Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (126)

Search Parameters:
Keywords = fibre characteristic value

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 18761 KiB  
Article
The Influence of Recipe Modification and the Technological Method on the Properties of Multigrain Snack Bars
by Hanna Kowalska, Ewelina Masiarz, Elżbieta Hać-Szymańczuk, Anna Żbikowska, Agata Marzec, Agnieszka Salamon, Mariola Kozłowska, Anna Ignaczak, Małgorzata Chobot, Wioletta Sobocińska and Jolanta Kowalska
Molecules 2025, 30(15), 3160; https://doi.org/10.3390/molecules30153160 - 29 Jul 2025
Viewed by 244
Abstract
This study aimed to assess the use of selected raw materials, such as whole-grain oat flakes, pumpkin seeds, sunflower seeds, and flaxseeds, to obtain bars using baking and drying methods. Modifying the bars’ composition involved selecting the fibre preparation, replacing water with NFC [...] Read more.
This study aimed to assess the use of selected raw materials, such as whole-grain oat flakes, pumpkin seeds, sunflower seeds, and flaxseeds, to obtain bars using baking and drying methods. Modifying the bars’ composition involved selecting the fibre preparation, replacing water with NFC juice, and using fresh apple juice and apple pomace. The Psyllium fibre preparation, also in the form of a mixture with apple fibre, was the most useful in dough cohesion and the quality of the bars. Baked bars were characterised by higher sensory quality than those obtained by drying. Microwave–convection drying was a good alternative to baking, primarily due to the lower temperature resulting in a lower acrylamide content and comparable product quality. The basic grain ingredients and fibre preparations mainly shaped the nutritional and energy value and the sensory and microbiological quality. Modifying the recipe using NFC or fresh juice and apple pomace allowed the bars to develop new properties and quality characteristics. The use of NFC juices resulted in a reduction in the pH of the bars, which is associated with a higher microbiological quality of the bars. All bars had low acrylamide content, significantly lower than the permissible level. Using fresh pomace or fibre preparations made from by-products is a possibility to increase the fibre content in the bars and a method of managing by-products. Full article
Show Figures

Figure 1

11 pages, 1578 KiB  
Article
Impact of Hydrofluoric Acid, Ytterbium Fiber Lasers, and Hydroxyapatite Nanoparticles on Surface Roughness and Bonding Strength of Resin Cement with Different Viscosities to Lithium Disilicate Glass Ceramic: SEM and EDX Analysis
by Abdullah Aljamhan and Fahad Alkhudhairy
Crystals 2025, 15(7), 661; https://doi.org/10.3390/cryst15070661 - 20 Jul 2025
Viewed by 253
Abstract
This study looks at the effect of surface conditioners hydrofluoric acid (HFA), Ytterbium fibre laser (YFL), and Hydroxyapatite nanoparticles (HANPs) on the surface roughness (Ra) and shear bond strength (SBS) of different viscosity resin cements to lithium disilicate glass ceramic (LDC). A total [...] Read more.
This study looks at the effect of surface conditioners hydrofluoric acid (HFA), Ytterbium fibre laser (YFL), and Hydroxyapatite nanoparticles (HANPs) on the surface roughness (Ra) and shear bond strength (SBS) of different viscosity resin cements to lithium disilicate glass ceramic (LDC). A total of 78 IPS Emax discs were prepared and categorized into groups based on conditioning methods. Group 1 HFA–Silane (S), Group 2: YFL-S, and Group 3: HANPs-S. A scanning electron microscope (n = 1) and profilometer (n = 5) were used on each conditioned group for the assessment of surface topography and Ra. A total of 20 LDC discs for each conditioned group were subsequently categorized into two subgroups based on the application of high- and low-viscosity dual-cured resin cement. SBS and failure mode were assessed. ANOVA and post hoc Tukey tests were employed to identify significant differences in Ra and SBS among different groups. LDC conditioned with HFA-S, HANPs-S, and YFL-S demonstrated comparable Ra scores (p > 0.05). Also, irrespective of the type of conditioning regime, the use of low-viscosity cement improves bond values when bonded to the LDC. LDC treated with YFL-S and HANPs-S can serve as an effective substitute for HFA-S in enhancing the Ra and surface characteristics of LDC. The low-viscosity resin cement demonstrated superior performance by achieving greater bond strength. Full article
Show Figures

Figure 1

15 pages, 381 KiB  
Article
Agronomic Characteristics and Nutritive Value of Purple Prairie Clover (Dalea purpurea Vent) Grown in Irrigated and Dryland Conditions in Western Canada
by Yuxi Wang, Alan Iwaasa, Tim McAllister and Surya Acharya
Grasses 2025, 4(3), 27; https://doi.org/10.3390/grasses4030027 - 2 Jul 2025
Viewed by 258
Abstract
Three purple prairie clover (PPC; Dalea purpurea Vent.) varieties, namely Common seed (CS), AC Lamour (ACL) and Bismarck (BIS), were established in plots of irrigated land (rain-fed plus irrigation, Lethbridge, AB) and dryland (rain-fed only, Swift Current, SK) to assess its agronomic characteristics [...] Read more.
Three purple prairie clover (PPC; Dalea purpurea Vent.) varieties, namely Common seed (CS), AC Lamour (ACL) and Bismarck (BIS), were established in plots of irrigated land (rain-fed plus irrigation, Lethbridge, AB) and dryland (rain-fed only, Swift Current, SK) to assess its agronomic characteristics and nutritive value under different ecoclimate and growing conditions in Western Canada. Each seed source was replicated in four test plots arranged as a randomized complete block design at each experimental site. Forage mass on dry matter (DM) basis, canopy height, proportions of leaf and stem and nutritive value were determined at vegetative (VEG), full flower (FF) and late flower (LF) phenological stages. The forage masses of the three PPC varieties were similar (p < 0.05) at each phenological stage with the mean values for VFG, FF and LF being 4739, 4988 and 6753 kg DM/ha under the Lethbridge irrigated conditions, and 1423, 2014 and 2297 kg DM/ha under the Swift Current dryland conditions. The forage mass was higher (p < 0.001) under Lethbridge irrigation than under Swift Current dryland conditions and increased (p < 0.05) with maturity. The three varieties had similar concentrations of organic matter (OM), neutral detergent fibre (NDF), acid detergent fibre (ADF) and crude protein (CP) and in vitro DM digestibility (DMD) at each phenological stage, but CP concentration and in vitro DMD decreased (p < 0.001) whilst NDF and ADF concentration increased (p < 0.001) with maturity. Purple prairie clover grown at Lethbridge irrigated land had higher (p < 0.001) DMD, OM and CP, but lower (p < 0.001) NDF, ADF and condensed tannin concentrations than that grown at Swift Current dryland conditions. These results indicate that PPC has great potential as an alternative legume forage for the cattle industry. Full article
(This article belongs to the Special Issue The Role of Forage in Sustainable Agriculture)
Show Figures

Figure 1

16 pages, 2192 KiB  
Article
Proton Density of the Dorsal Root Ganglia in Classical Fabry Disease: MRI Correlates of Small Fibre Neuropathy
by Simon Weiner, Sarah Perleth, Charlotte Schäfer Gómez, Thomas Kampf, Kolja Lau, Florian Hessenauer, György Homola, Peter Nordbeck, Nurcan Üçeyler, Claudia Sommer, Mirko Pham and Magnus Schindehütte
Biomedicines 2025, 13(6), 1468; https://doi.org/10.3390/biomedicines13061468 - 13 Jun 2025
Viewed by 531
Abstract
Background/Objectives: Fabry disease (FD) is a lysosomal storage disorder often associated with early-onset neuropathic pain, attributed to small fibre neuropathy (SFN). The dorsal root ganglion (DRG) has emerged as a critical site of early pathophysiological involvement in FD, with structural and functional alterations [...] Read more.
Background/Objectives: Fabry disease (FD) is a lysosomal storage disorder often associated with early-onset neuropathic pain, attributed to small fibre neuropathy (SFN). The dorsal root ganglion (DRG) has emerged as a critical site of early pathophysiological involvement in FD, with structural and functional alterations implicated in the development of neuropathic symptoms. This exploratory study introduces DRG proton density (DRG-PD) as a novel MRI-derived biomarker and evaluates its association with SFN. Methods: Eighty genetically confirmed FD patients underwent high-resolution 3T MRI with DRG-PD quantification at the lumbosacral levels L5 and S1. DRG-PD was derived from B1-corrected multi-echo spin echo sequences and normalised to cerebrospinal fluid intensity. All patients underwent clinical, biochemical and histological evaluation to determine SFN status. Associations between DRG imaging parameters and clinical variables were analysed using correlation and regression models. Diagnostic performance was evaluated using receiver operating characteristic curve analysis. Results: DRG-PD values were significantly increased in patients with classical FD and SFN, demonstrating a large effect size (Cliff’s δ = 0.92) and excellent discriminatory performance (AUC = 0.96). In contrast, DRG volume and T2 relaxation time were not significantly associated with SFN status. DRG-PD remained an independent predictor of SFN in multivariable logistic regression (p = 0.019). Conclusions: DRG-PD is a non-invasive correlate of SFN in classical FD. It may provide superior diagnostic value compared to existing MRI metrics and reflects proximal ganglionic pathology not captured by distal histological assessments. Full article
(This article belongs to the Special Issue Biomarkers in Pain)
Show Figures

Figure 1

18 pages, 3164 KiB  
Article
Application of Zinc-Based Metal-Organic Framework ZIF-8 on Paper: A Pilot Study on Visual Appearance and Effectiveness
by Eleonora Balliana, Mathilde Marchand, Valentina Di Matteo, Barbara Ballarin, Maria Cristina Cassani, Silvia Panzavolta and Elisabetta Zendri
Polymers 2025, 17(10), 1369; https://doi.org/10.3390/polym17101369 - 16 May 2025
Cited by 1 | Viewed by 961
Abstract
Paper and cellulose-based materials are known for their sensitivity to humidity, which can create stresses among fibres and increase fragility. More importantly, humidity can lead to the formation of mould and stains, compromising both aesthetic value and long-term preservation, particularly for historical documents [...] Read more.
Paper and cellulose-based materials are known for their sensitivity to humidity, which can create stresses among fibres and increase fragility. More importantly, humidity can lead to the formation of mould and stains, compromising both aesthetic value and long-term preservation, particularly for historical documents and books. This study explored the application of in situ prepared Zeolitic Imidazolate Framework (ZIF-8), a zinc-based MOF, on paper as a potential antimicrobial material. Hand-made and commercially printed papers were tested to assess the effective deposition and formation of the ZIF-8 network, with a focus on both visual appearance and physicochemical characteristics. X-ray fluorescence and diffraction, infrared spectroscopy, and scanning electron microscopy analysis confirmed the successful formation of the ZIF-8 network in all papers. The Zn content varied, as expected, depending on application time and paper characteristics. All treated papers exhibited minor variations in brilliance and showed slightly increased rigidity. The formation of white spots linked to Zn accumulation was observed, particularly in printed books where colourimetric and microscopic variations were more pronounced. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

26 pages, 28205 KiB  
Article
Enhanced Mechanical Performance of Resin-Infused 3D-Printed Polymer Lattices
by Jakub J. Słowiński, Maciej Roszak, Mikołaj Kazimierczak, Grzegorz Skrzypczak and Maksymilian Stępczak
Polymers 2025, 17(8), 1028; https://doi.org/10.3390/polym17081028 - 10 Apr 2025
Viewed by 794
Abstract
Fused deposition modelling (FDM) technology provides a flexible and cost-effective solution for the manufacture of polymer components, enabling the precise design of structures and the incorporation of a variety of composite materials. Its development is confirmed by numerous studies on fibre reinforcements (e.g., [...] Read more.
Fused deposition modelling (FDM) technology provides a flexible and cost-effective solution for the manufacture of polymer components, enabling the precise design of structures and the incorporation of a variety of composite materials. Its development is confirmed by numerous studies on fibre reinforcements (e.g., GFRP and CF) and thermosetting resin modifications, resulting in improved impact strength and fracture toughness and increased thermal stability of products. The final mechanical properties are significantly influenced by processing parameters (e.g., fill density, layer height, and printing speed) and internal geometry (e.g., lattice structures), which can be further optimised by numerical analyses using constitutive models such as the Johnson–Cook model. The focus of the study presented here is on the fabrication of composites from FDM dies filled with F8 polyurethane resin. Filaments, including PETG carbon and PETG, were tested for potential applications with the resin. A static compression test, supported by numerical analysis using the Johnson–Cook model, was carried out to identify key mechanical characteristics and to predict the material’s behaviour under different loading conditions. The results indicate that these structures exhibit numerous potential delamination planes and voids between filament paths, leading to relatively low maximum stress values (σm ≈ 2.5–3 MPa). However, the impregnation with polyurethane resin significantly enhances these properties by bonding the layers and filling the pores, resulting in a more homogeneous and stronger composite. Additionally, numerical simulations effectively captured key aspects of structural behaviour, identifying critical stress concentration areas, particularly along the side walls and in regions forming triangular stress zones. These findings provide valuable insights into the potential of resin-filled FDM structures in engineering applications, demonstrating their improved performance over purely printed samples. Full article
(This article belongs to the Special Issue Polymers and Polymer Composite Structures for Energy Absorption)
Show Figures

Figure 1

42 pages, 4134 KiB  
Review
Solvent-Based Recycling as a Waste Management Strategy for Fibre-Reinforced Polymers: Current State of the Art
by Matthew J. Keith, Bushra Al-Duri, Tom O. McDonald and Gary A. Leeke
Polymers 2025, 17(7), 843; https://doi.org/10.3390/polym17070843 - 21 Mar 2025
Viewed by 1364
Abstract
The growing use of fibre-reinforced polymers (FRPs) is driving a demand for the development of sustainable end-of-life strategies. Solvolysis, a chemical recycling method using solvents to decompose the polymer matrix, has emerged as a promising approach for reclaiming both fibres and organic compounds [...] Read more.
The growing use of fibre-reinforced polymers (FRPs) is driving a demand for the development of sustainable end-of-life strategies. Solvolysis, a chemical recycling method using solvents to decompose the polymer matrix, has emerged as a promising approach for reclaiming both fibres and organic compounds from FRP waste. This work provides a comprehensive overview of solvolysis techniques by discussing the environmental benefits and economic opportunities of this technology, summarising the process conditions, and evaluating the characteristics of the recovered products. The economic viability of solvolysis lies in recovering high-value components; predominantly carbon fibres from CFRPs and organic products from GFRPs, which are suitable for reuse or as a feedstock for new composites. Solvolysis can operate under low temperature and pressure (LTP) or high temperature and pressure (HTP) conditions. The choice of solvent, catalyst, reaction time, and temperature is crucial to achieving high resin decomposition while preserving fibre properties. To achieve an economically viable and environmentally beneficial process, it will be essential to optimise these parameters. A key challenge is maintaining the strength and surface properties of the recovered fibres, as degradation in their performance can limit their suitability for high-performance applications. The implication of this is that, without careful consideration of the recycling process, FRPs cannot be fully circular. They will be continuously downgraded into low-value applications and ultimately incinerated or landfilled. This review further explores the diversity of organic products obtained, which can range from monomers to oligomers to complex mixtures. Efficient separation and upgrading techniques, such as distillation and liquid–liquid extraction, are essential to maximise the value of the recovered organics. These additional processing steps are likely to result in greater financial and resource costs within a commercial recycling system. This review concludes with a summary of commercial solvent-based recycling ventures and an outlook on future research directions, which includes the need to develop processes capable of recovering high-value, long carbon fibres. Successful development of such a process would represent a step-change in the value proposition of a carbon fibre recycling industry. Full article
(This article belongs to the Special Issue New Polymer Fibers: Production and Applications)
Show Figures

Figure 1

27 pages, 8299 KiB  
Article
Monte Carlo Micro-Stress Field Simulations in Flax/E-Glass Composite Laminae with Non-Circular Flax Fibres
by Nenglong Yang, Zhenmin Zou, Constantinos Soutis, Prasad Potluri and Kali Babu Katnam
Polymers 2025, 17(5), 674; https://doi.org/10.3390/polym17050674 - 2 Mar 2025
Viewed by 872
Abstract
This study explores the mechanical behaviour of intra-laminar hybrid flax/E-glass composites, focusing on the role of micro-scale irregularities in flax fibres. By employing computational micromechanics and Monte Carlo simulations, it analyses the influence of flax fibre geometry and elastic properties on the performance [...] Read more.
This study explores the mechanical behaviour of intra-laminar hybrid flax/E-glass composites, focusing on the role of micro-scale irregularities in flax fibres. By employing computational micromechanics and Monte Carlo simulations, it analyses the influence of flax fibre geometry and elastic properties on the performance of hybrid and non-hybrid composites. A Non-Circular Fibre Distribution (NCFD) algorithm is introduced to generate microstructures with randomly distributed non-circular flax and circular E-glass fibres, which are then modelled using a 3D representative volume element (RVE) model developed in Python 2.7 and implemented with Abaqus/Standard. The RVE dimensions were specified as ten times the mean characteristic length of flax fibres (580 μm) for the width and length, while the thickness was defined as one-tenth the radius of the E-glass fibre. Results show that Monte Carlo simulations accurately estimate the effect of fibre variabilities on homogenised elastic constants when compared to measured values and Halpin-Tsai predictions, and they effectively evaluate the fibre/matrix interfacial stresses and von Mises matrix stresses. While these variabilities minimally affect the homogenised properties, they increase the presence of highly stressed regions, especially at the interface and matrix of flax/epoxy composites. Additionally, intra-laminar hybridisation further increases local stress in these critical areas. These findings improve our understanding of the relationship between the natural fibre shape and mechanical performance in flax/E-glass composites, providing valuable insights for designing and optimising advanced composite materials to avoid or delay damage, such as matrix cracking and splitting, under higher applied loads. Full article
(This article belongs to the Special Issue Structure, Characterization and Application of Bio-Based Polymers)
Show Figures

Figure 1

14 pages, 950 KiB  
Review
Biological Guardians: Unveiling Microbial Solutions to Combat Cannabis sativa Fungal Pathogens
by S. M. Ahsan, Md. Injamum-Ul-Hoque, Ashim Kumar Das, Muhammad Imran, Soosan Tavakoli, Da Bin Kwon, Sang-Mo Kang, In-Jung Lee and Hyong Woo Choi
Stresses 2025, 5(1), 16; https://doi.org/10.3390/stresses5010016 - 17 Feb 2025
Cited by 2 | Viewed by 1357
Abstract
Cannabis (Cannabis sativa L.) is one of the earliest cultivated crops and is valued for its medicinal compounds, food, fibre, and bioactive secondary metabolites. The rapid expansion of the cannabis industry has surpassed the development of production system knowledge. The scientific community [...] Read more.
Cannabis (Cannabis sativa L.) is one of the earliest cultivated crops and is valued for its medicinal compounds, food, fibre, and bioactive secondary metabolites. The rapid expansion of the cannabis industry has surpassed the development of production system knowledge. The scientific community currently focuses on optimising agronomic and environmental factors to enhance cannabis yield and quality. However, cultivators face significant challenges from severe pathogens, with limited effective control options. The principal diseases include root rot, wilt, bud rot, powdery mildew, cannabis stunt disease, and microorganisms that reduce post-harvest quality. Sustainable management strategies involve utilising clean planting stocks, modifying environmental conditions, implementing sanitation, applying fungal and bacterial biological control agents, and drawing on decades of research on other crops. Plant–microbe interactions can promote growth and regulate secondary metabolite production. This review examines the recent literature on pathogen management in indoor cannabis production using biocontrol agents. Specific morphological, biochemical, and agronomic characteristics hinder the implementation of biological control strategies for cannabis. Subsequent investigations should focus on elucidating the plant–microbe interactions essential for optimising the effectiveness of biological control methodologies in cannabis cultivation systems. Full article
(This article belongs to the Collection Feature Papers in Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

22 pages, 4812 KiB  
Article
Mechanical Characterization of a Novel Cyclic Olefin-Based Hot-Melt Adhesive
by Vasco C. M. B. Rodrigues, Ana T. F. Venâncio, Eduardo A. S. Marques, Ricardo J. C. Carbas, Armina Klein, Ejiri Kazuhiro, Björn Nelson and Lucas F. M. da Silva
Materials 2025, 18(4), 855; https://doi.org/10.3390/ma18040855 - 15 Feb 2025
Cited by 1 | Viewed by 783
Abstract
A novel hot-melt cyclic olefin-based adhesive was designed as a transparent, non-tacky film of amorphous thermoplastic with a unique polymer micro-structure. The aim of the present paper is to assess the mechanical properties of the 0.1 mm thick COP hot-melt adhesive film through [...] Read more.
A novel hot-melt cyclic olefin-based adhesive was designed as a transparent, non-tacky film of amorphous thermoplastic with a unique polymer micro-structure. The aim of the present paper is to assess the mechanical properties of the 0.1 mm thick COP hot-melt adhesive film through adhesive characterizations tests. The glass transition temperature was determined using dynamic mechanical analysis (DMA). For mechanical characterization, bulk and thick adherend shear specimens were manufactured and tested at a quasi-static rate, where at least three specimens were used to calculate the average and standard deviation values. Tensile tests revealed the effects of molecular chain drawing and reorientation before the onset of strain hardening. Thick adherend shear specimens were used to retrieve shear properties. Fracture behaviour was assessed with the double cantilever beam (DCB) test and end-notched flexure (ENF) test, for characterization under modes I and II, respectively. To study the in-joint behaviour, single lap joints (SLJs) of aluminium and carbon fibre-reinforced polymer (CFRP) were manufactured and tested under different temperatures. Results showed a progressive interfacial failure following adhesive plasticization, allowing deformation prior to failure at 8 MPa. An adhesive failure mode was confirmed through scanning electron microscopy (SEM) analysis of aluminium SLJ. The adhesive exhibits tensile properties comparable to existing adhesives, while demonstrating enhanced lap shear strength and a distinctive failure mechanism. These characteristics suggest potential advantages in applications involving heat and pressure across automotive, electronics and structural bonding sectors. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

15 pages, 3730 KiB  
Article
Experimental–Analytical Method for Determining the Dynamic Coefficients of Turning Tools
by Lukasz Nowakowski, Slawomir Blasiak, Michal Skrzyniarz and Jaroslaw Rolek
Materials 2025, 18(3), 563; https://doi.org/10.3390/ma18030563 - 26 Jan 2025
Viewed by 745
Abstract
The article presents an analytical and experimental method for determining the dynamic coefficients of cutting tools, with particular emphasis on turning tools. The method involves aligning the acceleration profile obtained from empirical investigations with a mathematical model describing the oscillations of the cutting [...] Read more.
The article presents an analytical and experimental method for determining the dynamic coefficients of cutting tools, with particular emphasis on turning tools. The method involves aligning the acceleration profile obtained from empirical investigations with a mathematical model describing the oscillations of the cutting tool tip. The stiffness (k) and damping (c) coefficients determined using this approach enable the design of tools with desired dynamic characteristics, tailored to specific machining processes, such as machining with long overhangs. From the perspective of mechanical dynamics, selecting appropriate stiffness and damping values allows for the design of tools with optimal dynamic properties. High stiffness reduces the occurrence of deformations under external forces, while adequate damping facilitates the rapid attenuation of vibrations, thereby minimising their adverse effects on the machining process. The developed method could serve as a practical tool for identifying the dynamic parameters applicable to a wide variety of cutting tools. The analysis includes three types of turning tools: one with a steel shank, another with a carbide-core steel shank, and a third with a carbon fibre-core steel shank. The results of the tests indicate that the E-A20Q SDUCL 11 tool is best suited for operations requiring high stability and minimal vibration, owing to its favourable damping and stiffness properties. Full article
Show Figures

Figure 1

21 pages, 1976 KiB  
Article
Thermal Characteristics and Kinetics of the Thermal Degradation of Sugar Beet Waste Leaves and Pulp in Relation to Chemical Composition
by Sanja Ostojić, Darko Micić, Josipa Dukić, Iva Sabljak, Ayça Akyüz, Seda Ersus and Anet Režek Jambrak
Foods 2025, 14(2), 307; https://doi.org/10.3390/foods14020307 - 17 Jan 2025
Viewed by 1672
Abstract
Thermal characteristics of dried sugar beet pulp, leaves and leaf fractions obtained after extraction: fibrous leaf pulp and fibre rich leaf fraction, were investigated by differential scanning calorimetry and thermogravimetry. The sugar beet samples showed a similar thermal behaviour associated with a similar [...] Read more.
Thermal characteristics of dried sugar beet pulp, leaves and leaf fractions obtained after extraction: fibrous leaf pulp and fibre rich leaf fraction, were investigated by differential scanning calorimetry and thermogravimetry. The sugar beet samples showed a similar thermal behaviour associated with a similar composition. Two endotherms are found on the differential scanning calorimetry curves. First one in the temperature range 31–153 °C and the second from 150–160 °C. Thermal degradation kinetics was studied by thermogravimetric analysis. Four degradation stages were observed within the temperature range 25–700 °C. The kinetic parameters of the degradation, obtained by Ortega and Friedman non-isothermal isoconversional methods did not significantly differ between models: Ea-activation energy at a conversion degree 0.1–0.9 ranged 50–200 kJ/mol; lnA- the natural logarithm of the pre-exponential factor 8–48; kp1-thermal degradation rate constant at a conversion extent of 0.5 ranged of 0.19–2.55 min−1. Constant rate of degradation is highest for the sugar beet leaves kp1 (2.58–2.55 min−1), and kp2 (70.1–70.4 min−1). The results obtained are valuable for sugar beet leaf industrial processing. A positive environmental impact is achieved by transforming the waste into high-value food additives. Full article
Show Figures

Figure 1

18 pages, 1604 KiB  
Article
Enzymatic Modification of Apple Pomace and Its Application in Conjunction with Probiotics for Jelly Candy Production
by Jolita Jagelavičiutė, Dalia Čižeikienė and Loreta Bašinskienė
Appl. Sci. 2025, 15(2), 599; https://doi.org/10.3390/app15020599 - 9 Jan 2025
Cited by 4 | Viewed by 1277
Abstract
This study aimed to evaluate the applicational possibilities of enzymatically modified apple pomace (AP) in conjunction with probiotics as value-added ingredients for the production of jelly candies. AP was enzymatically modified with Pectinex® Ultra Tropical, Viscozyme® L, and Celluclast® 1.5 [...] Read more.
This study aimed to evaluate the applicational possibilities of enzymatically modified apple pomace (AP) in conjunction with probiotics as value-added ingredients for the production of jelly candies. AP was enzymatically modified with Pectinex® Ultra Tropical, Viscozyme® L, and Celluclast® 1.5 L (Novozyme A/S, Bagsværd, Denmark), and the soluble and insoluble dietary fibre content was determined using the Megazyme kit (Megazyme International Ireland Ltd., Wicklow, Ireland), reducing sugar content using the 3,5-dinitrosalicylic acid assay. The technological properties of the modified AP, such as its swelling capacity, water-retention capacity, oil-retention capacity, bulk density, and static and thermal emulsion stability, were evaluated. Enzymatically modified AP hydrolysed with Celluclast® 1.5 L was used for the production of jelly candies supplemented with Bifidobacterium animalis DSM 20105. The survival of probiotics in the jelly candies during in vitro digestion, the viability of probiotics during candy storage, and candy quality characteristics were analysed. Enzymatically modified AP had different carbohydrate compositions and technological properties, depending on the enzyme preparation used. Although the viability of probiotics in the jelly candies decreased during storage, a significantly higher viability of B. animalis was determined in jelly candies supplemented with hydrolysed AP compared with control candies made without AP after digestion in the saline, gastric, and intestine phases. This study shows that Celluclast® 1.5 L can be used for increasing the soluble dietary fibre in AP (18.4%), which can be further applied, in conjunction with B. animalis, for added-value jelly candy production. Full article
(This article belongs to the Special Issue New Advances in Functional Foods and Nutraceuticals)
Show Figures

Figure 1

28 pages, 14370 KiB  
Article
Experimental Study on Mechanical Performance of Single-Side Bonded Carbon Fibre-Reinforced Plywood for Wood-Based Structures
by Krzysztof Szwajka, Joanna Zielińska-Szwajka, Tomasz Trzepieciński and Marek Szewczyk
Materials 2025, 18(1), 207; https://doi.org/10.3390/ma18010207 - 6 Jan 2025
Viewed by 1064
Abstract
In addition to the traditional uses of plywood, such as furniture and construction, it is also widely used in areas that benefit from its special combination of strength and lightness, particularly as a construction material for the production of finishing elements of campervans [...] Read more.
In addition to the traditional uses of plywood, such as furniture and construction, it is also widely used in areas that benefit from its special combination of strength and lightness, particularly as a construction material for the production of finishing elements of campervans and yachts. In light of the current need to reduce emissions of climate-damaging gases such as CO2, the use of lightweight construction materials is very important. In recent years, hybrid structures made of carbon fibre-reinforced plastics (CFRPs) and metals have attracted much attention in many industries. In contrast to hybrid metal/carbon fibre composites, research relating to laminates consisting of CFRPs and wood-based materials shows less interest. This article analyses the hybrid laminate resulting from bonding a CFRP panel to plywood in terms of strength and performance using a three-point bending test, a static tensile test and a dynamic analysis. Knowledge of the dynamic characteristics of carbon fibre-reinforced plywood allows for the adoption of such cutting parameters that will help prevent the occurrence of self-excited vibrations in the cutting process. Therefore, in this work, it was decided to determine the effect of using CFRP laminate on both the static and dynamic stiffness of the structure. Most studies in this field concern improving the strength of the structure without analysing the dynamic properties. This article proposes a simple and user-friendly methodology for determining the damping of a sandwich-type system. The results of strength tests were used to determine the modulus of elasticity, modulus of rupture, the position of the neutral axis and the frequency domain characteristics of the laminate obtained. The results show that the use of a CFRP-reinforced plywood panel not only improves the visual aspect but also improves the strength properties of such a hybrid material. In the case of a CFRP-reinforced plywood panel, the value of tensile stresses decreased by sixteen-fold (from 1.95 N/mm2 to 0.12 N/mm2), and the value of compressive stresses decreased by more than seven-fold (from 1.95 N/mm2 to 0.27 N/mm2) compared to unreinforced plywood. Based on the stress occurring at the tensile and compressive sides of the CFRP-reinforced plywood sample surface during a cantilever bending text, it was found that the value of modulus of rupture decreased by three-fold and the value of the modulus of elasticity decreased by more than five-fold compared to the unreinforced plywood sample. A dynamic analysis allowed us to determine that the frequency of natural vibrations of the CFRP-reinforced plywood panel increased by about 33% (from 30 Hz to 40 Hz) compared to the beam made only of plywood. Full article
Show Figures

Figure 1

19 pages, 11813 KiB  
Article
Effects of Anatomical Variation on Ganglion Cell and Nerve Fibre Layer Evaluation by Optical Coherence Tomography
by Sami Dabbah, Jakob Bjerager, Mohamed Belmouhand, Simon P. Rothenbuehler, Inger Christine Munch, Miriam Kolko and Michael Larsen
J. Clin. Med. 2024, 13(23), 7193; https://doi.org/10.3390/jcm13237193 - 27 Nov 2024
Viewed by 979
Abstract
Background/Objectives: The automated analyses of optical coherence tomography (OCT) scans of the retina occasionally suggest the presence of tissue deficits when no visual field defects can be detected. This study was made to find the sources of such alerts. Methods: Data from [...] Read more.
Background/Objectives: The automated analyses of optical coherence tomography (OCT) scans of the retina occasionally suggest the presence of tissue deficits when no visual field defects can be detected. This study was made to find the sources of such alerts. Methods: Data from a population-based cohort of 360 participants aged 30–80 years was analysed for the anatomical sources of alerts after the extensive exclusion of participants where any suspicion of abnormality could be raised. An analysis was made of 12 × 9 mm volume scans centred between the disc and the fovea. The exclusions comprised 107 eyes with definite or borderline abnormal visual fields or other potentially confounding characteristics. A statistical analysis of the thickness patterns was made using the manufacturer’s proprietary algorithm. The analysis comprised alerts corresponding to local layer thickness values in the lower 5th percentile of an independent reference population. Results: Of the 613 eligible healthy eyes, thickness deficit alerts were seen in 391. They were related to the angle between the temporal nerve fibre ridges being wider, narrower, or rotated compared to the reference template in 174 eyes and to the variations in the size of the macula in 207 eyes. The source was unidentifiable in 28 eyes. The common sources were a thin papillomacular nerve fibre layer accompanied by arcuate nerve fibre ridges spaced far apart and a thinly, but wider than the normal macular ganglion cell layer. Conclusions: Anatomical variation in the retinal nerve fibre and ganglion cell layers was the source of more than 90% of the thickness deficit alerts in the eyes with normal visual fields. Full article
(This article belongs to the Special Issue Future Directions in Imaging-Guided Glaucoma Diagnosis and Therapy)
Show Figures

Figure 1

Back to TopTop