Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (867)

Search Parameters:
Keywords = fiber diffraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3491 KiB  
Article
Development and Characterization of Composite Films of Potato Starch and Carboxymethylcellulose/Poly(ethylene oxide) Nanofibers
by Yenny Paola Cruz Moreno, Andres Felipe Rubiano-Navarrete, Erika Rocio Cely Rincón, Adriana Elizabeth Lara Sandoval, Alfredo Maciel Cerda, Edwin Yesid Gomez-Pachon and Ricardo Vera-Graziano
Eng 2025, 6(7), 160; https://doi.org/10.3390/eng6070160 - 15 Jul 2025
Viewed by 148
Abstract
This study aimed to develop and characterize biodegradable films based on potato starch reinforced with carboxymethylcellulose (CMC) and polyethylene oxide (PEO) nanofibers, with the goal of improving their mechanical and thermal properties for potential use in sustainable packaging. The films were prepared through [...] Read more.
This study aimed to develop and characterize biodegradable films based on potato starch reinforced with carboxymethylcellulose (CMC) and polyethylene oxide (PEO) nanofibers, with the goal of improving their mechanical and thermal properties for potential use in sustainable packaging. The films were prepared through the thermal gelatinization of starch extracted from tubers, combined with nanofibers obtained by electrospinning CMC synthesized from potato starch. Key electrospinning variables, including solution concentration, voltage, distance, and flow rate, were analyzed. The films were morphologically characterized using scanning electron microscopy (SEM) and chemically analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD), and their thermal properties were assessed by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The results indicated an increase in tensile strength to 14.1 MPa in the reinforced films, compared to 13.6 MPa for pure starch and 7.1 MPa for the fiber-free CMC blend. The nanofibers had an average diameter of 63.3 nm and a porosity of 32.78%. A reduction in crystallinity and more stable thermal behavior were also observed in the composite materials. These findings highlight the potential of using agricultural waste as a functional reinforcement in biopolymers, providing a viable and environmentally friendly alternative to synthetic polymers. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

20 pages, 10209 KiB  
Article
Micro and Macro Analyses for Structural, Mechanical, and Biodegradability of a Pulp-Based Packaging Material: A Comprehensive Evaluation Using SEM, XRD, FTIR, and Mechanical Testing
by H. M. D. U. Sewwandi, J. D. Chathuranga, W. G. C. M. Kulasooriya, D. K. A. Induranga, S. V. A. A. Indupama, G. D. C. P. Galpaya, M. K. D. M. Gunasena, H. V. V. Priyadarshana and K. R. Koswattage
J. Compos. Sci. 2025, 9(7), 365; https://doi.org/10.3390/jcs9070365 - 14 Jul 2025
Viewed by 152
Abstract
The extensive accumulation of plastic waste causes serious environmental problems, leading to growing interest in biodegradable alternatives. In this study, the structural, chemical, and crystalline characteristics of a pulp-based material incorporating sugarcane bagasse ash (SCBA) were investigated using Scanning Electron Microscopy (SEM), X-ray [...] Read more.
The extensive accumulation of plastic waste causes serious environmental problems, leading to growing interest in biodegradable alternatives. In this study, the structural, chemical, and crystalline characteristics of a pulp-based material incorporating sugarcane bagasse ash (SCBA) were investigated using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FTIR). Mechanical properties of the materials were investigated through compression, tensile, and bending tests in order to assess their strength and flexibility, while biodegradability was evaluated through soil burial tests. The results indicate that SCBA addition enhances compressive strength, with optimal performance obtained at 15% SCBA content, while tensile and bending strengths showed an enhancement at 5% content. FTIR and XRD analyses suggested an increase in amorphous regions and notable microstructural interactions between SCBA particles and cellulose fibers, particularly at a 10% concentration. SEM images further confirmed effective particle dispersion and improved porosity in the composite materials. Furthermore, samples incorporating SCBA exhibited superior biodegradability compared to pure pulp. Overall, these findings highlight that incorporating 10–15% SCBA provides a promising balance between mechanical integrity and environmental sustainability, offering a viable strategy for developing eco-friendly, high-performance packaging materials. Full article
(This article belongs to the Special Issue Advances in Sustainable Composites and Manufacturing Innovations)
Show Figures

Figure 1

12 pages, 1896 KiB  
Article
A 6 kW Level Linearly Polarized Near-Diffraction-Limited Monolithic Fiber Laser with a 0.43 nm Linewidth
by Zixiang Gao, Qiang Shu, Fang Li, Chun Zhang, Fengyun Li, Xingchen Jiang, Yu Wen, Cheng Chen, Li Li, Qiuhui Chu, Rumao Tao, Honghuan Lin, Zhitao Peng and Jianjun Wang
Photonics 2025, 12(7), 701; https://doi.org/10.3390/photonics12070701 - 11 Jul 2025
Viewed by 233
Abstract
A high-power, narrow-linewidth, all-fiber polarization-maintaining (PM) amplifier has been demonstrated. A lasing power of 5870 W has been delivered in master oscillator power amplifier architecture with cascaded white noise source (WNS) phase modulation and bidirectional pumping schemes. The maximal power was limited by [...] Read more.
A high-power, narrow-linewidth, all-fiber polarization-maintaining (PM) amplifier has been demonstrated. A lasing power of 5870 W has been delivered in master oscillator power amplifier architecture with cascaded white noise source (WNS) phase modulation and bidirectional pumping schemes. The maximal power was limited by the onset of stimulated Brillouin scattering. At the maximum power operation, the amplifier exhibited a 3 dB spectral linewidth of 0.43 nm with beam quality being M2 < 1.33 and polarization extinction ratio (PER) being 16.3 dB. To the best of our knowledge, this represents the highest spectral brightness and PER achieved by PM fiber laser systems around 6 kW-level operation. Full article
(This article belongs to the Special Issue High-Power Fiber Lasers)
Show Figures

Figure 1

12 pages, 3441 KiB  
Article
Mechanical Strength and Hydration Characteristic of Multiple Common Waste-Blended Cement-Based Materials Cured by Electric-Induced Heating Curing Under Severely Cold Environments
by Lei Zhang, Ruisen Li, Sheng Li, Han Wang and Qiang Fu
Materials 2025, 18(14), 3220; https://doi.org/10.3390/ma18143220 - 8 Jul 2025
Viewed by 247
Abstract
To address the challenges of concrete construction in polar regions, this study investigates the feasibility of fabricating cement-based materials under severely low temperatures using electric-induced heating curing methods. Cement mortars incorporating fly ash (FA-CM), ground granulated blast furnace slag (GGBS-CM), and metakaolin (MK-CM) [...] Read more.
To address the challenges of concrete construction in polar regions, this study investigates the feasibility of fabricating cement-based materials under severely low temperatures using electric-induced heating curing methods. Cement mortars incorporating fly ash (FA-CM), ground granulated blast furnace slag (GGBS-CM), and metakaolin (MK-CM) were cured at environmental temperatures of −20 °C, −40 °C, and −60 °C. The optimal carbon fiber (CF) contents were determined using the initial electric resistivity to ensure a consistent electric-induced heating curing process. The thermal profiles during curing were monitored, and mechanical strength development was systematically evaluated. Hydration characteristics were elucidated through thermogravimetric analysis (TG), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) to identify phase compositions and reaction products. Results demonstrate that electric-induced heating effectively mitigates the adverse effect caused by the ultra-low temperature constraints, with distinct differences in the strength performance and hydration kinetics among supplementary cementitious materials. MK-CM exhibited superior early strength development with strength increasing rates above 10% compared to the Ref. specimen, which was attributed to the accelerated pozzolanic reactions. Microstructural analyses further verified the macroscopic strength test results that showed that electric-induced heating curing can effectively promote the performance development even under severely cold environments with a higher hydration degree and refined micro-pore structure. This work proposes a viable strategy for polar construction applications. Full article
Show Figures

Figure 1

13 pages, 2665 KiB  
Article
Kapok-Derived Super Hollow Porous Carbon Fibers and Their Greenhouse Gases Adsorption
by Hun-Seung Jeong, Cheol-Ki Cho, Dong-Chul Chung, Kay-Hyeok An and Byung-Joo Kim
Fibers 2025, 13(7), 92; https://doi.org/10.3390/fib13070092 - 4 Jul 2025
Viewed by 259
Abstract
Industrialization and modernization have significantly improved the quality of life but have also led to substantial pollution. Cost-effective technologies are urgently needed to mitigate emissions from major polluting sectors, such as the automotive and transport industries. In this study, we synthesized naturally derived, [...] Read more.
Industrialization and modernization have significantly improved the quality of life but have also led to substantial pollution. Cost-effective technologies are urgently needed to mitigate emissions from major polluting sectors, such as the automotive and transport industries. In this study, we synthesized naturally derived, kapok-based porous carbon fibers (KP-PCFs) with hollow structures. We investigated their adsorption/desorption behavior for the greenhouse gas n-butane following ASTM D5228 standards. Scanning electron microscopy and X-ray diffraction analyses were conducted to examine changes in fiber diameter and crystalline structure under different activation times. The micropore properties of KP-PCFs were characterized using Brunauer–Emmett–Teller, t-plot, and non-localized density functional theory models based on N2/77K adsorption isotherm data. The specific surface area and total pore volume ranged from 500 to 1100 m2/g and 0.24 to 0.60 cm3/g, respectively, while the micropore and mesopore volumes were 0.20–0.45 cm3/g and 0.04–0.15 cm3/g, respectively. With increasing activation time, the n-butane adsorption capacity improved from 62.2% to 73.5%, whereas retentivity (residual adsorbate) decreased from 6.0% to 1.3%. The adsorption/desorption rate was highly correlated with pore diameter: adsorption capacity was highest for diameters of 1.5–2.5 nm, while retentivity was greatest for diameters of 3.5–5.0 nm. Full article
Show Figures

Graphical abstract

18 pages, 4549 KiB  
Article
Efficiency Determination of Water Lily (Eichhornia crassipes) Fiber Delignification by Electrohydrolysis Using Different Electrolytes
by R. Sanchez-Torres, E. Onofre Bustamante, T. Pérez López and A. C. Espindola-Flores
Recycling 2025, 10(4), 130; https://doi.org/10.3390/recycling10040130 - 1 Jul 2025
Viewed by 206
Abstract
Nowadays, biomass use has increased due to it being the most abundant raw material on the planet, and treating it is a difficult task, as a result of the number of existing methods and the applications’ diversification. This research work shows the results [...] Read more.
Nowadays, biomass use has increased due to it being the most abundant raw material on the planet, and treating it is a difficult task, as a result of the number of existing methods and the applications’ diversification. This research work shows the results obtained using different delignification methods (physical and chemical) on water lily ((Eichhornia crassipes) fiber lignocellulosic biomass including a seldom exploited method, known as “electrohydrolysis” in order to determinate the removal efficiency of lignin and hemicellulose. The characterization of the physicochemical and morphological properties of the water lily (Eichhornia crassipes) fiber before and after the pretreatments were applied were by means of Fourier Transform Infrared (FT-IR), X-ray diffraction (XRD) and optical microscopy (OM). The results of FT-IR show a significant decrease in the bands associated with lignin and hemicellulose. By XRD, it was determined that the crystallinity of the cellulose increased by 60% for the treated samples with respect to the reference, and an increase in the surface roughness of the samples was observed by OM. In conclusion, it was determined that electrochemistry delignification is an efficient, environmentally friendly methodology to remove the soluble sugars, opening the possibility to use the water lily (Eichhornia crassipes) fiber to produce a green concrete. Full article
(This article belongs to the Special Issue Biomass Revival: Rethinking Waste Recycling for a Greener Future)
Show Figures

Figure 1

20 pages, 3790 KiB  
Article
Fabrication of CF–NiO Electrodes and Performance Evaluation of Microbial Fuel Cells in the Treatment of Potato Starch Wastewater
by Tianyi Yang, Song Xue, Liming Jiang, Jiuming Lei, Wenjing Li, Yiwei Han, Zhijie Wang, Jinlong Zuo and Yuyang Wang
Coatings 2025, 15(7), 760; https://doi.org/10.3390/coatings15070760 - 27 Jun 2025
Viewed by 411
Abstract
Microbial fuel cells (MFCs) generate electricity through the microbial oxidation of organic waste. However, the inherent electrochemical performance of carbon felt (CF) electrodes is relatively poor and requires enhancement. In this study, nickel oxide (NiO) was successfully loaded onto CF to improve its [...] Read more.
Microbial fuel cells (MFCs) generate electricity through the microbial oxidation of organic waste. However, the inherent electrochemical performance of carbon felt (CF) electrodes is relatively poor and requires enhancement. In this study, nickel oxide (NiO) was successfully loaded onto CF to improve its electrode performance, thereby enhancing the electricity generation capacity of MFCs during the degradation of treated wastewater. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy diffusion spectrometer (EDS) analyses confirmed the successful deposition of NiO on the CF surface. The modification enhanced both the conductivity and capacitance of the electrode and increased the number of microbial attachment sites on the carbon fiber filaments. The prepared CF–NiO electrode was employed as the anode in an MFC, and its electrochemical and energy storage performance were evaluated. The maximum power density of the MFC with the CF–NiO anode reached 0.22 W/m2, compared to 0.08 W/m2 for the unmodified CF anode. Under the C1000-D1000 condition, the charge storage capacity and total charge output of the CF–NiO anode were 1290.03 C/m2 and 14,150.03 C/m2, respectively, which are significantly higher than the 452.9 C/m2 and 6742.67 C/m2 observed for the CF anode. These results indicate notable improvements in both power generation and energy storage performance. High-throughput gene sequencing of the anodic biofilm following MFC acclimation revealed that the CF–NiO anode surface hosted a higher proportion of electroactive bacteria. This suggests that the NiO modification enhances the biodegradation of organic matter and improves electricity generation efficiency. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

14 pages, 4406 KiB  
Article
Craftsmanship and Techniques of a Lacquered Ear Cup from the Ancient Nanyue Kingdom
by Lin Zheng, Xia Li, Zichen Zhao, Shuang’e Tian, Jianling Tang, Siming Li, Xiaocen Li, Na Wang and Tengfei Yu
Coatings 2025, 15(7), 752; https://doi.org/10.3390/coatings15070752 - 25 Jun 2025
Viewed by 347
Abstract
This study analyzes a lacquered ear cup excavated from the Luobowan tomb complex in Guigang, Guangxi, attributed to the Nanyue Kingdom of the early Han dynasty. A range of analytical techniques, including optical microscopy (OM), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), [...] Read more.
This study analyzes a lacquered ear cup excavated from the Luobowan tomb complex in Guigang, Guangxi, attributed to the Nanyue Kingdom of the early Han dynasty. A range of analytical techniques, including optical microscopy (OM), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), pyrolysis–gas chromatography–mass spectrometry (Py-GC-MS), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD), were employed to investigate the structural layers, material composition, and preservation state of the artifact. The lacquerware consists of four traditional layers: a wooden core, fabric reinforcement, lacquer ground, and lacquer film, reflecting Central Plains lacquerware techniques. The wooden core was identified as Phoebe sp., and the fabric layer is likely hemp, though fiber degradation limited exact identification. The lacquer ground layer contains natural lacquer mixed with SiO2 from brick or tile powder. The lacquer film is a blend of Chinese and Vietnamese lacquer, with no synthetic additives or plant oils detected. The red lacquer layer contains cinnabar (HgS) as a pigment, while the black lacquer uses carbon black. Differences in moisture content between the red and black lacquer films are attributed to variations in surface porosity and pigment characteristics. This research provides valuable insights into Nanyue lacquer technology and preservation challenges. Full article
(This article belongs to the Special Issue Research and Conservation of Ancient Lacquer)
Show Figures

Figure 1

20 pages, 6538 KiB  
Article
Influence of the Maillard Reaction on the Properties of Gelatin/Zein Nanofibers Loaded with Dihydromyricetin Prepared by Electro-Blowing Spinning
by Hui Xiang, Runtian Wu, Man Xiao, Jianhui An, Longchen Shang, Yexing Tao and Lingli Deng
Biomolecules 2025, 15(6), 891; https://doi.org/10.3390/biom15060891 - 18 Jun 2025
Viewed by 414
Abstract
This study investigated gelatin/zein nanofibers loaded with dihydromyricetin (0–20%, relative to protein weight), before and after the Maillard reaction (60 °C with 50% relative humidity for 6 h). Scanning electron microscopy and diameter distribution analysis indicated that dihydromyricetin incorporation increased the fiber diameter [...] Read more.
This study investigated gelatin/zein nanofibers loaded with dihydromyricetin (0–20%, relative to protein weight), before and after the Maillard reaction (60 °C with 50% relative humidity for 6 h). Scanning electron microscopy and diameter distribution analysis indicated that dihydromyricetin incorporation increased the fiber diameter from 692 ± 133 to 922 ± 121 nm, while the nanofibers maintained a uniform morphology following the Maillard reaction. Fourier transform infrared spectroscopy revealed that dihydromyricetin formed hydrogen bonds with protein molecules. X-ray diffraction results indicate that dihydromyricetin was uniformly dispersed within the gelatin/zein nanofibers. The addition of dihydromyricetin improved the thermal stability of the nanofibers. Furthermore, after the Maillard reaction, the nanofibers with dihydromyricetin demonstrated enhanced water resistance. Mechanical testing revealed that nanofibers containing 20% dihydromyricetin after the Maillard reaction exhibited a considerably higher elastic modulus of approximately 90 MPa. In addition, nanofibers containing dihydromyricetin exhibited notable antioxidant activity and antibacterial properties against Escherichia coli and Staphylococcus aureus. In summary, gelatin/zein nanofibers containing high concentrations of dihydromyricetin exhibited favorable physical and functional properties, supporting their suitability as effective delivery systems for dihydromyricetin in active packaging applications. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

13 pages, 6473 KiB  
Article
Structure Characterization and Mechanical Properties of Acidity-Induced Helix of Alginate and Fibers
by Jinhong Yang, Na Sun, Xuelai Xie, Zhangyu Feng, Na Liu, Kai Wang and Min Lin
Materials 2025, 18(11), 2619; https://doi.org/10.3390/ma18112619 - 3 Jun 2025
Viewed by 355
Abstract
The brittleness of alginate fibers has limited their biological applications. Enhancing fiber toughness without sacrificing fracture tensile strength is challenging. Herein, an acidity-triggered helical conformational change in alginate is demonstrated to improve fiber toughness. During fiber formation by Ca2+ crosslinking, HCl triggers [...] Read more.
The brittleness of alginate fibers has limited their biological applications. Enhancing fiber toughness without sacrificing fracture tensile strength is challenging. Herein, an acidity-triggered helical conformational change in alginate is demonstrated to improve fiber toughness. During fiber formation by Ca2+ crosslinking, HCl triggers 21-helical and antiparallel twofold helical conformational changes in sodium alginate. The helical structures were confirmed using circular dichroism and X-ray diffraction. Rheological analysis revealed that the helical conformation was flexible and could extend fiber elongation from 9.4 ± 0.6 to 15.3 ± 2.2%, while the fracture tensile strength was slightly enhanced by 12.4%, reaching 308 MPa. Thus, toughness was enhanced by 74%, reaching 35.5 ± 2.1 MJ m−3, thereby reducing brittleness. The introduction of helical structures required no significant changes to the wet-spinning process and exhibited good processability. The improved elongation and toughness will broaden the biomedical applications of alginate fibers. Full article
Show Figures

Graphical abstract

18 pages, 7043 KiB  
Article
Phase-Dependent Photocatalytic Activity of Nb2O5 Nanomaterials for Rhodamine B Degradation: The Role of Surface Chemistry and Crystal Structure
by Aarón Calvo-Villoslada, Inmaculada Álvarez-Serrano, María Luisa López, Paloma Fernández and Belén Sotillo
Nanomaterials 2025, 15(11), 846; https://doi.org/10.3390/nano15110846 - 1 Jun 2025
Viewed by 519
Abstract
Niobium oxides are promising materials for catalytic applications due to their unique structural versatility and surface chemistry. Nb2O5 nanomaterials were synthesized via a solvothermal method at 150 °C using niobium oxalate as a precursor. A comprehensive characterization of the material [...] Read more.
Niobium oxides are promising materials for catalytic applications due to their unique structural versatility and surface chemistry. Nb2O5 nanomaterials were synthesized via a solvothermal method at 150 °C using niobium oxalate as a precursor. A comprehensive characterization of the material was performed using electron microscopy, X-ray diffraction, and Raman spectroscopy. The as-prepared nanoparticles primarily crystallized in a mixture of the TT-Nb2O5 phase (TT from the German Tief-Tief, meaning “low-low”) and niobic acid, while subsequent thermal treatment at 900 and 1100 °C induced a phase transformation to T-Nb2O5 and H-Nb2O5, respectively (T from the German Tief, meaning “low”, and H from Hoch, meaning “high”). The as-prepared samples consist of micro-coils composed of interconnected nanometer-scale fibers, whereas the morphology changes into rods when they are treated at 1100 °C. The photocatalytic performance of the nanoparticles was evaluated by comparing the as-prepared and thermally treated samples. The as-prepared nanoparticles exhibited the highest photocatalytic activity under visible illumination, achieving 100% degradation after 180 min. More interestingly, the treatment of the as-prepared material with H2O2 modified the surface species formed on the Nb2O5, altering the photocatalytic behavior under various illumination conditions. This sample showed the highest photocatalytic activity under UV illumination, reaching 100% degradation after 75 min. On the other hand, the calcined samples are practically inactive, attributed to the loss of active catalytic sites during thermal treatment and phase transformation. Full article
(This article belongs to the Special Issue Synthesis and Properties of Metal Oxide Thin Films)
Show Figures

Figure 1

16 pages, 4556 KiB  
Article
In Situ Following Oriented Crystallization of Pre-Stretched Poly(ethylene 2,5-Furandicarboxylate) Under Post Heating
by Jianguo Zhao, Mengcheng Yang, Binhang Wu, Hang Li and Yiguo Li
Polymers 2025, 17(11), 1508; https://doi.org/10.3390/polym17111508 - 28 May 2025
Viewed by 449
Abstract
Post-processing plays a vital role in the determination of the final structures and properties of oriented materials. As a sustainable candidate of oil-based poly(ethylene terephthalate), biobased poly(ethylene 2,5-furandicarboxylate) (PEF) reflects great promise in green fiber, film, and packaging applications, but it undergoes poor [...] Read more.
Post-processing plays a vital role in the determination of the final structures and properties of oriented materials. As a sustainable candidate of oil-based poly(ethylene terephthalate), biobased poly(ethylene 2,5-furandicarboxylate) (PEF) reflects great promise in green fiber, film, and packaging applications, but it undergoes poor stress-induced crystallization (SIC) under tensile deformation, necessitating a post-processing technique to improve its crystallinity and stability. Here, the structural evolution of pre-stretched PEF under post heating after uniaxial deformation was monitored by online synchrotron X-ray diffraction/scattering, differential scanning calorimetry, and ex situ infrared spectroscopy. The results delineate the significantly enhanced crystallization of pre-deformed PEF that happened far below its cold crystallization temperature. Through the isochronous analyses of the temperature-dependent evolution of mechanical response, the mesophase, crystal structure, orientation factor, chain conformation, and interchain ═C−H···O═C hydrogen bonding, the molecular mechanisms of microstructural transition and oriented crystallization of pre-drawn PEF under post heating were clarified. This research can enhance the understanding of PEF crystallization in an oriented state and provide guidelines on the structural design and technical control for processing high-performance PEF-based materials. Full article
Show Figures

Figure 1

26 pages, 28824 KiB  
Review
Research Status of Mechanical Properties and Microstructure of Fiber-Reinforced Desert Sand Concrete
by Bo Nan, Jiantong Xin and Wei Yu
Materials 2025, 18(11), 2531; https://doi.org/10.3390/ma18112531 - 27 May 2025
Viewed by 346
Abstract
This study systematically investigates the effects of the desert sand replacement ratio (DSRR) and the incorporation of individual fiber types such as steel fibers, polypropylene fibers, and basalt fibers, as well as various hybrid fiber combinations, on the workability, mechanical properties, and microstructure [...] Read more.
This study systematically investigates the effects of the desert sand replacement ratio (DSRR) and the incorporation of individual fiber types such as steel fibers, polypropylene fibers, and basalt fibers, as well as various hybrid fiber combinations, on the workability, mechanical properties, and microstructure of fiber-reinforced desert sand concrete (FRDSC). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) assessed hydration byproducts and elucidated the material’s toughening mechanisms. The optimal compressive strength occurs at 40% DSRR; further increases in the replacement ratio lead to a decline in performance. At this optimal DSRR, the addition of 0.5% steel fibers by volume results in a 27.6% increase in the compressive strength of the specimens. Moreover, the splitting tensile strength of specimens reinforced with a hybrid combination of basalt fibers and polypropylene fibers increased by 9.7% compared to those reinforced with basalt fibers alone. Microstructural observations reveal that fiber bridging promotes denser calcium silicate hydrate (C-S-H) gel development. These findings underscore the promising viability of FRDSC as a sustainable construction material, particularly for infrastructure projects in desert regions, offering both environmental and economic advantages. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 1483 KiB  
Article
The Effect of Synthesis Conditions and Chemical Structure of Thermoplastic Polyimides on Their Thermomechanical Properties and Short-Term Electrical Strength
by Victor M. Nazarychev, Andrey A. Pavlov, Almaz M. Kamalov, Margarita E. Borisova, Andrei L. Didenko, Elena M. Ivan’kova, Vadim E. Kraft, Gleb V. Vaganov, Alexandra L. Nikolaeva, Anna S. Ivanova, Victor K. Lavrentiev, Elena N. Popova, Ivan V. Abalov, Aleksey N. Blokhin, Alexander N. Bugrov and Vladislav V. Kudryavtsev
Polymers 2025, 17(10), 1385; https://doi.org/10.3390/polym17101385 - 18 May 2025
Viewed by 562
Abstract
Polyimides (PIs) are materials that are resistant to high temperatures and crucial for the manufacturing of films, fibers, coatings, and 3D-printed items. PIs are widely used as electrically insulating materials in electronics and electrical engineering. This study investigated how the chemical structure (i.e., [...] Read more.
Polyimides (PIs) are materials that are resistant to high temperatures and crucial for the manufacturing of films, fibers, coatings, and 3D-printed items. PIs are widely used as electrically insulating materials in electronics and electrical engineering. This study investigated how the chemical structure (i.e., choice of initial monomers), the synthesis conditions of the prepolymer (i.e., choice of amide solvent), and the conditions for forming polyimide films (i.e., final curing temperature) affect the thermophysical properties and short-term electrical strength of obtained polyimide films of different chemical structures. In this work, we varied the compositions of the dianhydrides used for synthesizing polyamic acids—pyromellitic acid (PMDA), tetracarboxylic acid diphenyl oxide (ODPA) and 1,3-bis(3′,4-dicarboxyphenoxy)benzene acid (R)—with a constant diamine: 4,4′-oxydianiline (ODA). Additionally, we varied the amide solvents employed: N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), and N-methyl-2-pyrrolidone (NMP). This study represents the first investigation into how the choice of solvent in the synthesis of thermoplastic polyimide prepolymers affects their short-term electrical strength. The molecular weights of the polyamic acids were determined using gel permeation chromatography (GPC). The deformation and strength characteristics of the investigated films were also assessed. The thermophysical properties of the polyimides were evaluated via dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). X-ray diffraction analysis and infrared spectroscopy (IR) were conducted on the examined film samples. The short-term electrical strength was also evaluated. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

14 pages, 2819 KiB  
Article
Band Gap Energy and Lattice Distortion in Anatase TiO2 Thin Films Prepared by Reactive Sputtering with Different Thicknesses
by Cecilia Guillén
Materials 2025, 18(10), 2346; https://doi.org/10.3390/ma18102346 - 18 May 2025
Viewed by 586
Abstract
TiO2 is an abundant material on Earth, essential for the sustainable and cost-effective development of various technologies, with anatase being the most effective polymorph for photocatalytic and photovoltaic applications. Bulk crystalline anatase TiO2 exhibits a band gap energy EgA = [...] Read more.
TiO2 is an abundant material on Earth, essential for the sustainable and cost-effective development of various technologies, with anatase being the most effective polymorph for photocatalytic and photovoltaic applications. Bulk crystalline anatase TiO2 exhibits a band gap energy EgA = 3.2 eV, for tetragonal lattice parameters aA = 0.3785 nm and cA = 0.9514 nm, but these characteristics vary for amorphous or polycrystalline thin films. Reactive magnetron sputtering has proven suitable for the preparation of TiO2 coatings on glass fiber substrates, with structural and optical characteristics that change during growth. Below a minimum thickness (t < 0.2 μm), the films have an amorphous nature or extremely small crystallite sizes not observable by X-ray diffraction. Afterwards, compressed quasi-randomly orientated crystallites are detected (volume strain ΔV = −0.02 and stress σV = −3.5 GPa for t = 0.2 μm) that evolve into relaxed and preferentially (004) orientated crystallites, reaching the standard anatase values at t ~ 1.4 μm with σV = 0.0 GPa. The band gap energy increases with lattice distortion according to the relation ∆Eg (eV) = −6∆V, and a further increase is observed for the thinnest coatings (∆Eg = 0.24 eV for t = 0.05 μm). Full article
Show Figures

Figure 1

Back to TopTop