Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (574)

Search Parameters:
Keywords = fiber-optic communication

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8241 KB  
Article
Low Loss and High Polarization-Maintaining Single-Mode Hollow-Core Anti-Resonant Fibers with S+C+L+U Communication Bands
by Hongxiang Xu, Yuan Yang, Jinhui Yuan, Dongxin Wu, Yilin Huang, Shengbao Luo, Zhiyong Ren, Changming Xia, Jiantao Liu, Guiyao Zhou and Zhiyun Hou
Photonics 2025, 12(9), 846; https://doi.org/10.3390/photonics12090846 - 24 Aug 2025
Abstract
In this paper, a low loss and high polarization-maintaining single-mode hollow-core anti-resonant fiber (PM-HC-ARF) is designed. The elliptical core in the PM-HC-ARF is formed by strategically enlarging selected cladding air holes along the y-axis. Additionally, the variations in the wall thickness in both [...] Read more.
In this paper, a low loss and high polarization-maintaining single-mode hollow-core anti-resonant fiber (PM-HC-ARF) is designed. The elliptical core in the PM-HC-ARF is formed by strategically enlarging selected cladding air holes along the y-axis. Additionally, the variations in the wall thickness in both the x and y directions generate the distinct surface modes. By simultaneously employing an elliptical core and asymmetric core-wall thickness, we enhance the phase birefringence. Theoretical analysis results show that the proposed PM-HC-ARF achieves a transmission loss of 0.00082 dB/m at wavelength 1450 nm, along with a birefringence of 1.38 × 10−4; it demonstrates CL levels an order of magnitude below state-of-the-art polarization-maintaining HC-ARFs. Moreover, within the S+C+L+U communication bands, it achieves a bandwidth exceeding 380 nm (1420–1800 nm) while maintaining a birefringence of greater than 1.45 × 10−4. In particular, this PM-HC-ARF demonstrates a maximum higher-order mode extinction ratio of over 32,070; the single-mode transmission characteristics are excellent, along with exceptional bending resistance characteristics. When the bending radius exceeds 3 cm, the impacts on the loss and birefringence are negligible; this also demonstrates that the fiber structure shows good robustness when subjected to harsh environment interference. The proposed PM-HC-ARF is believed to have important applications in fiber optic gyroscopes, optical amplifiers, and hydrophones. Full article
Show Figures

Figure 1

33 pages, 17720 KB  
Review
Photonic Integrated Circuits: Research Advances and Challenges in Interconnection and Packaging Technologies
by Wenchao Tian, Yifan Wang, Haojie Dang, Huahua Hou and Yuanyuan Xi
Photonics 2025, 12(8), 821; https://doi.org/10.3390/photonics12080821 - 18 Aug 2025
Viewed by 449
Abstract
Silicon photonics, serving as a cornerstone technology in modern information technology, demonstrates significant application potential in critical scenarios such as high-speed data center interconnects and integrated optical communication systems. Facing the persistent demand for information processing capabilities in the post-Moore era, photonic chips [...] Read more.
Silicon photonics, serving as a cornerstone technology in modern information technology, demonstrates significant application potential in critical scenarios such as high-speed data center interconnects and integrated optical communication systems. Facing the persistent demand for information processing capabilities in the post-Moore era, photonic chips have emerged as a pivotal direction for overcoming the performance bottlenecks of traditional chips, leveraging their advantages of low power consumption, high speed, and high integration density. This review focuses specifically on the optical interconnection and packaging technologies for photonic chips. It comprehensively analyzes the research frontiers and key challenges in packaging technologies, encompassing efficient fiber-to-chip coupling techniques, chip-scale optical interconnection technologies, and 2D, 2.5D, and 3D stacked co-packaged optics technologies. By synthesizing and summarizing recent research advances, this paper aims to provide researchers in related fields with a systematic understanding of photonic integrated circuit technology. Furthermore, it seeks to offer insights for future technological breakthroughs in device optimization, packaging innovation, and system-level applications of photonic integrated circuits. Full article
(This article belongs to the Special Issue Photonic Integrated Circuits: Recent Advances and Future Perspectives)
Show Figures

Figure 1

49 pages, 5199 KB  
Review
Recent Advances in C-Band High-Power and High-Speed Radio Frequency Photodiodes: Review, Theory and Applications
by Saeed Haydhah, Fabien Ferrero, Xiupu Zhang and Ahmed A. Kishk
Photonics 2025, 12(8), 820; https://doi.org/10.3390/photonics12080820 - 17 Aug 2025
Viewed by 259
Abstract
A review of the recent research work on high-power and high-speed (HPHS) Ge-on-Si photodiode design is presented, using Silicon Photonics (SiPh) technology, suitable for Radio-over-Fiber base station schemes. The Photodiode (PD) principle of operation, its structure for high RF photogenerated power, and the [...] Read more.
A review of the recent research work on high-power and high-speed (HPHS) Ge-on-Si photodiode design is presented, using Silicon Photonics (SiPh) technology, suitable for Radio-over-Fiber base station schemes. The Photodiode (PD) principle of operation, its structure for high RF photogenerated power, and the achieved PD wide bandwidth are presented. Then, the PD equivalent circuit models are introduced to obtain the PD S-parameters and operating bandwidth, such that efficient power coupling to mmWave loads is realized. Then, the PD theoretical transit-time and RC-time bandwidths are presented, and the PD photocurrent behavior against input optical power, and the optical signal manipulation techniques to improve the PD performance are also presented. After that, the impedance matching techniques between the PD output impedance and antenna input impedance are presented. Finally, recent photonic mmWave antenna designs are introduced. Full article
Show Figures

Figure 1

15 pages, 1286 KB  
Article
Weibull Reliability Based on Random Vibration Performance for Fiber Optic Connectors
by Jesús M. Barraza-Contreras, Manuel R. Piña-Monárrez, María M. Hernández-Ramos and Secundino Ramos-Lozano
Vibration 2025, 8(3), 46; https://doi.org/10.3390/vibration8030046 - 12 Aug 2025
Viewed by 284
Abstract
Communication via optical fiber is increasingly being used in harsh applications where environmental vibration is present. This study involves a Weibull reliability analysis focused on the performance of fiber optic connectors when they are subjected to mechanical random vibration stress to simulate real-world [...] Read more.
Communication via optical fiber is increasingly being used in harsh applications where environmental vibration is present. This study involves a Weibull reliability analysis focused on the performance of fiber optic connectors when they are subjected to mechanical random vibration stress to simulate real-world operating conditions, and the insertion loss (IL) degradation is measurable. By analyzing the testing times and stress levels, the Weibull shape (β) and scale (η) parameters are estimated directly from the maximal and minimal principal IL stresses (σ1, σ2), enabling the prediction of the connector’s reliability with efficiency. The sample size n is derived from the desired reliability (R(t)), and the GR-326 mechanical vibration test (2.306 Grms for six hours) is performed on optical SC angled physical contact (PC) polish fiber endface connectors that are monitored during testing to evaluate the IL transient change in the optical transmission. The method is verified by an experiment performed with σ1=0.3960 and σ2=0.1910 where the IL measurements are captured with an Agilent N7745A source-detector optical equipment, and the Weibull statistical results provide a connector’s reliability R(t) = 0.8474, with a characteristic value of η = 0.2750 dB and β = 3. Finally, the connector’s reliability is as worthy of attention as the telecommunication sign conditions. Full article
Show Figures

Figure 1

14 pages, 4996 KB  
Article
Fractional Wave Structures in a Higher-Order Nonlinear Schrödinger Equation with Cubic–Quintic Nonlinearity and β-Fractional Dispersion
by Mahmoud Soliman, Hamdy M. Ahmed, Niveen M. Badra, Islam Samir, Taha Radwan and Karim K. Ahmed
Fractal Fract. 2025, 9(8), 522; https://doi.org/10.3390/fractalfract9080522 - 11 Aug 2025
Viewed by 330
Abstract
This study employs the improved modified extended tanh method (IMETM) to derive exact analytical solutions of a higher-order nonlinear Schrödinger (HNLS) model, incorporating β-fractional derivatives in both time and space. Unlike classical methods such as the inverse scattering transform or Hirota’s bilinear [...] Read more.
This study employs the improved modified extended tanh method (IMETM) to derive exact analytical solutions of a higher-order nonlinear Schrödinger (HNLS) model, incorporating β-fractional derivatives in both time and space. Unlike classical methods such as the inverse scattering transform or Hirota’s bilinear technique, which are typically limited to integrable systems and integer-order operators, the IMETM offers enhanced flexibility for handling fractional models and higher-order nonlinearities. It enables the systematic construction of diverse solution types—including Weierstrass elliptic, exponential, Jacobi elliptic, and bright solitons—within a unified algebraic framework. The inclusion of fractional derivatives introduces richer dynamical behavior, capturing nonlocal dispersion and temporal memory effects. Visual simulations illustrate how fractional parameters α (space) and β (time) affect wave structures, revealing their impact on solution shape and stability. The proposed framework provides new insights into fractional NLS dynamics with potential applications in optical fiber communications, nonlinear optics, and related physical systems. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

20 pages, 2399 KB  
Article
Exploring Novel Optical Soliton Molecule for the Time Fractional Cubic–Quintic Nonlinear Pulse Propagation Model
by Syed T. R. Rizvi, Atef F. Hashem, Azrar Ul Hassan, Sana Shabbir, A. S. Al-Moisheer and Aly R. Seadawy
Fractal Fract. 2025, 9(8), 497; https://doi.org/10.3390/fractalfract9080497 - 29 Jul 2025
Viewed by 432
Abstract
This study focuses on the analysis of soliton solutions within the framework of the time-fractional cubic–quintic nonlinear Schrödinger equation (TFCQ-NLSE), a powerful model with broad applications in complex physical phenomena such as fiber optic communications, nonlinear optics, optical signal processing, and laser–tissue interactions [...] Read more.
This study focuses on the analysis of soliton solutions within the framework of the time-fractional cubic–quintic nonlinear Schrödinger equation (TFCQ-NLSE), a powerful model with broad applications in complex physical phenomena such as fiber optic communications, nonlinear optics, optical signal processing, and laser–tissue interactions in medical science. The nonlinear effects exhibited by the model—such as self-focusing, self-phase modulation, and wave mixing—are influenced by the combined impact of the cubic and quintic nonlinear terms. To explore the dynamics of this model, we apply a robust analytical technique known as the sub-ODE method, which reveals a diverse range of soliton structures and offers deep insight into laser pulse interactions. The investigation yields a rich set of explicit soliton solutions, including hyperbolic, rational, singular, bright, Jacobian elliptic, Weierstrass elliptic, and periodic solutions. These waveforms have significant real-world relevance: bright solitons are employed in fiber optic communications for distortion-free long-distance data transmission, while both bright and dark solitons are used in nonlinear optics to study light behavior in media with intensity-dependent refractive indices. Solitons also contribute to advancements in quantum technologies, precision measurement, and fiber laser systems, where hyperbolic and periodic solitons facilitate stable, high-intensity pulse generation. Additionally, in nonlinear acoustics, solitons describe wave propagation in media where amplitude influences wave speed. Overall, this work highlights the theoretical depth and practical utility of soliton dynamics in fractional nonlinear systems. Full article
Show Figures

Figure 1

21 pages, 3942 KB  
Article
Experimental Demonstration of Terahertz-Wave Signal Generation for 6G Communication Systems
by Yazan Alkhlefat, Amr M. Ragheb, Maged A. Esmail, Sevia M. Idrus, Farabi M. Iqbal and Saleh A. Alshebeili
Optics 2025, 6(3), 34; https://doi.org/10.3390/opt6030034 - 28 Jul 2025
Viewed by 669
Abstract
Terahertz (THz) frequencies, spanning from 0.1 to 1 THz, are poised to play a pivotal role in the development of future 6G wireless communication systems. These systems aim to utilize photonic technologies to enable ultra-high data rates—on the order of terabits per second—while [...] Read more.
Terahertz (THz) frequencies, spanning from 0.1 to 1 THz, are poised to play a pivotal role in the development of future 6G wireless communication systems. These systems aim to utilize photonic technologies to enable ultra-high data rates—on the order of terabits per second—while maintaining low latency and high efficiency. In this work, we present a novel photonic method for generating sub-THz vector signals within the THz band, employing a semiconductor optical amplifier (SOA) and phase modulator (PM) to create an optical frequency comb, combined with in-phase and quadrature (IQ) modulation techniques. We demonstrate, both through simulation and experimental setup, the generation and successful transmission of a 0.1 THz vector. The process involves driving the PM with a 12.5 GHz radio frequency signal to produce the optical comb; then, heterodyne beating in a uni-traveling carrier photodiode (UTC-PD) generates the 0.1 THz radio frequency signal. This signal is transmitted over distances of up to 30 km using single-mode fiber. The resulting 0.1 THz electrical vector signal, modulated with quadrature phase shift keying (QPSK), achieves a bit error ratio (BER) below the hard-decision forward error correction (HD-FEC) threshold of 3.8 × 103. To the best of our knowledge, this is the first experimental demonstration of a 0.1 THz photonic vector THz wave based on an SOA and a simple PM-driven optical frequency comb. Full article
(This article belongs to the Section Photonics and Optical Communications)
Show Figures

Figure 1

22 pages, 6689 KB  
Article
Design and Implementation of a Sun Outage Simulation System with High Uniformity and Stray Light Suppression Capability
by Zhen Mao, Zhaohui Li, Yong Liu, Limin Gao and Jianke Zhao
Sensors 2025, 25(15), 4655; https://doi.org/10.3390/s25154655 - 27 Jul 2025
Viewed by 463
Abstract
To enable accurate evaluation of satellite laser communication terminals under solar outage interference, this paper presents the design and implementation of a solar radiation simulation system targeting the 1540–1560 nm communication band. The system reconstructs co-propagating interference conditions through standardized and continuously tunable [...] Read more.
To enable accurate evaluation of satellite laser communication terminals under solar outage interference, this paper presents the design and implementation of a solar radiation simulation system targeting the 1540–1560 nm communication band. The system reconstructs co-propagating interference conditions through standardized and continuously tunable output, based on high irradiance and spectral uniformity. A compound beam homogenization structure—combining a multimode fiber and an apodizator—achieves 85.8% far-field uniformity over a 200 mm aperture. A power–spectrum co-optimization strategy is introduced for filter design, achieving a spectral matching degree of 78%. The system supports a tunable output from 2.5 to 130 mW with a 50× dynamic range and maintains power control accuracy within ±0.9%. To suppress internal background interference, a BRDF-based optical scattering model is established to trace primary and secondary stray light paths. Simulation results show that by maintaining the surface roughness of key mirrors below 2 nm and incorporating a U-shaped reflective light trap, stray light levels can be reduced to 5.13 × 10−12 W, ensuring stable detection of a 10−10 W signal at a 10:1 signal-to-background ratio. Experimental validation confirms that the system can faithfully reproduce solar outage conditions within a ±3° field of view, achieving consistent performance in spectrum shaping, irradiance uniformity, and background suppression. The proposed platform provides a standardized and practical testbed for ground-based anti-interference assessment of optical communication terminals. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

31 pages, 1089 KB  
Article
Adaptive Learned Belief Propagation for Decoding Error-Correcting Codes
by Alireza Tasdighi and Mansoor Yousefi
Entropy 2025, 27(8), 795; https://doi.org/10.3390/e27080795 - 25 Jul 2025
Viewed by 427
Abstract
Weighted belief propagation (WBP) for the decoding of linear block codes is considered. In WBP, the Tanner graph of the code is unrolled with respect to the iterations of the belief propagation decoder. Then, weights are assigned to the edges of the resulting [...] Read more.
Weighted belief propagation (WBP) for the decoding of linear block codes is considered. In WBP, the Tanner graph of the code is unrolled with respect to the iterations of the belief propagation decoder. Then, weights are assigned to the edges of the resulting recurrent network and optimized offline using a training dataset. The main contribution of this paper is an adaptive WBP where the weights of the decoder are determined for each received word. Two variants of this decoder are investigated. In the parallel WBP decoders, the weights take values in a discrete set. A number of WBP decoders are run in parallel to search for the best sequence- of weights in real time. In the two-stage decoder, a small neural network is used to dynamically determine the weights of the WBP decoder for each received word. The proposed adaptive decoders demonstrate significant improvements over the static counterparts in two applications. In the first application, Bose–Chaudhuri–Hocquenghem, polar and quasi-cyclic low-density parity-check (QC-LDPC) codes are used over an additive white Gaussian noise channel. The results indicate that the adaptive WBP achieves bit error rates (BERs) up to an order of magnitude less than the BERs of the static WBP at about the same decoding complexity, depending on the code, its rate, and the signal-to-noise ratio. The second application is a concatenated code designed for a long-haul nonlinear optical fiber channel where the inner code is a QC-LDPC code and the outer code is a spatially coupled LDPC code. In this case, the inner code is decoded using an adaptive WBP, while the outer code is decoded using the sliding window decoder and static belief propagation. The results show that the adaptive WBP provides a coding gain of 0.8 dB compared to the neural normalized min-sum decoder, with about the same computational complexity and decoding latency. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

31 pages, 2179 KB  
Article
Statistical Analysis and Modeling for Optical Networks
by Sudhir K. Routray, Gokhan Sahin, José R. Ferreira da Rocha and Armando N. Pinto
Electronics 2025, 14(15), 2950; https://doi.org/10.3390/electronics14152950 - 24 Jul 2025
Viewed by 414
Abstract
Optical networks serve as the backbone of modern communication, requiring statistical analysis and modeling to optimize performance, reliability, and scalability. This review paper explores statistical methodologies for analyzing network characteristics, dimensioning, parameter estimation, and cost prediction of optical networks, and provides a generalized [...] Read more.
Optical networks serve as the backbone of modern communication, requiring statistical analysis and modeling to optimize performance, reliability, and scalability. This review paper explores statistical methodologies for analyzing network characteristics, dimensioning, parameter estimation, and cost prediction of optical networks, and provides a generalized framework based on the idea of convex areas, and link length and shortest path length distributions. Accurate dimensioning and cost estimation are crucial for optical network planning, especially during early-stage design, network upgrades, and optimization. However, detailed information is often unavailable or too complex to compute. Basic parameters like coverage area and node count, along with statistical insights such as distribution patterns and moments, aid in determining the appropriate modulation schemes, compensation techniques, repeater placement, and in estimating the fiber length. Statistical models also help predict link lengths and shortest path lengths, ensuring efficiency in design. Probability distributions, stochastic processes, and machine learning improve network optimization and fault prediction. Metrics like bit error rate, quality of service, and spectral efficiency can be statistically assessed to enhance data transmission. This paper provides a review on statistical analysis and modeling of optical networks, which supports intelligent optical network management, dimensioning of optical networks, performance prediction, and estimation of important optical network parameters with partial information. Full article
(This article belongs to the Special Issue Optical Networking and Computing)
Show Figures

Figure 1

20 pages, 3269 KB  
Article
Simulation Investigation of Quantum FSO–Fiber System Using the BB84 QKD Protocol Under Severe Weather Conditions
by Meet Kumari and Satyendra K. Mishra
Photonics 2025, 12(7), 712; https://doi.org/10.3390/photonics12070712 - 14 Jul 2025
Viewed by 497
Abstract
In response to the increasing demands for reliable, fast, and secure communications beyond 5G scenarios, the high-capacity networks have become a focal point. Quantum communication is at the forefront of this research, offering unmatched throughput and security. A free space optics (FSO) communication [...] Read more.
In response to the increasing demands for reliable, fast, and secure communications beyond 5G scenarios, the high-capacity networks have become a focal point. Quantum communication is at the forefront of this research, offering unmatched throughput and security. A free space optics (FSO) communication system integrated with fiber-end is designed and investigated using the Bennett–Brassard 1984 quantum key distribution (BB84-QKD) protocol. Simulation results show that reliable transmission can be achieved over a 10–15 km fiber length with a signal power of −19.54 dBm and high optical-to-signal noise of 72.28–95.30 dB over a 550 m FSO range under clear air, haze, fog, and rain conditions at a data rate of 1 Gbps. Also, the system using rectilinearly and circularly polarized signals exhibits a Stokes parameter intensity of −4.69 to −35.65 dBm and −7.7 to −35.66 dBm Stokes parameter intensity, respectively, over 100–700 m FSO range under diverse weather conditions. Likewise, for the same scenario, an FSO range of 100 m incorporating 2.5–4 mrad beam divergence provides the Stokes power intensity of −6.03 to −11.1 dBm and −9.04 to −14.12 dBm for rectilinearly and circularly polarized signals, respectively. Moreover, compared to existing works, this work allows faithful and secure signal transmission in free space, considering FSO–fiber link losses. Full article
(This article belongs to the Section Quantum Photonics and Technologies)
Show Figures

Figure 1

17 pages, 8874 KB  
Article
Adaptive DBP System with Long-Term Memory for Low-Complexity and High-Robustness Fiber Nonlinearity Mitigation
by Mingqing Zuo, Huitong Yang, Yi Liu, Zhengyang Xie, Dong Wang, Shan Cao, Zheng Zheng and Han Li
Photonics 2025, 12(7), 704; https://doi.org/10.3390/photonics12070704 - 11 Jul 2025
Viewed by 337
Abstract
Adaptive digital back-propagation (A-DBP) is a promising candidate for mitigating Kerr nonlinearity due to its ability to estimate the optimal nonlinear scaling factor adaptively. However, the adaptive process relying on the gradient-dependent algorithm is prone to fluctuation, leading to extra iterations or even [...] Read more.
Adaptive digital back-propagation (A-DBP) is a promising candidate for mitigating Kerr nonlinearity due to its ability to estimate the optimal nonlinear scaling factor adaptively. However, the adaptive process relying on the gradient-dependent algorithm is prone to fluctuation, leading to extra iterations or even divergence and resulting in huge computational efforts in A-DBP. In this paper, an improved A-DBP algorithm with long-term memory (LTM) is proposed, employing root mean square propagation (RMSProp) to achieve low-complexity and high-robustness compensation performances. The A-DBP-LTM algorithm based on RMSProp was numerically validated through the simulated transmission of 69 Gbaud DP-16QAM over 2000 km and further verified through an experiment involving 26-λ 63 Gbaud DP-16QAM transmission over 1200 km. Compared with conventional digital back-propagation and A-DBP based on a gradient-descent algorithm, our proposed method allows substantial complexity reductions of 31.35% and 58.47%, respectively. Furthermore, high robustness in only a few iterations and a 0.33 dB improvement in the optical signal–noise ratio penalty were also experimentally demonstrated. Full article
(This article belongs to the Special Issue Next-Generation Optical Networks Communication)
Show Figures

Figure 1

33 pages, 5209 KB  
Review
Integrated Photonics for IoT, RoF, and Distributed Fog–Cloud Computing: A Comprehensive Review
by Gerardo Antonio Castañón Ávila, Walter Cerroni and Ana Maria Sarmiento-Moncada
Appl. Sci. 2025, 15(13), 7494; https://doi.org/10.3390/app15137494 - 3 Jul 2025
Viewed by 1422
Abstract
Integrated photonics is a transformative technology for enhancing communication and computation in Cloud and Fog computing networks. Photonic integrated circuits (PICs) enable significant improvements in data-processing speed, energy-efficiency, scalability, and latency. In Cloud infrastructures, PICs support high-speed optical interconnects, energy-efficient switching, and compact [...] Read more.
Integrated photonics is a transformative technology for enhancing communication and computation in Cloud and Fog computing networks. Photonic integrated circuits (PICs) enable significant improvements in data-processing speed, energy-efficiency, scalability, and latency. In Cloud infrastructures, PICs support high-speed optical interconnects, energy-efficient switching, and compact wavelength division multiplexing (WDM), addressing growing data demands. Fog computing, with its edge-focused processing and analytics, benefits from the compactness and low latency of integrated photonics for real-time signal processing, sensing, and secure data transmission near IoT devices. PICs also facilitate the low-loss, high-speed modulation, transmission, and detection of RF signals in scalable Radio-over-Fiber (RoF) links, enabling seamless IoT integration with Cloud and Fog networks. This results in centralized processing, reduced latency, and efficient bandwidth use across distributed infrastructures. Overall, integrating photonic technologies into RoF, Fog and Cloud computing networks paves the way for ultra-efficient, flexible, and scalable next-generation network architectures capable of supporting diverse real-time and high-bandwidth applications. This paper provides a comprehensive review of the current state and emerging trends in integrated photonics for IoT sensors, RoF, Fog and Cloud computing systems. It also outlines open research opportunities in photonic devices and system-level integration, aimed at advancing performance, energy-efficiency, and scalability in next-generation distributed computing networks. Full article
(This article belongs to the Special Issue New Trends in Next-Generation Optical Networks)
Show Figures

Figure 1

27 pages, 2813 KB  
Article
Study of Optical Solitons and Quasi-Periodic Behaviour for the Fractional Cubic Quintic Nonlinear Pulse Propagation Model
by Lotfi Jlali, Syed T. R. Rizvi, Sana Shabbir and Aly R. Seadawy
Mathematics 2025, 13(13), 2117; https://doi.org/10.3390/math13132117 - 28 Jun 2025
Cited by 1 | Viewed by 295
Abstract
This study explores analytical soliton solutions for the cubic–quintic time-fractional nonlinear non-paraxial pulse transmission model. This versatile model finds numerous uses in fiber optic communication, nonlinear optics, and optical signal processing. The strength of the quintic and cubic nonlinear components plays a crucial [...] Read more.
This study explores analytical soliton solutions for the cubic–quintic time-fractional nonlinear non-paraxial pulse transmission model. This versatile model finds numerous uses in fiber optic communication, nonlinear optics, and optical signal processing. The strength of the quintic and cubic nonlinear components plays a crucial role in nonlinear processes, such as self-phase modulation, self-focusing, and wave combining. The fractional nonlinear Schrödinger equation (FNLSE) facilitates precise control over the dynamic properties of optical solitons. Exact and methodical solutions include those involving trigonometric functions, Jacobian elliptical functions (JEFs), and the transformation of JEFs into solitary wave (SW) solutions. This study reveals that various soliton solutions, such as periodic, rational, kink, and SW solitons, are identified using the complete discrimination polynomial methods (CDSPM). The concepts of chaos and bifurcation serve as the framework for investigating the system qualitatively. We explore various techniques for detecting chaos, including three-dimensional and two-dimensional graphs, time-series analysis, and Poincarè maps. A sensitivity analysis is performed utilizing a variety of initial conditions. Full article
Show Figures

Figure 1

11 pages, 2910 KB  
Communication
Theoretical Study on Low-Chirp Directly Modulated DFB Lasers with (110)-Oriented Quantum Well
by Jianwei Li, Mengzhu Hu, Xinyang Su, Yanting Liu and Ke Zhan
Photonics 2025, 12(7), 647; https://doi.org/10.3390/photonics12070647 - 25 Jun 2025
Viewed by 418
Abstract
The low-chirp operation of distributed feedback lasers is highly desirable in high-speed and high-bit rate optical transmission. In this article, we address this issue by theoretically investigating the possibility of further a reduction in the linewidth enhancement factor (LEF) of a quantum well [...] Read more.
The low-chirp operation of distributed feedback lasers is highly desirable in high-speed and high-bit rate optical transmission. In this article, we address this issue by theoretically investigating the possibility of further a reduction in the linewidth enhancement factor (LEF) of a quantum well (QW). The energy band structure of AlGaInAs quantum-well DFB lasers grown with a (110) crystal orientation in the active region of the L-band has been theoretically analyzed using multi-band k.p perturbation theory, by reducing the asymmetry of conduction bands and valence bands and thus the linewidth enhancement factor parameter, which is related to the frequency chirp. Simulation results show that the LEF of the directly modulated DFB laser is reduced from 2.434 to 1.408 by designing the (110)-oriented compression-strained Al0.06Ga0.24InAs multiple-quantum-well structure, and the eye diagram of the (110)-oriented quantum-well DFB laser with a digital signal transmission of 20 km is significantly better than the (001) crystal-oriented quantum-well DFB laser for the 10Gbps optical fiber communication system, thus achieving a longer distance and higher-quality optical signal transmission. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

Back to TopTop