Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (132)

Search Parameters:
Keywords = fiber-metal laminates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 9107 KiB  
Article
Numerical Far-Field Investigation into Guided Waves Interaction at Weak Interfaces in Hybrid Composites
by Saurabh Gupta, Mahmood Haq, Konstantin Cvetkovic and Oleksii Karpenko
J. Compos. Sci. 2025, 9(8), 387; https://doi.org/10.3390/jcs9080387 - 22 Jul 2025
Viewed by 251
Abstract
Modern aerospace engineering places increasing emphasis on materials that combine low weight with high mechanical performance. Fiber metal laminates (FMLs), which merge metal layers with fiber-reinforced composites, meet this demand by delivering improved fatigue resistance, impact tolerance, and environmental durability, often surpassing the [...] Read more.
Modern aerospace engineering places increasing emphasis on materials that combine low weight with high mechanical performance. Fiber metal laminates (FMLs), which merge metal layers with fiber-reinforced composites, meet this demand by delivering improved fatigue resistance, impact tolerance, and environmental durability, often surpassing the performance of their constituents in demanding applications. Despite these advantages, inspecting such thin, layered structures remains a significant challenge, particularly when they are difficult or impossible to access. As with any new invention, they always come with challenges. This study examines the effectiveness of the fundamental anti-symmetric Lamb wave mode (A0) in detecting weak interfacial defects within Carall laminates, a type of hybrid fiber metal laminate (FML). Delamination detectability is analyzed in terms of strong wave dispersion observed downstream of the delaminated sublayer, within a region characterized by acoustic distortion. A three-dimensional finite element (FE) model is developed to simulate mode trapping and full-wavefield local displacement. The approach is validated by reproducing experimental results reported in prior studies, including the author’s own work. Results demonstrate that the A0 mode is sensitive to delamination; however, its lateral resolution depends on local position, ply orientation, and dispersion characteristics. Accurately resolving the depth and extent of delamination remains challenging due to the redistribution of peak amplitude in the frequency domain, likely caused by interference effects in the acoustically sensitive delaminated zone. Additionally, angular scattering analysis reveals a complex wave behavior, with most of the energy concentrated along the centerline, despite transmission losses at the metal-composite interfaces in the Carall laminate. The wave interaction with the leading and trailing edges of the delaminations is strongly influenced by the complex wave interference phenomenon and acoustic mismatched regions, leading to an increase in dispersion at the sublayers. Analytical dispersion calculations clarify how wave behavior influences the detectability and resolution of delaminations, though this resolution is constrained, being most effective for weak interfaces located closer to the surface. This study offers critical insights into how the fundamental anti-symmetric Lamb wave mode (A0) interacts with delaminations in highly attenuative, multilayered environments. It also highlights the challenges in resolving the spatial extent of damage in the long-wavelength limit. The findings support the practical application of A0 Lamb waves for structural health assessment of hybrid composites, enabling defect detection at inaccessible depths. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

15 pages, 3974 KiB  
Article
Cast Polyamide 6 Molds as a Suitable Alternative to Metallic Molds for In Situ Automated Fiber Placement
by Fynn Atzler, Ines Mössinger, Jonathan Freund, Samuel Tröger, Ashley R. Chadwick, Simon Hümbert and Lukas Raps
J. Compos. Sci. 2025, 9(7), 367; https://doi.org/10.3390/jcs9070367 - 15 Jul 2025
Viewed by 479
Abstract
Thermoplastic in situ Automated Fiber Placement (AFP) is an additive manufacturing method currently investigated for its suitability for the production of aerospace-grade composite structures. A considerable expense in this process is the manufacturing and preparation of a mold in which a composite part [...] Read more.
Thermoplastic in situ Automated Fiber Placement (AFP) is an additive manufacturing method currently investigated for its suitability for the production of aerospace-grade composite structures. A considerable expense in this process is the manufacturing and preparation of a mold in which a composite part can be manufactured. One approach to lowering these costs is the use of a 3D-printable thermoplastic mold. However, AFP lay-up on a 3D-printed mold differs from the usage of a traditional metallic mold in various aspects. Most notable is a reduced stiffness of the mold, a lower thermal conductivity of the mold, and the need for varied process parameters of the AFP process. This study focuses on the investigation of the difference in mechanical and morphological characteristics of laminates produced on metallic and polymeric molds. To this end, the tensile strength and the interlaminar shear strength of laminates manufactured on each substrate were measured and compared. Additionally, morphological analysis using scanning electron microscopy and differential scanning calorimetry was performed to compare the crystallinity in laminates. No statistically significant difference in mechanical or morphological properties was found. Thus, thermoplastics were shown to be a suitable material for non-heated molds to manufacture in situ AFP composites. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

24 pages, 1711 KiB  
Review
Hybridization of Lignocellulosic Biomass into Aluminum-Based Materials: Comparing the Cases of Aluminum Matrix Composites and Fiber Metal Laminates
by Cristiano Fragassa and Carlo Santulli
J. Compos. Sci. 2025, 9(7), 356; https://doi.org/10.3390/jcs9070356 - 8 Jul 2025
Viewed by 434
Abstract
Introducing and compacting lignocellulosic biomass in aluminum structures, though recommendable in terms of higher sustainability, the potential use of agro-waste and significant weight reduction, still represents a challenge. This is due to the variability of biomass performance and to its limited compatibility with [...] Read more.
Introducing and compacting lignocellulosic biomass in aluminum structures, though recommendable in terms of higher sustainability, the potential use of agro-waste and significant weight reduction, still represents a challenge. This is due to the variability of biomass performance and to its limited compatibility with the metal. Another question may concern possible moisture penetration in the structure, which may reduce environmental resistance and result in local degradation, such as wear or even corrosion. Despite these limitations, this hybridization enjoys increasing success. Two forms are possibly available for this: introduction into metal matrix composites (MMCs), normally in the form of char from biomass combustion, or laminate reinforcement as the core for fiber metal laminates (FMLs). These two cases are treated alongside each other in this review, first because they may represent two combined options for recycling the same biomass into high-profile structures, aimed primarily at the aerospace industry. Moreover, as discussed above, the effect on the aluminum alloy can be compared and the forces to which they are subjected might be of a similar type, most particularly in terms of their hardness and impact. Both cases considered, MMCs and FMLs involved over time many lignocellulosic residues, starting from the most classical bast species, i.e., flax, hemp, sisal, kenaf, etc., and extending also to less diffuse ones, especially in view of the introduction of biomass as secondary, or residual, raw materials. Full article
Show Figures

Figure 1

18 pages, 5101 KiB  
Article
Investigation of the Preparation and Interlayer Properties of Multi-Walled Carbon Nanotube-Reinforced Ultra-Thin TA1/CFRP Laminates
by Quanda Zhang, Zhongxiao Zhang, Jiahua Cao, Yao Wang and Zhiying Sun
Metals 2025, 15(7), 765; https://doi.org/10.3390/met15070765 - 7 Jul 2025
Viewed by 232
Abstract
Titanium alloy/carbon fiber-reinforced polymer (TA1/CFRP) laminates, representing the latest fourth generation of fiber metal laminates (FMLs), is a kind of high-performance composite material. However, the fragility of the fiber/resin and metal/resin interface layers in these composites directly impacts their mechanical properties. To enhance [...] Read more.
Titanium alloy/carbon fiber-reinforced polymer (TA1/CFRP) laminates, representing the latest fourth generation of fiber metal laminates (FMLs), is a kind of high-performance composite material. However, the fragility of the fiber/resin and metal/resin interface layers in these composites directly impacts their mechanical properties. To enhance these properties, this paper investigates the preparation process of multi-walled carbon nanotube (MWCNT)-reinforced ultra-thin TA1/CFRP laminates and explores the impact of MWCNT content on the interlayer properties of these ultra-thin TA1/CFRP laminates. Initially, the challenge of dispersing carbon nanotubes using ultrasonic dispersion devices and dispersants was addressed. Vacuum-curing pressure studies revealed minimal overflow at 0.8 bar vacuum. Subsequently, the impact of MWCNT content on interlayer properties was investigated. The results indicated a significant increase in interlayer shear strength and interlayer fracture toughness with MWCNT additions at 0.5 wt% and 0.75 wt%, whereas the interlayer properties decreased at 1.0 wt% MWCNT. Fracture morphology analysis revealed that MWCNT content exceeding 0.75 wt% led to agglomeration, resulting in resin cavity formation and stress concentration. Full article
Show Figures

Figure 1

28 pages, 12936 KiB  
Article
Design Optimization of a Composite Using Genetic Algorithms for the Manufacturing of a Single-Seater Race Car
by Ioannis Tsormpatzoudis, Dimitriοs A. Dragatogiannis, Aimilios Sideridis and Efstathios E. Theotokoglou
Appl. Sci. 2025, 15(13), 7368; https://doi.org/10.3390/app15137368 - 30 Jun 2025
Viewed by 306
Abstract
The design of automobile chassis structures is fundamentally linked to the optimization of mass and structural robustness. While conventional chassis structures predominantly utilize metals, achieving further mass reduction and enhanced rigidity necessitates the adoption of composite sandwich materials, typically comprising carbon fiber-reinforced polymer [...] Read more.
The design of automobile chassis structures is fundamentally linked to the optimization of mass and structural robustness. While conventional chassis structures predominantly utilize metals, achieving further mass reduction and enhanced rigidity necessitates the adoption of composite sandwich materials, typically comprising carbon fiber-reinforced polymer (C.F.R.P.) laminate skins bonded to an aluminum honeycomb core. This study focuses on presenting a framework methodology for minimizing the mass of a race car chassis by calculating an optimal baseline lamination sequence through the modification of the composite material parameters on either side of the aluminum core, using an optimization algorithm (O.A.), finite element (F.E.) analysis, composite mechanics theory, and failure criteria. Optimal solutions were derived by varying the laminae orientation and sequence parameters under two scenarios: unconstrained and constrained laminae angles. The optimization results indicate that the proposed lamination scheme reduces mass by 12.36 kg (41.66%) compared to the original lamination, with constraints imposed on laminae angles having no significant impact on the ultimate optimal outcome. Full article
Show Figures

Figure 1

26 pages, 6142 KiB  
Article
Development of Structural Model of Fiber Metal Laminate Subjected to Low-Velocity Impact and Validation by Tests
by Burhan Cetinkaya, Erdem Yilmaz, İbrahim Özkol, İlhan Şen and Tamer Saracyakupoglu
J. Compos. Sci. 2025, 9(7), 322; https://doi.org/10.3390/jcs9070322 - 23 Jun 2025
Viewed by 570
Abstract
In today’s aviation industry, research and studies are carried out to manufacture and design lightweight, high-performance materials. One of the materials developed in line with this goal is glass laminate aluminum-reinforced epoxy (GLARE), which consists of thin aluminum sheets and S2-glass/epoxy layers. Because [...] Read more.
In today’s aviation industry, research and studies are carried out to manufacture and design lightweight, high-performance materials. One of the materials developed in line with this goal is glass laminate aluminum-reinforced epoxy (GLARE), which consists of thin aluminum sheets and S2-glass/epoxy layers. Because of its high impact resistance and excellent fatigue and damage tolerance properties, GLARE is used in different aircraft parts, such as the wing, fuselage, empennage skins, and cargo floors. In this study, a survey was carried out and a low-velocity impact model for GLARE materials was developed using the ABAQUS (2014) version V6.14 software and compared with the results of low-velocity impact tests performed according to the American Society for Testing and Materials (ASTM) D7136 standard. This article introduces a novel integrated approach that combines detailed numerical modeling with experimental validation of GLARE 4A FMLs under low-velocity impact. Leveraging ABAQUS, a robust FEM featuring explicit analysis, cohesive resin interfaces, and custom VUMAT subroutines was developed to accurately simulate energy absorption, dent depth, and delamination. The precise model’s predictions align well with test results performed according to ASTM D7136 standards, exhibiting less than a 0.1% deviation in the displacement (dent depth)–time response, along with deviations of 4.3% in impact energy–time and 5.2% in velocity–time trends at 5.5 ms. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

22 pages, 6543 KiB  
Article
Impact Resistance Study of Fiber–Metal Hybrid Composite Laminate Structures: Experiment and Simulation
by Zheyi Zhang, Haotian Guo, Yang Lan and Libin Zhao
Materials 2025, 18(12), 2906; https://doi.org/10.3390/ma18122906 - 19 Jun 2025
Viewed by 465
Abstract
Thermoplastic carbon fiber/aluminum alloy hybrid composite laminates fully integrate the advantages of fiber-reinforced composites and metallic materials, exhibiting high fatigue resistance and impact resistance, with broad applications in fields such as national defense, aerospace, automotive engineering, and marine engineering. In this paper, thermoplastic [...] Read more.
Thermoplastic carbon fiber/aluminum alloy hybrid composite laminates fully integrate the advantages of fiber-reinforced composites and metallic materials, exhibiting high fatigue resistance and impact resistance, with broad applications in fields such as national defense, aerospace, automotive engineering, and marine engineering. In this paper, thermoplastic carbon fiber/aluminum alloy hybrid composite laminates were first prepared using a hot-press machine; then, high-velocity impact tests were conducted on the specimens using a first-stage light gas gun test system. Comparative experimental analyses were performed to evaluate the energy absorption performance of laminates with different ply thicknesses and layup configurations. High-speed cameras and finite element analysis software were employed to analyze the failure process and modes of the laminates under impact loading. The results demonstrate that fiber–metal laminates exhibit higher specific energy absorption than carbon fiber composite laminates. Meanwhile, the numerical simulation results can effectively reflect the experimental outcomes in terms of the velocity–time relationship, failure modes during the laminate impact process, and failure patterns after the laminate impact. Full article
Show Figures

Figure 1

42 pages, 473 KiB  
Review
Non-Destructive Testing and Evaluation of Hybrid and Advanced Structures: A Comprehensive Review of Methods, Applications, and Emerging Trends
by Farima Abdollahi-Mamoudan, Clemente Ibarra-Castanedo and Xavier P. V. Maldague
Sensors 2025, 25(12), 3635; https://doi.org/10.3390/s25123635 - 10 Jun 2025
Cited by 1 | Viewed by 1338
Abstract
Non-destructive testing (NDT) and non-destructive evaluation (NDE) are essential tools for ensuring the structural integrity, safety, and reliability of critical systems across the aerospace, civil infrastructure, energy, and advanced manufacturing sectors. As engineered materials evolve into increasingly complex architectures such as fiber-reinforced polymers, [...] Read more.
Non-destructive testing (NDT) and non-destructive evaluation (NDE) are essential tools for ensuring the structural integrity, safety, and reliability of critical systems across the aerospace, civil infrastructure, energy, and advanced manufacturing sectors. As engineered materials evolve into increasingly complex architectures such as fiber-reinforced polymers, fiber–metal laminates, sandwich composites, and functionally graded materials, traditional NDT techniques face growing limitations in sensitivity, adaptability, and diagnostic reliability. This comprehensive review presents a multi-dimensional classification of NDT/NDE methods, structured by physical principles, functional objectives, and application domains. Special attention is given to hybrid and multi-material systems, which exhibit anisotropic behavior, interfacial complexity, and heterogeneous defect mechanisms that challenge conventional inspection. Alongside established techniques like ultrasonic testing, radiography, infrared thermography, and acoustic emission, the review explores emerging modalities such as capacitive sensing, electromechanical impedance, and AI-enhanced platforms that are driving the future of intelligent diagnostics. By synthesizing insights from the recent literature, the paper evaluates comparative performance metrics (e.g., sensitivity, resolution, adaptability); highlights integration strategies for embedded monitoring and multimodal sensing systems; and addresses challenges related to environmental sensitivity, data interpretation, and standardization. The transformative role of NDE 4.0 in enabling automated, real-time, and predictive structural assessment is also discussed. This review serves as a valuable reference for researchers and practitioners developing next-generation NDT/NDE solutions for hybrid and high-performance structures. Full article
(This article belongs to the Special Issue Digital Image Processing and Sensing Technologies—Second Edition)
18 pages, 7815 KiB  
Article
Short-Beam Shear Fatigue Behavior on Unidirectional GLARE: Mean Shear Stress Effect, Scatter, and Anisotropy
by Douglas G. Caetano, Hector G. Kotik, Juan E. Perez Ipiña and Enrique M. Castrodeza
Fibers 2025, 13(6), 77; https://doi.org/10.3390/fib13060077 - 9 Jun 2025
Viewed by 991
Abstract
This paper investigates the effect of mean shear stress on short-beam shear fatigue in a GLARE 1-3/2 commercial fiber–metal laminate (FML). This study explores three shear stress ratios (Rτ 0.1, 0.3, and 0.5) and two material orientations (longitudinal and transversal) under [...] Read more.
This paper investigates the effect of mean shear stress on short-beam shear fatigue in a GLARE 1-3/2 commercial fiber–metal laminate (FML). This study explores three shear stress ratios (Rτ 0.1, 0.3, and 0.5) and two material orientations (longitudinal and transversal) under constant amplitude fatigue. Different stress levels for each Rτ value were explored to obtain failures between 103 and 106 load cycles. The experimental results reveal anisotropy, with transversal specimens exhibiting lower performance and increased scatter. The mean shear stress effect is discussed herein, with insights into the critical role of mean shear of fatigue performance. Rτ 0.1 was the most severe condition and Rτ 0.5 was the least severe. The Rτ 0.3 condition produced steeper S-N curves, indicating that the combined effect of mean shear stress and shear stress amplitude led to a higher rate of damage accumulation. The fractographic analysis investigated the failure modes and confirmed the damage dominated by Mode II, supporting the test methodology employed. Full article
Show Figures

Figure 1

13 pages, 3459 KiB  
Article
Incremental Forming of Natural Fiber-Reinforced Polypropylene Composites: Considerations on Formability Limits and Energy Consumption
by Antonio Formisano, Dario De Fazio, Giuseppe Irace and Massimo Durante
Materials 2025, 18(12), 2688; https://doi.org/10.3390/ma18122688 - 7 Jun 2025
Viewed by 483
Abstract
Incremental sheet forming originated as an excellent alternative to conventional forming techniques for incrementally deforming flat metal sheets into complex three-dimensional profiles. Recently, its use has been extended to polymers and composites. Among these, the use of natural fiber-reinforced composites is increasing considerably [...] Read more.
Incremental sheet forming originated as an excellent alternative to conventional forming techniques for incrementally deforming flat metal sheets into complex three-dimensional profiles. Recently, its use has been extended to polymers and composites. Among these, the use of natural fiber-reinforced composites is increasing considerably compared to synthetic fiber-reinforced composites, due to the availability and unique properties of natural fibers in polymer applications. One of the dominant thermoplastics used as a matrix is polypropylene. This experimental study focuses on the incremental forming of natural fiber-reinforced polypropylene composites. Cones and spherical caps were manufactured from composite laminates of polypropylene reinforced with hemp and flax long-fiber fabrics. The formability limits, observed through failures and defects, as well as the forming forces, power, and energy consumption, were investigated to examine the feasibility of incremental forming applied to these composite materials; based on the results obtained, it is possible to say that the process can manufacture components with not very high wall angles but under low load conditions and allowing to limit the energy impact. Full article
(This article belongs to the Special Issue Manufacturing and Recycling of Natural Fiber-Reinforced Composites)
Show Figures

Figure 1

25 pages, 7210 KiB  
Article
Determination of Interface Fracture Parameters in Thermoplastic Fiber Metal Laminates Under Mixed-Mode I+II
by Michał Smolnicki and Szymon Duda
Polymers 2025, 17(11), 1462; https://doi.org/10.3390/polym17111462 - 24 May 2025
Viewed by 564
Abstract
Thermoplastic fiber metal laminates (FMLs) are hybrid material systems that consist of a thin aluminum alloy sheet bonded to plies of fiber-reinforced adhesive. They provide excellent properties like fatigue strength, damage-tolerant properties, and inherent resistance to corrosion. However, they are still challenging materials [...] Read more.
Thermoplastic fiber metal laminates (FMLs) are hybrid material systems that consist of a thin aluminum alloy sheet bonded to plies of fiber-reinforced adhesive. They provide excellent properties like fatigue strength, damage-tolerant properties, and inherent resistance to corrosion. However, they are still challenging materials in terms of the metal–composite interface, which is the weakest link in this material system. In this paper, an experimental–numerical method for the determination of the fracture stress and energy for metal–composite interlayer is presented and verified. The proposed method utilizes four different experimental tests: DCB test (interface opening—mode I), ENF test (interface shearing—mode II), MMB test (mixed-mode I+II—opening with the shearing of the interface) and three-point bending test (3PB). For each test, digital twin in the form of a numerical model is prepared. The established numerical models for DCB and ENF allowed us to determine fracture stress and energy for mode I and mode II, respectively. On the basis of the numerical and experimental (from the MMB test) data, the B-K exponent is determined. Finally, the developed material model is verified in a three-point bending test, which results in mixed-mode conditions. The research is conducted on the thermoplastic FML made of aluminum alloy sheet and glass fiber reinforced polyamide 6. The research presented is complemented by fundamental mechanical tests, image processing and Scanning Electron Microscopy (SEM) analysis. As an effect, for the tested material, fracture parameters are determined using the described method. Full article
(This article belongs to the Special Issue Advances in Fatigue and Fracture of Fiber-Reinforced Polymers)
Show Figures

Graphical abstract

17 pages, 92878 KiB  
Article
Experimental Study on Impact Resistance of Thermoplastic Fiber–Metal Laminates with Different Layup Sequences
by Zheyi Zhang, Yang Lan, Haotian Guo and Libin Zhao
Coatings 2025, 15(4), 443; https://doi.org/10.3390/coatings15040443 - 8 Apr 2025
Viewed by 506
Abstract
Thermoplastic fiber–metal hybrid composite laminates exhibit superior high-temperature resistance, fatigue resistance, and impact resistance, leading to their increasingly widespread application in the defense, military, aerospace, and marine engineering sectors. In this paper, the impact resistance of laminates with different layup sequences was compared [...] Read more.
Thermoplastic fiber–metal hybrid composite laminates exhibit superior high-temperature resistance, fatigue resistance, and impact resistance, leading to their increasingly widespread application in the defense, military, aerospace, and marine engineering sectors. In this paper, the impact resistance of laminates with different layup sequences was compared and analyzed through high-speed impact experiments, the dynamic response and failure mechanisms of laminates were explored, and the influence rules of different factors on the impact resistance of laminates were revealed. The findings indicate that distinct laminate configurations possess varying ballistic limits and failure modes. As the number of aluminum alloy layers increases along the thickness direction of laminates, the ballistic limit decreases progressively. When the aluminum alloy layer is distributed on the back of the laminate, the deformation and delamination degree of the laminate will be reduced, and the ballistic limit of the laminate will be improved. The aluminum alloy sandwich will cause more fiber damage, which is not conducive to the energy dissipation of the laminate. These research outcomes are anticipated to provide a technical foundation for the broader application of thermoplastic fiber–metal hybrid composite laminates. Full article
(This article belongs to the Special Issue Microstructure, Mechanical and Tribological Properties of Alloys)
Show Figures

Figure 1

16 pages, 13437 KiB  
Article
Theoretical Prediction Method for Tensile Properties of High-Strength Steel/Carbon Fiber-Reinforced Polymer Laminates
by Haichao Hu, Qiang Wei, Tianao Wang, Quanjin Ma, Shupeng Pan, Fengqi Li, Chuancai Wang and Jie Ding
Polymers 2025, 17(7), 846; https://doi.org/10.3390/polym17070846 - 21 Mar 2025
Viewed by 786
Abstract
This study introduces a method for predicting the tensile properties of high-strength steel/carbon fiber-reinforced polymer (CFRP) composite laminates using Metal Volume Fraction (MVF) theory. DP590 and DP980 high-strength steels (thickness ~0.8 mm) were selected as substrates, and composite laminates were fabricated by compression [...] Read more.
This study introduces a method for predicting the tensile properties of high-strength steel/carbon fiber-reinforced polymer (CFRP) composite laminates using Metal Volume Fraction (MVF) theory. DP590 and DP980 high-strength steels (thickness ~0.8 mm) were selected as substrates, and composite laminates were fabricated by compression molding with CFRP prepreg. Tensile tests were performed on an MTS universal testing machine, and fracture morphology was analyzed using scanning electron microscopy (SEM). The results demonstrated a typical mixed failure mode: necking and fracture in the metal layer, and neat fiber fracture in the CFRP layer. Comparisons of experimental tensile strength with theoretical predictions revealed that the model based on the metal strength at fracture significantly outperformed the model using tensile strength for predictions, with narrower error ranges. For example, the error for DP590/CFRP laminates ranged from 2.31% to 12.89%, whereas for DP980/CFRP laminates, it was –6.12%. Additionally, the study showed that using metals with higher plasticity in fiber metal laminates could underutilize the metal layer’s potential at peak stress, leading to significant deviations when predictions rely on tensile strength. Therefore, it is recommended to use the metal strength corresponding to peak stress for more accurate MVF-based tensile property predictions. This method provides a robust theoretical foundation for predicting the tensile performance of high-strength steel/CFRP laminates, aiding in optimizing structural designs for automotive and aerospace applications. Future research could explore the effects of different metal and fiber combinations, as well as more complex stacking designs. Full article
Show Figures

Figure 1

13 pages, 12364 KiB  
Article
Constructing Micro-/Nano-Aramid Pulp (MAP)–Epoxy Coatings on Laser-Engraved Titanium Alloy Surfaces for Stronger Adhesive Bonding with Carbon Fiber-Reinforced Polymer Panel
by Haibo Zhu, Fei Cheng, Shihao Zuo, Jinheng Zhang, Wenyi Huang, Tangrui Fan and Xiaozhi Hu
Coatings 2025, 15(2), 221; https://doi.org/10.3390/coatings15020221 - 13 Feb 2025
Cited by 2 | Viewed by 1032
Abstract
A shape-controllable laser-engraving treatment (LET) and aramid pulp (AP)-reinforced resin pre-coating (RPC) were used on a titanium (Ti) alloy surface to construct micro-/nano-aramid pulp and epoxy (MAPE) coatings for greater bonding strength with carbon fiber-reinforced polymers (CFRPs). The array pits of regular hexagon [...] Read more.
A shape-controllable laser-engraving treatment (LET) and aramid pulp (AP)-reinforced resin pre-coating (RPC) were used on a titanium (Ti) alloy surface to construct micro-/nano-aramid pulp and epoxy (MAPE) coatings for greater bonding strength with carbon fiber-reinforced polymers (CFRPs). The array pits of regular hexagon on the Ti alloy surface were engraved and vertical spaces between the array pits were created to place the AP-reinforced epoxy for stronger mechanical interlocking. The specimen treated with laser engraving (side length of 0.3 mm) and AP-reinforced RPC yielded the greatest bonding strength of 27.1 MPa, 67.4% higher than the base strength. The failure modes of the Ti-CFRPs composites changed from debonding failure at the Ti/epoxy surface to fiber-damaged failure of the laminated CFRPs panels. The shape-controllable LET and simple AP-reinforced RPC were confirmed as the most feasible and effective combined methods for use on titanium alloy surfaces for manufacturing stronger Ti-CFRPs composites, which exhibited the potential for application in other metal–matrix-bonding composite systems. Full article
Show Figures

Figure 1

23 pages, 12741 KiB  
Article
Performance of Hybrid Reinforced Composite Substrates in Adhesively Bonded Joints Under Varied Loading Rates
by Hossein Malekinejad, Ricardo J. C. Carbas, Eduardo A. S. Marques and Lucas F. M. da Silva
Polymers 2025, 17(4), 469; https://doi.org/10.3390/polym17040469 - 11 Feb 2025
Cited by 1 | Viewed by 991
Abstract
The use of adhesive bonding for joining composites has grown due to its excellent performance compared to traditional joining methods. However, delamination remains a significant issue in adhesively bonded composite joints, often causing early failure and reducing joint performance. To address this, there [...] Read more.
The use of adhesive bonding for joining composites has grown due to its excellent performance compared to traditional joining methods. However, delamination remains a significant issue in adhesively bonded composite joints, often causing early failure and reducing joint performance. To address this, there is a strong interest in methods that enhance the through-thickness strength of composite substrates to reduce the risk of delamination. Various studies have suggested techniques to prevent delamination in carbon fiber reinforced polymer (CFRP) single-lap joints (SLJs). This study investigates the reinforcement of substrates to prevent delamination, often by adding a tough polymer or metal layer (called fiber metal laminates) to the top and bottom surfaces of the substrates. The effects of incorporating aluminum and film adhesive layers (each comprising 25% of the composite substrate’s thickness) on the failure load and failure mode of bonded joints under different loading rates, including quasi-static (1 mm/min), high-rate (0.1 m/s), and impact (2.5 m/s) conditions, were examined. These configurations were also simulated using cohesive zone modeling (CZM) across all loading rates to predict failure load and mechanisms numerically. Under impact loading, substituting outer CFRP layers with polymer or metal layers significantly increased the failure load and energy absorption capacity. Samples reinforced with aluminum and polymer showed approximately 39% and 13% higher failure loads, respectively, compared to the reference CFRP samples under impact. In terms of energy absorption, SLJs reinforced using aluminum could dissipate energy about 15% greater than the reference CFRP SLJs. The polymer reinforcement configuration can enhance specific strength with a relatively smaller increase in weight compared to FML. This is particularly important in aerospace applications, where minimizing weight while improving performance is crucial. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

Back to TopTop