes of Metal Forming)
Show Figures

Figure 1

31 pages, 7711 KiB  
Review
Application of Composite Materials for Energy Generation Devices
by Tomasz Trzepieciński, Temesgen Batu, Fasikaw Kibrete and Hirpa G. Lemu
J. Compos. Sci. 2023, 7(2), 55; https://doi.org/10.3390/jcs7020055 - 3 Feb 2023
Cited by 18 | Viewed by 9877
Abstract
Globally, electricity demand rises by 1.8% per year; according to the American Energy Information Administration, global energy demand will increase by 47% over the next 30 years, driven by demographic and economic growth. Global demand for electricity is growing faster than renewable energy [...] Read more.
Globally, electricity demand rises by 1.8% per year; according to the American Energy Information Administration, global energy demand will increase by 47% over the next 30 years, driven by demographic and economic growth. Global demand for electricity is growing faster than renewable energy sources. Electricity production from renewable sources (i.e., biomass energy, geothermal energy, hydro energy, solar energy, tidal energy, wind energy) is on its way to strong growth around the world over the next dozen years. With the increasing demand for energy, new technologies and materials are being developed to replace exhaustible traditional construction materials. This article aims to provide a comprehensive overview of the research into the application of composite materials in mainstream power generation. The main energy generation technologies, i.e., photovoltaic panels, wind turbines, fuel cells, and biogas generators, were analysed and discussed. The review presented in this article also covers the latest achievements and prospects for the use of composite materials in energy generation devices. Full article
(This article belongs to the Special Issue Opportunities for Composites in the Future Energy Systems)
Show Figures

Figure 1

26 pages, 9284 KiB  
Review
Developments in Laminate Modification of Adhesively Bonded Composite Joints
by Farin Ramezani, Beatriz D. Simões, Ricardo J. C. Carbas, Eduardo A. S. Marques and Lucas F. M. da Silva
Materials 2023, 16(2), 568; https://doi.org/10.3390/ma16020568 - 6 Jan 2023
Cited by 20 | Viewed by 3947
Abstract
The use of carbon fibre reinforced polymer (CFRP) materials is increasing in many different industries, such as those operating in the aviation, marine, and automotive sectors. In these applications, composite parts are often joined with other composite or metallic parts, where adhesive bonding [...] Read more.
The use of carbon fibre reinforced polymer (CFRP) materials is increasing in many different industries, such as those operating in the aviation, marine, and automotive sectors. In these applications, composite parts are often joined with other composite or metallic parts, where adhesive bonding plays a key role. Unlike conventional joining methods, adhesive bonding does not add weight or require the drilling of holes, both of which are major sources of stress concentration. The performance of a composite joint is dependent on multiple factors and can be improved by modifying the adhesive layer or the composite layup of the adherend. Moreover, joint geometry, surface preparation, and the manufacturing methods used for production are also important factors. The present work reviews recent developments on the design and manufacture of adhesively bonded joints with composite substrates, with particular interest in adherend modification techniques. The effects of stacking sequence, use of thin-plies, composite metal laminates and its specific surface preparations, and the use of toughened surface layers in the composite adherends are described for adhesively bonded CFRP structures. Full article
Show Figures

Figure 1

17 pages, 6004 KiB  
Article
Experimental and Numerical Study of Thermal Residual Stresses on Multimaterial Adherends in Single-Lap Joints
by Beatriz D. Simões, Paulo D. P. Nunes, Farin Ramezani, Ricardo J. C. Carbas, Eduardo A. S. Marques and Lucas F. M. da Silva
Materials 2022, 15(23), 8541; https://doi.org/10.3390/ma15238541 - 30 Nov 2022
Cited by 14 | Viewed by 3292
Abstract
The presence of residual stresses in composite materials can significantly affect material performance, especially when integrated in bonded joints. These stresses, often generated during the cure process, can cause cracking and distortion of the material, and are caused by differences in the coefficients [...] Read more.
The presence of residual stresses in composite materials can significantly affect material performance, especially when integrated in bonded joints. These stresses, often generated during the cure process, can cause cracking and distortion of the material, and are caused by differences in the coefficients of thermal expansion or cure shrinkage. In the current research, multimaterial adherends combining carbon-fibre-reinforced polymer (CFRP) and aluminium in a single-lap joint (SLJ) configuration are analysed, allowing us to understand the effect of the thermal residual stresses, developed during the curing process, in the overall performance of the joints. A numerical model resorting to a finite element analysis (FEA) is developed to assess and predict the behaviour of the joints. The use of FML (fibre metal laminates) was found to significantly improve the strength of the joints, as well as the failure mode. The proposed geometry performed similarly to the comparable FML geometry, in addition to a decrease in the joint weight. Full article
(This article belongs to the Special Issue Sandwich Composites: Design, Simulation and Applications)
Show Figures

Figure 1

Back to TopTop