Structure Characterization and Mechanical Properties of Acidity-Induced Helix of Alginate and Fibers
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. SA Secondary Structure Analysis
2.3. Fiber Fabrication Through Wet-Spinning Process
2.4. Characterization Methods
3. Results and Discussion
3.1. Acidity Regulated Helical Conformation
3.2. Rheological Analysis of Helix
3.3. Helix Reinforced Alginate Fibers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guan, W.; Gong, C.X.; Wu, S.L.; Cui, Z.D.; Zheng, Y.F.; Li, Z.Y.; Zhu, S.L.; Liu, X.M. Instant Protection Spray for Anti-Infection and Accelerated Healing of Empyrosis. Adv. Mater. 2024, 36, 13. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Xie, T.; Liu, Y.F.; Yan, S.; OuYang, F.J.; Zhang, H.T.; Lei, L.; He, D.X.; Wei, H.; Yu, C.Y. A Sodium Alginate-Based Multifunctional Nanoplatform for Synergistic Chemo-Immunotherapy of Hepatocellular Carcinoma. Adv. Mater. 2023, 35, 14. [Google Scholar] [CrossRef]
- Lei, X.X.; Hu, J.J.; Zou, C.Y.; Jiang, Y.L.; Zhao, L.M.; Zhang, X.Z.; Li, Y.X.; Peng, A.N.; Song, Y.T.; Huang, L.P.; et al. Multifunctional two-component in-situ hydrogel for esophageal submucosal dissection for mucosa uplift, postoperative wound closure and rapid healing. Bioact. Mater. 2023, 27, 461. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Qiao, X.N.; Han, W.W.; Jiang, T.Z.; Liu, F.; Zhao, X. Alginate-chitosan oligosaccharide-ZnO composite hydrogel for accelerating wound healing. Carbohydr. Polym. 2021, 266, 9. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Z.; Jiang, H.; Zhuang, Z.; Cong, H.; Yu, B.; Hu, H. A near-infrared responsive hydrogel loaded with Prussian blue-based nanocarriers for CO gas therapy of infected wounds. Chem. Eng. J. 2025, 512, 162544. [Google Scholar] [CrossRef]
- Becerril-Serna, L.; Aguilar-Uscanga, B.R.; Flores-Soto, M.; Solís-Pacheco, J.R.; Cisneros-López, E.O. Design and Characterization of an Antimicrobial Biocomposite for Wound Dressings. Materials 2024, 17, 19. [Google Scholar] [CrossRef]
- Fraczyk, J.; Wasko, J.; Walczak, M.; Kaminski, Z.J.; Puchowicz, D.; Kaminska, I.; Bogun, M.; Kolasa, M.; Stodolak-Zych, E.; Scislowska-Czarnecka, A.; et al. Conjugates of Copper Alginate with Arginine-Glycine-Aspartic Acid (RGD) for Potential Use in Regenerative Medicine. Materials 2020, 13, 337. [Google Scholar] [CrossRef]
- Donati, I.; Christensen, B.E. Alginate-metal cation interactions: Macromolecular approach. Carbohydr. Polym. 2023, 321, 17. [Google Scholar] [CrossRef]
- Qi, S.Q.; Lin, M.; Qi, P.F.; Shi, J.J.; Song, G.; Fan, W.X.; Sui, K.Y.; Gao, C.J. Interfacial and build-in electric fields rooting in gradient polyelectrolyte hydrogel boosted heavy metal removal. Chem. Eng. J. 2022, 444, 8. [Google Scholar] [CrossRef]
- Zhao, X.W.; Ding, M.C.; Xu, C.Z.; Zhang, X.S.; Liu, S.; Lin, X.; Wang, L.L.; Xia, Y.Z. A self-reinforcing strategy enables the intimate interface for anisotropic alginate composite hydrogels. Carbohydr. Polym. 2021, 251, 117054. [Google Scholar] [CrossRef]
- Liu, G.W.; Pickett, M.J.; Kuosmanen, J.L.P.; Ishida, K.; Madani, W.A.M.; White, G.N.; Jenkins, J.; Park, S.; Feig, V.R.; Jimenez, M.; et al. Drinkable in situ-forming tough hydrogels for gastrointestinal therapeutics. Nat. Mater. 2024, 23, 14. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Choi, G.; Joo, K.I.; Cha, H.J.; Kim, J. Embolization of Vascular Malformations via In Situ Photocrosslinking of Mechanically Reinforced Alginate Microfibers using an Optical-Fiber-Integrated Microfluidic Device. Adv. Mater. 2021, 33, 9. [Google Scholar] [CrossRef] [PubMed]
- Cuadros, T.R.; Skurtys, O.; Aguilera, J.M. Mechanical properties of calcium alginate fibers produced with a microfluidic device. Carbohydr. Polym. 2012, 89, 1198. [Google Scholar] [CrossRef]
- Ye, S.; Chai, X.; Zhou, J.; Fan, F.; Zhang, L.; Zhang, X.; Fu, Y. Three-dimensional Au nanoparticles@ UiO-66 shell-coated carbon cloth electrode for high-performance electrochemical sensing of hydrazine. Inorg. Chem. Commun. 2025, 174, 113870. [Google Scholar] [CrossRef]
- Echeverria Molina, M.I.; Chen, C.-A.; Martinez, J.; Tran, P.; Komvopoulos, K. Novel Electrospun Polycaprolactone/Calcium Alginate Scaffolds for Skin Tissue Engineering. Materials 2022, 16, 136. [Google Scholar] [CrossRef]
- Peng, Z.C.; Hu, W.B.; Li, X.N.; Zhao, P.; Xia, Q.Y. Bending-Spinning Produces Silkworm and Spider Silk with Enhanced Mechanical Properties. Macromolecules 2023, 56, 1199. [Google Scholar] [CrossRef]
- Chen, Y.J.; Zhang, Q.; Zhong, Y.; Wei, P.D.; Yu, X.J.; Huang, J.C.; Cai, J. Super-Strong and Super-Stiff Chitosan Filaments with Highly Ordered Hierarchical Structure. Adv. Funct. Mater. 2021, 31, 12. [Google Scholar] [CrossRef]
- Zhou, W.D.; Zhang, H.; Liu, Y.F.; Zou, X.Q.; Shi, J.F.; Zhao, Y.H.; Ye, Y.M.; Yu, Y.; Guo, J. Preparation of calcium alginate/polyethylene glycol acrylate double network fiber with excellent properties by dynamic molding method. Carbohydr. Polym. 2019, 226, 10. [Google Scholar] [CrossRef]
- Yang, Q.; Guo, J.; Liu, Y.; Guan, F.; Song, J.; Gong, X. Improved Properties of Cellulose/Antarctic Krill Protein Composite Fibers with a Multiple Cross-Linking Network. Adv. Fiber Mater. 2021, 4, 256. [Google Scholar] [CrossRef]
- Li, S.S.; Biswas, M.C.; Ford, E. Dual roles of sodium polyacrylate in alginate fiber wet-spinning: Modify the solution rheology and strengthen the fiber. Carbohydr. Polym. 2022, 297, 8. [Google Scholar] [CrossRef]
- Gu, L.; Jiang, Y.Z.; Hu, J.L. Scalable Spider-Silk-Like Supertough Fibers using a Pseudoprotein Polymer. Adv. Mater. 2019, 31, 6. [Google Scholar] [CrossRef] [PubMed]
- He, W.Q.; Qian, D.; Wang, Y.; Zhang, G.H.; Cheng, Y.; Hu, X.Y.; Wen, K.; Wang, M.L.; Liu, Z.F.; Zhou, X.; et al. A Protein-Like Nanogel for Spinning Hierarchically Structured Artificial Spider Silk. Adv. Mater. 2022, 34, 10. [Google Scholar] [CrossRef]
- Liu, R.C.; Deng, Q.Q.; Yang, Z.; Yang, D.W.; Han, M.Y.; Liu, X.Y. “Nano-Fishnet” Structure Making Silk Fibers Tougher. Adv. Funct. Mater. 2016, 26, 5534. [Google Scholar] [CrossRef]
- Qiu, W.; Liu, X.Y. Recent Progress of Applying Mesoscopic Functionalization Engineering Principles to Spin Advanced Regenerated Silk Fibroin Fibers. Adv. Fiber Mater. 2022, 4, 390. [Google Scholar] [CrossRef]
- Wang, J.X.; Fan, T.T.; Li, X.; Hu, X.X.; Huang, W.D.; Yuan, W.S.; Lin, Z. Artificial superstrong silkworm silk surpasses natural spider silks. Matter 2022, 5, 4396. [Google Scholar] [CrossRef]
- Cui, M.; Liu, S.W.; Xie, X.L.; Yang, J.H.; Yang, Y.J.; Wang, T.Y. Self-Assembly reinforced alginate fibers for enhanced strength, toughness, and bone regeneration. Biomacromolecules 2024, 25, 6. [Google Scholar] [CrossRef]
- Mittal, N.; Janson, R.; Widhe, M.; Benselfelt, T.; Håkansson, K.M.O.; Lundell, F.; Hedhammar, M.; Söderberg, L.D. Ultrastrong and Bioactive Nanostructured Bio-Based Composites. ACS Nano 2017, 11, 5148. [Google Scholar] [CrossRef]
- Xu, X.Y.; Wang, Z.; Li, M.; Su, Y.P.; Zhang, Q.; Zhang, S.; Hu, J.L. Reconstructed Hierarchically Structured Keratin Fibers with Shape-Memory Features Based on Reversible Secondary-Structure Transformation. Adv. Mater. 2023, 35, 9. [Google Scholar] [CrossRef]
- Arndt, T.; Greco, G.; Schmuck, B.; Bunz, J.; Shilkova, O.; Francis, J.; Pugno, N.M.; Jaudzems, K.; Barth, A.; Johansson, J.; et al. Engineered Spider Silk Proteins for Biomimetic Spinning of Fibers with Toughness Equal to Dragline Silks. Adv. Funct. Mater. 2022, 32, 11. [Google Scholar] [CrossRef]
- Zhao, T.; Li, X.; Gong, Y. Study on polysaccharide polyelectrolyte complex and fabrication of alginate/chitosan derivative composite fibers. Int. J. Biol. Macromol. 2021, 184, 181. [Google Scholar] [CrossRef]
- Pang, S.; Zhou, C.; Sun, Y. Natural wood-derived charcoal embedded with bimetallic iron/cobalt sites to promote ciprofloxacin degradation. J. Clean. Prod. 2023, 414, 137569. [Google Scholar] [CrossRef]
- Newberry, R.W.; Raines, R.T. The n→π* Interaction. Acc. Chem. Res. 2017, 50, 1838. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Mishra, K.K.; Sharma, N.; Das, A. Direct Spectroscopic Evidence for an n-π* Interaction. Angew. Chem.-Int. Ed. 2016, 55, 7801. [Google Scholar] [CrossRef]
- Greenfield, N.J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1, 2876. [Google Scholar] [CrossRef]
- Sikorski, P.; Mo, F.; Skjåk-Bræk, G.; Stokke, B.T. Evidence for egg-box-compatible interactions in calcium-alginate gels from fiber X-ray diffraction. Biomacromolecules 2007, 8, 2098. [Google Scholar] [CrossRef]
- Atkins, E.D.; Nieduszynski, I.A.; Mackie, W.; Parker, K.D.; Smolko, E.E. Structural components of alginic acid. II. The crystalline structure of poly-α-L-guluronic acid. Results of X-ray diffraction and polarized infrared studies. Biopolym. Orig. Res. Biomol. 1973, 12, 1879–1887. [Google Scholar] [CrossRef]
- Wu, Y.T.; Lv, B.Y.; Wang, S.T.; Liu, Z.; Chen, X.D.; Cheng, Y. Study of molecular interaction and texture characteristics of hydrocolloid-mixed alginate microspheres: As a shell to encapsulate multiphase oil cores. Carbohydr. Polym. 2024, 326, 13. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Mosquera, J.; Mabesoone, M.F.J.; Schoenmakers, S.M.C.; Muller, C.; Vleugels, M.E.J.; Dhiman, S.; Wijker, S.; Palmans, A.R.A.; Meijer, E.W. Dilution-induced gel-sol-gel-sol transitions by competitive supramolecular pathways in water. Science 2022, 377, 213. [Google Scholar] [CrossRef]
- Xie, X.L.; Cui, M.; Wang, T.Y.; Yang, J.H.; Li, W.L. Constructing stiff β-sheet for self-reinforced alginate fibers. Materials 2024, 17, 13. [Google Scholar] [CrossRef]
- Gao, H.L.; Zhao, R.; Cui, C.; Zhu, Y.B.; Chen, S.M.; Pan, Z.; Meng, Y.F.; Wen, S.M.; Liu, C.; Wu, H.A.; et al. Bioinspired hierarchical helical nanocomposite macrofibers based on bacterial cellulose nanofibers. Natl. Sci. Rev. 2020, 7, 73. [Google Scholar] [CrossRef]
- Hao, J.; Yan, S.; Yuan, H. High-strength alginate fibers wet-spun from pre-crosslinked sodium alginate solutions. Carbohydr. Polym. 2024, 342, 122386. [Google Scholar] [CrossRef] [PubMed]
- Jian, N.; Wang, J.; Zuo, L. An in situ inhibition strategy: Forming a physical barrier around ionic crosslinkers to toughen double-network hydrogels. Mater. Des. 2023, 225, 111522. [Google Scholar] [CrossRef]
- Zhang, C.J.; Liu, Y.; Cui, L. Bio-based calcium alginate nonwoven fabrics: Flame retardant and thermal degradation properties. J. Anal. Appl. Pyrolysis 2016, 122, 13–23. [Google Scholar] [CrossRef]
- Wan, F.Q.; Ping, H.; Wang, W.X.; Zou, Z.Y.; Xie, H.; Su, B.L.; Liu, D.B.; Fu, Z.Y. Hydroxyapatite-reinforced alginate fibers with bioinspired dually aligned architectures. Carbohydr. Polym. 2021, 267, 8. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Guo, J.; Guan, F.C.; Yin, J.H.; Yang, Q.; Zhang, S.; Tian, J.; Zhang, Y.H.; Ding, M.F.; Wang, W.M. Oxidized sodium alginate cross-linked calcium alginate/antarctic krill protein composite fiber for improving strength and water resistance. Colloids Surf. A Physicochem. Eng. Asp. 2023, 656, 11. [Google Scholar] [CrossRef]
- Azam, F.; Ahmad, F.; Ahmad, S.; Zafar, M.S.; Ulker, Z. Synthesis and characterization of natural fibers reinforced alginate hydrogel fibers loaded with diclofenac sodium for wound dressings. Int. J. Biol. Macromol. 2023, 241, 10. [Google Scholar] [CrossRef]
- He, Y.Q.; Zhang, N.N.; Gong, Q.J.; Qiu, H.X.; Wang, W.; Liu, Y.; Gao, J.P. Alginate/graphene oxide fibers with enhanced mechanical strength prepared by wet spinning. Carbohydr. Polym. 2012, 88, 1100. [Google Scholar] [CrossRef]
- Fu, X.Z.; Liang, Y.; Wu, R.T.; Shen, J.H.; Chen, Z.D.; Chen, Y.W.; Wang, Y.P.; Xia, Y.M. Conductive core-sheath calcium alginate/graphene composite fibers with polymeric ionic liquids as an intermediate. Carbohydr. Polym. 2019, 206, 328. [Google Scholar] [CrossRef]
- Zhu, K.K.; Tu, H.; Yang, P.C.; Qiu, C.B.; Zhang, D.H.; Lu, A.; Luo, L.B.; Chen, F.; Liu, X.Y.; Chen, L.Y.; et al. Mechanically Strong Chitin Fibers with Nanofibril Structure, Biocompatibility, and Biodegradability. Chem. Mater. 2019, 31, 2078. [Google Scholar] [CrossRef]
- Torres-Rendon, J.G.; Schacher, F.H.; Ifuku, S.; Walther, A. Mechanical Performance of Macrofibers of Cellulose and Chitin Nanofibrils Aligned by Wet-Stretching: A Critical Comparison. Biomacromolecules 2014, 15, 2709. [Google Scholar] [CrossRef]
- Hooshmand, S.; Aitomäki, Y.; Norberg, N.; Mathew, A.P.; Oksman, K. Dry-Spun Single-Filament Fibers Comprising Solely Cellulose Nanofibers from Bioresidue. ACS Appl. Mater. Interfaces 2015, 7, 13022. [Google Scholar] [CrossRef] [PubMed]
- Mi, J.P.; Li, X.; Niu, S.W.; Zhou, X.P.; Lu, Y.H.; Yang, Y.C.; Sun, Y.; Meng, Q. High-strength and ultra-tough supramolecular polyamide spider silk fib ers assemble d via specific covalent and reversible hydrogen bonds. Acta Biomater. 2024, 176, 190. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Kadono, H.; Mayumi, K.; Kato, K.; Yokoyama, H.; Ito, K. Unusual Fracture Behavior of Slide-Ring Gels with Movable Cross-Links. ACS Macro Lett. 2017, 6, 1409. [Google Scholar] [CrossRef]
- Chen, Z.D.; Song, J.; Xia, Y.M.; Jiang, Y.W.; Murillo, L.L.; Tsigkou, O.; Wang, T.; Li, Y. High strength and strain alginate fibers by a novel wheel spinning technique for knitting stretchable and biocompatible wound-care materials. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 127, 11. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Sun, N.; Xie, X.; Feng, Z.; Liu, N.; Wang, K.; Lin, M. Structure Characterization and Mechanical Properties of Acidity-Induced Helix of Alginate and Fibers. Materials 2025, 18, 2619. https://doi.org/10.3390/ma18112619
Yang J, Sun N, Xie X, Feng Z, Liu N, Wang K, Lin M. Structure Characterization and Mechanical Properties of Acidity-Induced Helix of Alginate and Fibers. Materials. 2025; 18(11):2619. https://doi.org/10.3390/ma18112619
Chicago/Turabian StyleYang, Jinhong, Na Sun, Xuelai Xie, Zhangyu Feng, Na Liu, Kai Wang, and Min Lin. 2025. "Structure Characterization and Mechanical Properties of Acidity-Induced Helix of Alginate and Fibers" Materials 18, no. 11: 2619. https://doi.org/10.3390/ma18112619
APA StyleYang, J., Sun, N., Xie, X., Feng, Z., Liu, N., Wang, K., & Lin, M. (2025). Structure Characterization and Mechanical Properties of Acidity-Induced Helix of Alginate and Fibers. Materials, 18(11), 2619. https://doi.org/10.3390/ma18112619