Experimental Study on Mechanical Performance of Single-Side Bonded Carbon Fibre-Reinforced Plywood for Wood-Based Structures
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Materials
2.1.1. Mechanical Properties of Plywood
2.1.2. Mechanical Properties of CFRP
2.1.3. Adhesive
2.2. Specimen Preparation
2.3. Measurement Campaign
2.3.1. Three-Point Bending Test
2.3.2. Cantilever Bending Test
2.3.3. System Dynamics
3. Results and Discussion
3.1. EDS Analysis of Carbon Fibre-Reinforced Plywood
3.2. Mechanical and Physical Properties of Test Materials
3.3. Three-Point Bending Test
3.4. Deformation of Samples
3.5. System Dynamic Characteristics
4. Conclusions
- (1)
- All samples tested in the three-point bending process failed in the areas furthest from the neutral axis. In the case of unreinforced samples, the failure was abrupt and manifested as a sudden crack. In the case of CFRP-reinforced plywood samples, the failure process was preceded by a relatively slow propagation of cracks.
- (2)
- During the bending tests, no failure of the adhesive bond between the CFRP panel and plywood was observed.
- (3)
- Both an increase in the bending strength and a decrease in deflection were observed in the case of CFRP-reinforced plywood samples.
- (4)
- For the CFRP-reinforced plywood, where the sample was subjected to tension stress, the value of tensile stress decreased by sixteen-fold (from 1.95 N/mm2 to 0.12 N/mm2), and the value of compressive stress decreased by more than seven-fold (from 1.95 N/mm2 to 0.27 N/mm2) compared to the unreinforced plywood sample.
- (5)
- Based on the stress occurring at the tensile and compressive sides of the CFRP-reinforced plywood sample’s surface during a cantilever bending test, it was found that the value of the modulus of rupture (MOR) decreased by three-fold and the value of the modulus of elasticity (MOE) decreased by more than five-fold compared to the unreinforced plywood sample.
- (6)
- A dynamic analysis allowed us to determine that the frequency of natural vibrations of the CFRP-reinforced plywood sample increased by about 33% (from 30 Hz to 40 Hz) compared to the unreinforced plywood sample.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Ramage, M.; Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Shah, D.; Wu, G.; Tu, L.; Fleming, P.; Densley-Tingley, D.; et al. The wood from the trees: The use of timber in construction. Renew. Sustain. Energy Rev. 2017, 68, 333–359. [Google Scholar] [CrossRef]
- Szwajka, K.; Zielińska-Szwajka, J.; Trzepieciński, T. Experimental Analysis of Smart Drilling for the Furniture Industry in the Era of Industry 4.0. Materials 2024, 17, 2033. [Google Scholar] [CrossRef] [PubMed]
- Sandberg, D. Additives in Wood Products—Today and Future Development. In Environmental Impacts of Traditional and Innovative Forest-Based Bioproducts, 1st ed.; Kutnar, A., Muthu, S., Eds.; Springer: Singapore, 2016; Volume 1, pp. 105–172. [Google Scholar]
- Li, W.; Zhang, Z.; Zhou, G.; Leng, W.; Mei, C. Understanding the interaction between bonding strength and strain distribution of plywood. Int. J. Adhes. Adhes. 2020, 98, 102506. [Google Scholar] [CrossRef]
- de la Cruz-Carrera, R.; Carrillo-Parra, A.; Prieto-Ruíz, J.Á.; Fuentes-Talavera, F.J.; Ruiz-Aquino, F.; Goche-Télles, J.R. Modulus of Elasticity in Plywood Boards: Comparison between a Destructive and a Nondestructive Method. Forests 2024, 15, 1596. [Google Scholar] [CrossRef]
- Fateh, T.; Rogaume, T.; Luche, J.; Richard, F.; Jabouille, F. Kinetic and mechanism of the thermal degradation of a plywood by using thermogravimetry and Fourier-transformed infrared spectroscopy analysis in nitrogen and air atmosphere. Fire Saf. J. 2013, 58, 25–37. [Google Scholar] [CrossRef]
- Xu, X.; Yang, X.; Lyu, J.; Chen, L.; Sun, Y.; Xu, S. Dynamic mechanical characteristics of poplar veneers painted with damping coatings. J. Nanjing For. Univ. 2016, 59, 125–130. [Google Scholar]
- Camero, A.Á.; Castellón, D.G.; Lazo, D.Á.; Terrero, B.R. Análisis de la estructura físico-mecánica de muebles a base de tablero de fibras de densidad media y madera contrachapada. Cienc. For. Y Ambient. 2019, 4, 55–65. [Google Scholar]
- Ferreira, B.S.; Arroyo, F.N.; Kondo, M.Y.; Santos, H.F.d.; Barreto, R.L.; Dias, A.M.P.G.; Lahr, F.A.R.; Christoforo, A.L.; Campos, C.I.d. Physical and Mechanical Properties of Plywood Produced with Thermally Treated Pinus taeda Veneers. Forests 2022, 13, 1398. [Google Scholar] [CrossRef]
- Saal, K.; Kallakas, H.; Tuhkanen, E.; Just, A.; Rohumaa, A.; Kers, J.; Kalamees, T.; Lohmus, R. Fiber-Reinforced Plywood: Increased Performance with Less Raw Material. Materials 2024, 17, 3218. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, T.; Crocetti, R.; Walinder, M. Experimental investigation on mechanical properties of acetylated birch plywood and its angle-dependence. Construction and Building Materials 2022, 344, 128277. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, Q.; Chen, X.; Luo, X.; Zhang, F.; Zhou, G.; Zhang, J.; Zhang, L.; Meng, Y.; Ren, Y.; et al. Performance Evaluation of Carbon Fiber Fabric-Reinforced Formaldehyde-Free High-Strength Plywood. Polymers 2024, 16, 2637. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, T.; Jiang, B.; Zhao, L.; Liu, H.; Zhang, J.; Fan, J.; Guo, Z.; Huang, Y. Interfacially reinforced carbon fiber silicone resin via constructing functional nano-structural silver. Compos. Sci. Technol. 2019, 181, 1–6. [Google Scholar] [CrossRef]
- Newcomb, B. Processing, structure, and properties of carbon fibers. Compos. Part A 2016, 91, 262–282. [Google Scholar] [CrossRef]
- Das, T.; Ghosh, P.; Das, N. Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: A review. Adv. Compos. Hybrid Mater. 2019, 2, 214–233. [Google Scholar] [CrossRef]
- Li, Q.; Xie, S.; Serem, W.; Naik, M.; Liu, L.; Yuan, J. Quality Carbon Fiber from Fractionated Lignin. Green Chem. 2017, 19, 1628–1634. [Google Scholar] [CrossRef]
- Zhang, X.C.; Xue, J.Y.; Zhao, H.T.; Sui, Y. Experimental study on Chinese ancient timber frame building by shaking table test. Struct. Eng. Mech. 2011, 40, 453–469. [Google Scholar] [CrossRef]
- Plevris, N.; Triantafillou, T.C. FRP-reinforced wood as structural materials. J. Mater. Civil Eng. 1992, 4, 300–317. [Google Scholar] [CrossRef]
- Abbass, A.; Lourenco, P.B.; Oliveira, D.V. The use of natural fibers in repairing and strengthening of cultural heritage buildings. Mater. Today Proc. 2020, 31, S321–S328. [Google Scholar] [CrossRef]
- Zhaoa, X.B.; Zhanga, F.L.; Xue, J.Y.; Ma, L.L. Shaking table tests on seismic behavior of ancient timber structure reinforced with CFRP sheet. Eng. Struct. 2019, 197, 109405. [Google Scholar] [CrossRef]
- Li, Y.F.; Tsai, M.J.; Wei, T.F.; Wang, W.C. A study on wood beams strengthened by FRP composite materials. Construction and Building Materials 2014, 62, 118–125. [Google Scholar] [CrossRef]
- Micelli, F.; Scialpi, V.; Tegolam, A.H. Flexural reinforcement of glulam timber beams and joints with carbon fiber-reinforced polymer rods. J. Compos. Constr. 2005, 9, 337–347. [Google Scholar] [CrossRef]
- Kim, Y.J.; Hossain, M.; Harries, K.A. CFRP strengthening of timber beams recovered from a 32 year old Quonset: Element and system level tests. Eng. Struct. 2013, 57, 213–221. [Google Scholar] [CrossRef]
- Mechanical Testing of Composites. Available online: https://www.addcomposites.com/post/mechanical-testing-of-composites (accessed on 8 December 2024).
- Scutaru, M.L.; Itu, C.; Marin, M.; Grif, H.Ș. Bending Tests Used to Determine the Mechanical Properties of the Components of a Composite Sandwich Used in Civil Engineering. Procedia Manuf. 2019, 32, 259–267. [Google Scholar] [CrossRef]
- Senthilkumar, K.; Chandrasekar, M.; Alothman, O.Y.; Fouad, H.; Jawaid, M.; Azeem, M.A. Flexural, impact and dynamic mechanical analysis of hybrid composites: Olive tree leaves powder/ pineapple leaf fibre/epoxy matrix. J. Mater. Res. Technol. 2022, 21, 4241–4252. [Google Scholar] [CrossRef]
- He, B.; Wang, B.; Wang, Z.; Qi, S.; Tian, G.; Wu, D. Mechanical properties of hybrid composites reinforced by carbon fiber and high-strength and high-modulus polyimide fiber. Polymer 2020, 204, 122830. [Google Scholar] [CrossRef]
- Nordin, H.; Täljsten, B. Testing of hybrid FRP composite beams in bending. Compos. Part B Eng. 2004, 35, 27–33. [Google Scholar] [CrossRef]
- Niemz, P.; Sonderegger, W.; Gustafsson, P.J.; Kasal, B.; Polocoşer, T. Strength Properties of Wood and Wood-Based Materials. In Springer Handbook of Wood Science and Technology; Niemz, P., Teischinger, A., Sandberg, D., Eds.; Springer Handbooks; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Graupner, N.; Müssig, J. Interfacial and Interlaminar Shear Strength of Unidirectional Viscose Fibre-Reinforced Epoxy Composites—An Overview of the Comparability of Results Obtained by Different Test Methods. Front. Mater. 2022, 9, 709845. [Google Scholar] [CrossRef]
- Wang, B.; Bachtiar, E.V.; Yan, L.; Kasal, B.; Fiore, V. Flax, Basalt, E-Glass FRP and Their Hybrid FRP Strengthened Wood Beams: An Experimental Study. Polymers 2019, 11, 1255. [Google Scholar] [CrossRef]
- Huang, B.; Ma, M.; Liu, X.; Shi, Z.; Wang, A.; Xu, G.; Yue, Q.R. Investigation on the fundamental mechanical properties and probabilistic characteristics of unidirectional carbon fiber reinforced polymer composite plates. Polym. Test. 2024, 131, 108355. [Google Scholar] [CrossRef]
- Kibrete, F.; Trzepieciński, T.; Gebremedhen, H.S.; Woldemichael, D.E. Artificial Intelligence in Predicting Mechanical Properties of Composite Materials. J. Compos. Sci. 2023, 7, 364. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, G.; Vaidya, U.; Wang, H. Past, present and future prospective of global carbon fibre composite developments and applications. Compos. Part B Eng. 2023, 250, 110463. [Google Scholar] [CrossRef]
- Vasiliev, V.V.; Morozov, E.V. Advanced Mechanics of Composite Materials, 2nd ed.; Elsevier: Oxford, UK, 2007; Volume 53. [Google Scholar]
- Li, X.; Zhang, X.; Chen, J.; Huang, L.; Lv, Y. Effect of marine environment on the mechanical properties degradation and long-term creep failure of CFRP. Mater. Today Commun. 2022, 31, 103834. [Google Scholar] [CrossRef]
- Hegde, S.; Shenoy, B.S.; Chethan, K.N. Review on carbon fiber reinforced polymer (CFRP) and their mechanical performance. Mater. Today Proc. 2019, 19, 658–662. [Google Scholar] [CrossRef]
- Khan, F.; Hossain, N.; Mim, J.J.; Rahman, S.M.M.; Iqbal, M.J.; Billah, M.; Chowdhury, M.A. Advances of composite materials in automobile applications—A review. J. Eng. Res. 2024, in press. [Google Scholar] [CrossRef]
- Zhou, H.; Gao, F.; Gu, P. Research on laser ultrasonic propagation characteristics and quantitative detection of delamination of carbon fiber composite. Optik 2022, 271, 170173. [Google Scholar] [CrossRef]
- Tazuke, M.; Miyakoshi, T.; Hosoi, A.; Michishio, K.; Oshima, N.; Kawada, H. Very high-cycle fatigue properties of 90° unidirectional CFRP laminates and evaluation of fatigue limits by free volume measurement using positron microscopy. Mech. Eng. J. 2023, 10, 23-00089. [Google Scholar] [CrossRef]
- Kallakas, H.; Rohumaa, A.; Vahermets, H.; Kers, J. Effect of Different Hardwood Species and Lay-Up Schemes on the Mechanical Properties of Plywood. Forests 2020, 11, 649. [Google Scholar] [CrossRef]
- Auriga, R.; Gumowska, A.; Szymanowski, K.; Wronka, A.; Robles, E.; Ocipka, P.; Kowaluk, G. Performance properties of plywood composites reinforced with carbon fibers. Compos. Struct. 2020, 248, 112533. [Google Scholar] [CrossRef]
- Bal, B.C. Some physical and mechanical properties of reinforced laminated veneer lumber. Constr. Build. Mater. 2014, 68, 120–126. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X.; Zhong, W.; Wang, H.; Cao, P. Evaluation of mechanical properties of reinforced poplar laminated veneer lumber. BioResources 2015, 10, 7455–7465. [Google Scholar] [CrossRef]
- Wei, P.; Wang, B.J.; Zhou, D.; Dai, C.; Wang, Q.; Huang, S. Mechanical properties of poplar laminated veneer lumber modified by carbon fiber reinforced polymer. BioResources 2013, 8, 4883–4898. [Google Scholar] [CrossRef]
- Omrani, P.; Abdolzadeh, H.; Roshan, F.; Ganjkhani, M. Applicational Properties of Reinforced Plywood with Nanomaterials and Kenaf Fiber. BioResources 2023, 18, 7054–7065. [Google Scholar] [CrossRef]
- Ovesy, H.R.; Fazlati, J. Buckling and free vibration finite strip analysis of composite plates with cutout based on two different modeling approaches. Compos. Struct. 2012, 94, 1250–1258. [Google Scholar] [CrossRef]
- Venkatachari, A.; Natarajan, S.; Haboussi, M.; Ganapathi, M. Environmental effects on the free vibration of curvilinear fibre composite laminates with cutouts. Compos. Part B Eng. 2016, 88, 131–138. [Google Scholar] [CrossRef]
- Rajamani, A.; Prabhakaran, R. Dynamic response of composite plates with cut-outs, part I: Simply-supported plates. J. Sound Vib. 1977, 54, 549–564. [Google Scholar] [CrossRef]
- Mandal, A.; Ray, C.; Haldar, S. Experimental and numerical studies on vibration characteristics of laminated composite skewed shells with cutout. Compos. Part B Eng. 2019, 161, 228–240. [Google Scholar] [CrossRef]
- Fiorelli, J.; Dias, A.A. Fiberglass-reinforced glulam beams: Mechanical properties and theoretical model. Mater. Res. 2006, 9, 263–269. [Google Scholar] [CrossRef]
- Bal, B.C. Flexural properties, bonding performance and splitting strength of LVL reinforced with woven glassfiber. Constr. Build Mater. 2014, 51, 9–14. [Google Scholar] [CrossRef]
- Guo, F.; Al-Saadi, S.; Singh Raman, R.K.; Zhao, X. Durability of Fibre Reinforced Polymers in Exposure to Dual Environment of Seawater Sea Sand Concrete and Seawater. Materials 2022, 15, 4967. [Google Scholar] [CrossRef]
- Kunioka, M.; Shimada, T.; Hagihara, H.; Funabashi, M.; Suda, H.; Horizono, H. Quick Preparation of Moisture-Saturated Carbon Fiber-Reinforced Plastics and Their Accelerated Ageing Tests Using Heat and Moisture. Polymers 2016, 8, 242. [Google Scholar] [CrossRef]
- Novosel, A.; Sedlar, T.; Čizmar, D.; Turkulin, H.; Živković, V. Structural reinforcement of bi-directional oak-wood lamination by carbon fibre implants. Constr. Build. Mater. 2021, 187, 123073. [Google Scholar] [CrossRef]
- Carbon Fiber Reinforced Polymer (CFRP) Laminates for Structural Strengthening. Available online: https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1022&context=ectfs (accessed on 8 December 2024).
- Işleyen, Ü.K.; Kesik, H.İ. Experimental and numerical analysis of compression and bending strength of old wood reinforced with CFRP strips. Structures 2021, 33, 259–271. [Google Scholar] [CrossRef]
- EN 310; Wood-Based Panels—Determination of Modulus of Elasticity in Bending and of Bending Strength. European Committee for Standardization: Brussels, Belgium, 1993.
- Szwajka, K.; Zielińska-Szwajka, J.; Trzepieciński, T. The Use of a Radial Basis Function Neural Network and Fuzzy Modelling in the Assessment of Surface Roughness in the MDF Milling Process. Materials 2023, 16, 5292. [Google Scholar] [CrossRef]
- Wang, X.Q.; So, R.M.C. Various standing waves in a Timoshenko beam. J. Sound Vibr. 2005, 280, 311–328. [Google Scholar] [CrossRef]
Material | Density (g/cm3) | Modulus of Elasticity (N/mm2) | Bending Strength (N/mm2) | Ultimate Tensile Strength (N/mm2) |
---|---|---|---|---|
Plywood | 0.652 (0.1) | 5560 (261) | 2200 (189) | 36 (5) |
CFRP | 1.55 (0.3) | 64,530 (676) | 82,000 (645) | 752 (25) |
Ultimate Tensile Strength (N/mm2) | Hardness (Shore) | Apparent Shear Strength (N/mm2) |
---|---|---|
21–24 | 70 D | 17–21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szwajka, K.; Zielińska-Szwajka, J.; Trzepieciński, T.; Szewczyk, M. Experimental Study on Mechanical Performance of Single-Side Bonded Carbon Fibre-Reinforced Plywood for Wood-Based Structures. Materials 2025, 18, 207. https://doi.org/10.3390/ma18010207
Szwajka K, Zielińska-Szwajka J, Trzepieciński T, Szewczyk M. Experimental Study on Mechanical Performance of Single-Side Bonded Carbon Fibre-Reinforced Plywood for Wood-Based Structures. Materials. 2025; 18(1):207. https://doi.org/10.3390/ma18010207
Chicago/Turabian StyleSzwajka, Krzysztof, Joanna Zielińska-Szwajka, Tomasz Trzepieciński, and Marek Szewczyk. 2025. "Experimental Study on Mechanical Performance of Single-Side Bonded Carbon Fibre-Reinforced Plywood for Wood-Based Structures" Materials 18, no. 1: 207. https://doi.org/10.3390/ma18010207
APA StyleSzwajka, K., Zielińska-Szwajka, J., Trzepieciński, T., & Szewczyk, M. (2025). Experimental Study on Mechanical Performance of Single-Side Bonded Carbon Fibre-Reinforced Plywood for Wood-Based Structures. Materials, 18(1), 207. https://doi.org/10.3390/ma18010207