Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = ferroptosis inducer RSL3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2962 KB  
Article
8-Hydroxy-2-Anilino-1,4-Naphthoquinone Prevents Against Ferroptotic Neuronal Death and Kainate-Induced Epileptic Seizures
by Daseul Lee, Eun Jung Na, Yumi Heo, Jinha Yu and Hwa-Jung Kim
Pharmaceutics 2025, 17(11), 1415; https://doi.org/10.3390/pharmaceutics17111415 - 31 Oct 2025
Viewed by 454
Abstract
Background/Objectives: Ferroptosis, an iron-dependent form of regulated cell death characterized by excessive lipid peroxidation, has been implicated in various acute and chronic brain disorders, including epilepsy. Although 1,4-naphthoquinone derivatives have been reported to regulate ferroptosis, their mechanistic roles in the nervous system remain [...] Read more.
Background/Objectives: Ferroptosis, an iron-dependent form of regulated cell death characterized by excessive lipid peroxidation, has been implicated in various acute and chronic brain disorders, including epilepsy. Although 1,4-naphthoquinone derivatives have been reported to regulate ferroptosis, their mechanistic roles in the nervous system remain underexplored. Here, we investigated the protective effects of 8-hydroxy-2-anilino-1,4-naphthoquinone (8-HANQ) on ferroptotic neuronal death in vitro and seizure behaviors in vivo. Methods: HT22 hippocampal cells were exposed to ferroptosis inducers including glutamate, glutamate plus iron, or RSL3. Lipid reactive oxygen species (ROS), ferroptosis markers, and its related molecules were assessed by flow cytometry and Western blotting. In a kainate (KA)-induced seizure model, 8-HANQ was delivered intracerebroventricularly, followed by behavioral seizure scoring and analysis of hippocampal levels of PSD95, cathepsin-B, and FGFR1 at 72 h post-seizure. Results: 8-HANQ attenuated ferroptotic death in HT22 cells, reducing lipid ROS accumulation and abnormal acyl-coA synthetase long chain family member 4 (ACSL4), suggesting 8-HANQ’s anti-ferroptotic action. Moreover, 8-HANQ also prevented aberrant STAT3-dependent cathepsin-B overexpression while modulating soluble N-cadherin-mediated FGFR1 activation. In vivo, 8-HANQ decreased KA-induced seizure behavior, restored hippocampal cathepsin-B and PSD95 expression, and partially alleviated dysregulation of FGFR1 activation. Conclusions: 8-HANQ prevents ferroptotic neuronal death and synaptic deficits involving FGFR1/STAT3/cathepsin-B-driven ferroptosis while lowering seizure severity, suggesting that 8-HANQ may serve as a potential anti-ferroptotic and anti-seizure agent. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Graphical abstract

16 pages, 2628 KB  
Article
New Polyketides and a Ferroptosis Inhibitor from the Marine-Derived Fungus Diaporthe searlei CS-HF-1
by Jicheng Xiao, Peng Wu, Yan Zhang, Qi Lv, Yulang Chi, Wei Xu, Wenzhen Lin and Zhongbin Cheng
Mar. Drugs 2025, 23(10), 402; https://doi.org/10.3390/md23100402 - 16 Oct 2025
Viewed by 569
Abstract
As a driver of neurodegenerative disorders, ischemic injuries, and acute organ dysfunction, ferroptosis represents a therapeutic target, and its inhibition may provide novel therapies. In our ongoing efforts to discover ferroptosis inhibitors from fungal strains, chemical investigation of the strain Diaporthe searlei CS-HF-1 [...] Read more.
As a driver of neurodegenerative disorders, ischemic injuries, and acute organ dysfunction, ferroptosis represents a therapeutic target, and its inhibition may provide novel therapies. In our ongoing efforts to discover ferroptosis inhibitors from fungal strains, chemical investigation of the strain Diaporthe searlei CS-HF-1 led to the isolation of four polyketide-derived alkaloids (13 and 17) and fourteen polyketides (416 and 18), including three new isoindolone derivatives (13), a new phthalide (4), a new butyrolactone derivative (10), and three new nonenolides (1113). The structures were determined by comprehensive spectroscopic analysis. The structures of 1, 2, and 10 were confirmed by comparison of experimental and calculated 13C NMR chemical shifts. The absolute configurations of compounds 10, 11, and 14 were assigned by ECD calculations, while those of 12 and 13 were assigned based on their biogenetic relationship with 14. Notably, compound 1 represents the first isoindolone featuring a primary amide group attached to the lactam nitrogen, while compound 2 is the first naturally occurring isoindolone dimer. These compounds were assessed for the anti-ferroptotic activity. As a result, asperlactone A (15) exhibited inhibition on RSL3-induced ferroptosis in HT22 cells with an EC50 of 11.3 ± 0.4 μM. Preliminary mechanistic study revealed that 15 attenuated lipid peroxidation, as evidenced by reduced MDA levels, elevated GSH content, and suppression of lipid radical generation. This study offers a new chemotype for the development of novel ferroptosis inhibitors. Full article
(This article belongs to the Special Issue Bioactive Secondary Metabolites of Marine Fungi, 3rd Edition)
Show Figures

Figure 1

29 pages, 51386 KB  
Article
Aspirin Eugenol Ester Alleviates Vascular Endothelial Ferroptosis by Enhancing Antioxidant Ability and Inhibiting the JNK/c-Jun/NCOA4/FTH Signaling Pathway
by Ji Feng, Qi Tao, Zhi-Jie Zhang, Qin-Fang Yu, Ya-Jun Yang and Jian-Yong Li
Antioxidants 2025, 14(10), 1220; https://doi.org/10.3390/antiox14101220 - 10 Oct 2025
Viewed by 617
Abstract
Oxidative stress occurs within bovine when exposed to harmful stimuli, accompanied by substantial accumulation of reactive oxygen species. Without timely clearance, these reactive oxygen species attack vascular endothelial cells, concurrently inducing extensive production of lipid peroxides within the vascular endothelium, and thereby triggering [...] Read more.
Oxidative stress occurs within bovine when exposed to harmful stimuli, accompanied by substantial accumulation of reactive oxygen species. Without timely clearance, these reactive oxygen species attack vascular endothelial cells, concurrently inducing extensive production of lipid peroxides within the vascular endothelium, and thereby triggering ferroptosis. Aspirin eugenol ester (AEE) showed pharmacological activity against oxidative stress-induced vascular endothelial damage. However, whether it could alleviate vascular endothelial damage by inhibiting ferroptosis remains unclear. This study aimed to evaluate the effects of AEE on vascular endothelial ferroptosis and elucidate its underlying molecular mechanisms. This study established vascular endothelial damage models in vitro and in vivo to explore the ability of AEE to inhibit ferroptosis and oxidative stress by measuring ferroptosis- and oxidative stress-related biomarkers. Transcriptomic and network pharmacology analyses were performed to identify AEE-regulated pathways and key targets. Validation of the pathways were conducted using molecular docking, cellular thermal shift assay, and specific protein agonists/inhibitors. AEE inhibited oxidative stress and ferroptosis in bovine aortic endothelial cells induced by hydrogen peroxide (H2O2) or RSL3 via suppressing the upregulation of ferroptosis-related genes and enhancing the expression of antioxidant genes. Transcriptomic and network pharmacology analyses identified JNK as a core target of AEE in regulating ferroptosis. JNK agonists enhanced H2O2-induced ferritinophagy; on the contrary, JNK inhibitors alleviated it. AEE suppressed H2O2-induced phosphorylation of JNK/c-Jun and ferritinophagy. In a carrageenan-induced rat aortic vascular endothelial damage model, AEE alleviated vascular endothelial damage and ferroptosis-related gene changes, promoted antioxidant gene expression, and inhibited JNK/c-Jun phosphorylation and ferritinophagy. AEE inhibited vascular endothelial ferroptosis by enhancing antioxidant ability, blocking downstream ferritinophagy, and reducing ferrous ion release. Full article
(This article belongs to the Section Aberrant Oxidation of Biomolecules)
Show Figures

Graphical abstract

23 pages, 4542 KB  
Article
Targeting NRF2 and FSP1 to Overcome Ferroptosis Resistance in TSC2-Deficient and Cancer Cells
by Tasmia Tahsin, Darius K. McPhail, Jesse D. Champion, Mohammad A. M. Alzahrani, Madeleine L. Hilditch, Alexandre Faris-Orr, Brian L. Calver, James G. Cronin, Juan C. Mareque-Rivas, Darren W. Sexton, Stephen Fôn Hughes, Robert Steven Conlan, David Mark Davies and Andrew R. Tee
Cancers 2025, 17(16), 2714; https://doi.org/10.3390/cancers17162714 - 21 Aug 2025
Cited by 2 | Viewed by 2632
Abstract
Background/Objectives: Ferroptosis is an iron-dependent form of regulated cell death driven by lipid peroxidation and holds promise as a therapeutic strategy against cancers with elevated iron metabolism. However, many tumors evade ferroptosis through the upregulation of specialized antioxidant defense mechanisms. Here, we [...] Read more.
Background/Objectives: Ferroptosis is an iron-dependent form of regulated cell death driven by lipid peroxidation and holds promise as a therapeutic strategy against cancers with elevated iron metabolism. However, many tumors evade ferroptosis through the upregulation of specialized antioxidant defense mechanisms. Here, we investigated ferroptosis susceptibility and resistance mechanisms in TSC models and in ovarian and breast cancer cell lines, aiming to identify potential therapeutic targets. Methods: Ferroptosis sensitivity was assessed using RSL3 and erastin. We explored the contribution of ferroptosis defense pathways using inhibitors of NRF2 (ML385) and FSP1 (iFSP1). RNA sequencing was performed to evaluate the expression of ferroptosis resistance genes and to explore NRF2-regulated transcriptional programs. Results: TSC2-deficient cells were resistant to RSL3- and erastin-induced ferroptosis. This resistance correlated with upregulation of ferroptosis defense genes, including NRF2 and its downstream targets. Pharmacological inhibition of NRF2 resensitized TSC2-deficient cells to ferroptosis, confirming a protective role for NRF2. However, FSP1 inhibition did not restore ferroptosis sensitivity in TSC2-deficient angiomyolipoma cells. In contrast, FSP1 knockdown significantly enhanced ferroptosis sensitivity in ovarian (PEO1, PEO4, OVCAR3) and breast (MDA-MB-436) cancer cells. Notably, in MDA-MB-436 cells, FSP1 knockdown was more effective than NRF2 inhibition to enhance ferroptosis sensitivity. FSP1 expression was not regulated by NRF2, suggesting that NRF2-targeted therapies alone may be insufficient to overcome ferroptosis resistance in certain cancer contexts. Conclusions: TSC2-deficient cells resist ferroptosis via an adaptive antioxidant response that protects against elevated iron-mediated lipid peroxidation. Our findings identify NRF2 and FSP1 as key, but mechanistically distinct, regulators of ferroptosis resistance. The differential efficacy of targeting these pathways across cancer types highlights the potential need for patient stratification. Dual targeting of NRF2 and FSP1 may offer an effective therapeutic strategy for iron-dependent, ferroptosis-resistant cancers. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

15 pages, 2240 KB  
Article
Olive Pomace Extract Acts as a New Potent Ferroptosis Inhibitor in Human Cells
by Edoardo Giuseppe Di Leo, Chiara Stranieri, Gianni Zoccatelli, Maria Bellumori, Beatrice Zonfrillo, Luciano Cominacini and Anna Maria Fratta Pasini
Molecules 2025, 30(15), 3095; https://doi.org/10.3390/molecules30153095 - 24 Jul 2025
Viewed by 615
Abstract
The olive oil-production sector engages with the environment on multiple levels, and the valorization of olive pomace (OP) has emerged as a key strategy to improve the entire system’s sustainability. Numerous studies have investigated the biological effects of OP phenolic fraction for nutraceutical [...] Read more.
The olive oil-production sector engages with the environment on multiple levels, and the valorization of olive pomace (OP) has emerged as a key strategy to improve the entire system’s sustainability. Numerous studies have investigated the biological effects of OP phenolic fraction for nutraceutical applications, highlighting its antioxidant properties. This study aimed to assess the effect of an OP extract (OPE) and its phenolic content on ferroptosis induced by RAS-selective lethal 3 (RSL3), an inhibitor of glutathione peroxidase 4. After characterization of OPE phenolic composition, its antioxidant properties were confirmed through the Fenton reaction assay. Subsequently, we examined the effect of OPE on ter-butyl hydroperoxide-induced ROS generation and lipid peroxidation in TPH-1 and HIECs cells and found that OPE reduced ROS and lipid peroxidation. RSL3 decreased the number of vital cells, which was associated with an elevation in ROS and lipid peroxidation, and a reduction in GSH. Interestingly, all these detrimental effects were reversed by OPE. Furthermore, OPE was also found to significantly increase GSH and the GSH/GSSG ratio per se. In conclusion, the fact that OPE decreases ROS and lipid peroxidation induced by RSL3 and augments GSH and cell viability suggests that OPE has potential as a ferroptosis inhibitor. Full article
(This article belongs to the Special Issue Bioactive Compounds from Foods for Health Benefits)
Show Figures

Figure 1

23 pages, 2234 KB  
Article
Novel (1S,3R)-RSL3-Encapsulated Polyunsaturated Fatty Acid Rich Liposomes Sensitise Multiple Myeloma Cells to Ferroptosis-Mediated Cell Death
by Ali Habib, Rachel L. Mynott, Oliver G. Best, Isabella A. Revesz, Clive A. Prestidge and Craig T. Wallington-Gates
Int. J. Mol. Sci. 2025, 26(14), 6579; https://doi.org/10.3390/ijms26146579 - 9 Jul 2025
Cited by 1 | Viewed by 1175
Abstract
Multiple myeloma (MM) is an incurable malignancy of plasma cells that accounts for 10% of all haematological malignancies diagnosed worldwide. The poor outcome of patients with MM highlights the ongoing need for novel treatment strategies. Ferroptosis is a recently characterised form of non-apoptotic [...] Read more.
Multiple myeloma (MM) is an incurable malignancy of plasma cells that accounts for 10% of all haematological malignancies diagnosed worldwide. The poor outcome of patients with MM highlights the ongoing need for novel treatment strategies. Ferroptosis is a recently characterised form of non-apoptotic programmed cell death. Phospholipids (PLs) containing polyunsaturated fatty acids (PUFAs) play a crucial role as ferroptosis substrates when oxidised to form toxic lipid reactive oxygen species (ROS). Using a range of scientific techniques, we demonstrate a strong correlation between the PL profile of MM and diffuse large B cell lymphoma (DLBCL) cells with their sensitivity to ferroptosis. Using this PL profiling, we manufacture liposomes that are themselves composed of PL-PUFA ferroptosis substrates relatively deficient in MM cells, with and without the GPX4 inhibitor, RSL3, for investigation of their ferroptosis-inducing potential. PL-PUFAs were more abundant in DLBCL than MM cell lines, consistent with greater ferroptosis sensitivity. In contrast, MM cells generally contained a significantly higher proportion of PLs containing monounsaturated fatty acids. Altering the lipid composition of MM cells through exogenous supplementation with PL-PUFAs induced ferroptosis-mediated cell death and further sensitised these cells to RSL3. Liposomes predominantly comprising PL-PUFAs were subsequently manufactured and loaded with RSL3. Uptake, cytotoxicity and lipid ROS studies demonstrated that these novel liposomes were readily taken up by MM cells. Those containing RSL3 were more effective at inducing ferroptosis than empty liposomes or free RSL3, resulting in IC50 values an average 7.1-fold to 14.5-fold lower than those for free RSL3, from the micromolar to nanomolar range. We provide a better understanding of the mechanisms associated with ferroptosis resistance of MM cells and suggest that strategies such as liposomal delivery of relatively deficient ferroptosis-inducing PL-PUFAs together with other targeted agents could harness ferroptosis for the personalised treatment of MM and other cancers. Full article
(This article belongs to the Special Issue Advances in Novel Therapeutic Strategies for Cancers)
Show Figures

Figure 1

17 pages, 1350 KB  
Review
Emerging Therapeutic Strategies Targeting GPX4-Mediated Ferroptosis in Head and Neck Cancer
by Jaewang Lee, Youngin Seo and Jong-Lyel Roh
Int. J. Mol. Sci. 2025, 26(13), 6452; https://doi.org/10.3390/ijms26136452 - 4 Jul 2025
Cited by 4 | Viewed by 4367
Abstract
Ferroptosis, a regulated form of iron-dependent lipid peroxidation-induced cell death, has emerged as a compelling therapeutic strategy to overcome treatment resistance in head and neck cancer (HNC). Glutathione peroxidase 4 (GPX4), a selenoenzyme responsible for detoxifying phospholipid hydroperoxides, plays a central role in [...] Read more.
Ferroptosis, a regulated form of iron-dependent lipid peroxidation-induced cell death, has emerged as a compelling therapeutic strategy to overcome treatment resistance in head and neck cancer (HNC). Glutathione peroxidase 4 (GPX4), a selenoenzyme responsible for detoxifying phospholipid hydroperoxides, plays a central role in blocking ferroptosis and is frequently upregulated in therapy-resistant HNC subtypes. In this review, we examine the multifaceted regulation of GPX4 expression and function, including transcriptional, post-transcriptional, epigenetic, and proteostatic mechanisms. We explore how GPX4 suppression through pharmacologic inhibitors (e.g., RSL3, withaferin A, statins), metabolic stress, or combined therapies (e.g., radiotherapy, EGFR inhibitors, immunotherapy) induces ferroptosis and resensitizes resistant tumors. We also summarize emerging biomarkers, including GPX4, ACSL4, SLC7A11, and NCOA4, that predict ferroptosis sensitivity and may guide patient selection for ferroptosis-targeted therapies. Single-cell and spatial transcriptomics reveal significant intratumoral heterogeneity in ferroptosis susceptibility, underscoring the need for precision approaches. Despite promising preclinical data, challenges such as drug delivery, toxicity, and resistance mechanisms remain. Nevertheless, the ferroptosis-GPX4 axis represents a unique vulnerability in HNC that can be therapeutically exploited. Integrating ferroptosis modulation into personalized oncology may transform outcomes for patients with refractory disease. Full article
(This article belongs to the Special Issue Pathogenesis and Treatments of Head and Neck Cancer)
Show Figures

Figure 1

12 pages, 2254 KB  
Article
Latency-Associated Nuclear Antigen (LANA) Promotes Ferroptosis by Suppressing Nrf2/GPX4 and Upregulating MDM2
by Yuejia Cao, Shihan Shao, Yingying Zhang, Dandan Song, Fei Gui, Xinyi Chen, Yu Hong, Rong Chen, Yang Song, Dongmei Li, Xiaohua Tan and Chunhong Di
Pathogens 2025, 14(6), 590; https://doi.org/10.3390/pathogens14060590 - 15 Jun 2025
Viewed by 1008
Abstract
Ferroptosis, an iron-dependent cell death driven by lipid peroxidation, is regulated by key mediators including glutathione peroxidase 4 (GPX4) and nuclear factor erythroid 2-related factor 2 (Nrf2). Kaposi’s sarcoma-associated herpesvirus (KSHV) encodes latency-associated nuclear antigen (LANA), a multifunctional protein critical for viral persistence. [...] Read more.
Ferroptosis, an iron-dependent cell death driven by lipid peroxidation, is regulated by key mediators including glutathione peroxidase 4 (GPX4) and nuclear factor erythroid 2-related factor 2 (Nrf2). Kaposi’s sarcoma-associated herpesvirus (KSHV) encodes latency-associated nuclear antigen (LANA), a multifunctional protein critical for viral persistence. Although studies reported that KSHV infection enhanced cellular resistance to ferroptosis, the specific role of LANA in this process remains unexplored. Here, we demonstrate that LANA unexpectedly promotes ferroptosis. In KSHV-positive iSLK.219 cells, LANA knockdown significantly attenuated RSL-3-induced ferroptosis, whereas LANA overexpression sensitized HeLa cells to ferroptotic death. Quantitative analysis revealed that LANA-depleted cells exhibited significantly elevated ROS accumulation (p < 0.01), whereas LANA-overexpressing cells maintained reduced ROS levels during challenge with the ferroptosis inducer RSl-3. Mechanistically, LANA suppressed glutathione peroxidase 4 (GPX4) expression, reduced nuclear factor erythroid 2-related factor 2 (Nrf2) expression and impaired its nuclear translocation, and upregulated mouse double minute 2 homolog (MDM2) expression. Pharmacological inhibition of Nrf2 (ML385) or MDM2 (nutlin3a) reversed the ferroptotic effects of LANA knockdown or overexpression, respectively. These findings reveal a pro-ferroptotic role of LANA via Nrf2/GPX4 suppression and MDM2 activation. Full article
(This article belongs to the Special Issue Herpesvirus Latency and Reactivation)
Show Figures

Figure 1

24 pages, 21945 KB  
Article
Drug Pair of Astragali Radix–Ligustri Lucidi Fructus Alleviates Acute Kidney Injury in Mice Induced by Ischemia–Reperfusion Through Inhibiting Ferroptosis
by Xuanhe Liu, Dan Zhang, Yuting Xie, Mengdan Wang, Xiaochun Chen, Weijie Yu, Yuming Ma, Jia Zeng, Qixuan Long, Guangrui Huang, Jie Geng and Anlong Xu
Pharmaceuticals 2025, 18(6), 789; https://doi.org/10.3390/ph18060789 - 25 May 2025
Viewed by 1295
Abstract
Background: Acute kidney injury (AKI), characterized by high morbidity and mortality, is primarily caused by renal ischemia–reperfusion injury (RIRI). Ferroptosis plays a key role in RIRI, yet its underlying mechanisms remain unclear. The drug pair of Astragali Radix–Ligustri Lucidi Fructus (DAL) shows promise [...] Read more.
Background: Acute kidney injury (AKI), characterized by high morbidity and mortality, is primarily caused by renal ischemia–reperfusion injury (RIRI). Ferroptosis plays a key role in RIRI, yet its underlying mechanisms remain unclear. The drug pair of Astragali Radix–Ligustri Lucidi Fructus (DAL) shows promise in renal diseases, but its protective effects against RIRI and associated molecular pathways via ferroptosis inhibition are unknown. This study aimed to investigate DAL’s therapeutic effects on RIRI and its mechanisms. Methods: A mouse model of bilateral renal ischemia–reperfusion was established. Renal function (serum creatinine, Scr; blood urea nitrogen, BUN), inflammatory cytokines (TNF-α, IFN-γ, IL-6), ferroptosis markers (GPX4, MDA, GSH, tissue iron), and pathological damage were evaluated. Transcriptomic sequencing and electron microscopy analyzed gene pathways and mitochondrial structure. In HK-2 cells, oxygen–glucose deprivation/reoxygenation (OGD/R) and RSL3-induced ferroptosis models were used to assess DAL-containing serum effects via cell viability, GPX4 expression, and mitochondrial morphology. LC-MS analyzed DAL’s chemical components, and network pharmacology predicted ferroptosis-related targets. Results: DAL significantly reduced Scr/BUN levels, alleviated tubular injury, fibrosis, and apoptosis, and downregulated inflammatory cytokines and damage markers. It inhibited ferroptosis by upregulating GPX4, decreasing MDA/tissue iron, and increasing GSH. Transcriptomics revealed enrichment in lipid metabolism pathways. DAL restored the mitochondrial cristae structure; DAL-containing serum improved cell viability, blocked RSL3-induced GPX4 downregulation, and mitigated mitochondrial dysfunction. Network pharmacology identified DAL’s potential active components and targets. Molecular docking validated binding affinity and interaction patterns of active components with targets. Conclusions: DAL protects against RIRI by upregulating GPX4, preserving the mitochondrial structure, and inhibiting ferroptosis, highlighting its therapeutic potential for AKI prevention and treatment. Full article
(This article belongs to the Special Issue New Development in Pharmacotherapy of Kidney Diseases)
Show Figures

Figure 1

18 pages, 2588 KB  
Article
Glutathione Peroxidase 4 in Blunt Snout Bream (Megalobrama amblycephala) Regulates Ferroptosis and Inflammation in Response to Aeromonas hydrophila Infection
by Miao He, Huanling Wang and Hong Liu
Curr. Issues Mol. Biol. 2025, 47(5), 326; https://doi.org/10.3390/cimb47050326 - 2 May 2025
Viewed by 655
Abstract
Glutathione peroxidase 4 (GPX4) plays a crucial role in regulating lipid peroxidation and is associated with infection and inflammation, particularly in terms of its effects on inflammatory cytokines and ferroptosis. This study aimed to investigate the regulatory effects of Gpx4 on the inflammatory [...] Read more.
Glutathione peroxidase 4 (GPX4) plays a crucial role in regulating lipid peroxidation and is associated with infection and inflammation, particularly in terms of its effects on inflammatory cytokines and ferroptosis. This study aimed to investigate the regulatory effects of Gpx4 on the inflammatory response and ferroptosis in blunt snout bream (Megalobrama amblycephala), a significant freshwater fish species in China, after Aeromonas hydrophila infection. Using a bioinformatics analysis, we discovered that Gpx4 has a conserved protein structure and high amino acid identity in various carp species, indicating functional conservation across species and through involution. RT-qPCR analysis revealed that gpx4 mRNA increased after the neuroembryonic stage during early development and was particularly highly expressed in the liver of healthy adult fish. Upon A. hydrophila infection, gpx4 expression decreased significantly and rapidly in the liver. In L8824 cells, overexpression of gpx4 suppressed inflammatory cytokines and inhibited ferroptosis in response to both A. hydrophila infection and induction of ferroptosis-inducer RSL3. These findings highlight the regulatory role of Gpx4 in cellular ferroptosis and inflammation, providing insights into the complex mechanisms of disease resistance and potentially aiding in the development of strategies for disease control in fish. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

18 pages, 1867 KB  
Article
Jacaric Acid Empowers RSL3-Induced Ferroptotic Cell Death in Two- and Three-Dimensional Breast Cancer Cell Models
by Géraldine Cuvelier, Perrine Vermonden, Pauline Debisschop, Manon Martin, Françoise Derouane, Gerhard Liebisch, Josef Ecker, Marcus Hoering, Martine Berlière, Mieke Van Bockstal, Christine Galant, François Duhoux, Larissa Mourao, Colinda Scheele, Olivier Feron, René Rezsohazy, Cyril Corbet and Yvan Larondelle
Int. J. Mol. Sci. 2025, 26(7), 3375; https://doi.org/10.3390/ijms26073375 - 4 Apr 2025
Viewed by 1259
Abstract
Ferroptosis has recently emerged as a promising strategy to combat therapy-resistant cancers. As lipid peroxidation is a key trigger of ferroptotic cell death, enhancing cancer cell susceptibility through the supply of highly peroxidisable fatty acids represents a novel therapeutic approach. Conjugated linolenic acids [...] Read more.
Ferroptosis has recently emerged as a promising strategy to combat therapy-resistant cancers. As lipid peroxidation is a key trigger of ferroptotic cell death, enhancing cancer cell susceptibility through the supply of highly peroxidisable fatty acids represents a novel therapeutic approach. Conjugated linolenic acids (CLnAs) fulfill this requirement, exhibiting a peroxidation propagation rate eight times higher than their non-conjugated counterpart, α-linolenic acid. This study evaluates jacaric acid (JA), a plant-derived CLnA, as a ferroptotic inducer, both as a monotherapy and in combination with RAS-selective lethal 3 (RSL3), a canonical ferroptosis inducer, in 2D and 3D breast cancer cell models. JA treatment significantly reduced cell viability across all models, primarily through lipid peroxidation driven by JA incorporation into cellular lipids rather than alterations in anti-ferroptotic gene expression. Moreover, JA synergistically enhanced RSL3 cytotoxicity under 2D and several 3D conditions. Similar effects were observed with punicic acid, another plant-derived CLnA isomer. Our study exploits a common feature of cancer metabolism, increased fatty acid uptake, to turn it into a vulnerability. The incorporation of JA into breast cancer cells creates a highly peroxidisable environment that increases cancer cell sensitivity to RSL3, potentially reducing required doses and minimising side effects. Full article
Show Figures

Figure 1

22 pages, 23219 KB  
Article
Sirtuin 3 Protects Lung Adenocarcinoma from Ferroptosis by Deacetylating and Stabilizing Mitochondrial Glutamate Transporter Solute Carrier Family 25 Member A22
by Xiangyun Wei, Tiange Wang, Zhengcao Xing, Qinyun Shi, Jianmin Gu, Qiuju Fan, Hao Wang, Bin Chen, Jinke Cheng and Rong Cai
Antioxidants 2025, 14(4), 403; https://doi.org/10.3390/antiox14040403 - 28 Mar 2025
Cited by 1 | Viewed by 1219
Abstract
Solute carrier family 25 member A22 (SLC25A22) is a glutamate transporter in the inner mitochondrial membrane that is known to suppress ferroptosis in pancreatic ductal adenocarcinoma (PDAC). Sirtuin 3 (SIRT3) is the main mitochondrial deacetylase, and we previously demonstrated that targeting SIRT3 sensitized [...] Read more.
Solute carrier family 25 member A22 (SLC25A22) is a glutamate transporter in the inner mitochondrial membrane that is known to suppress ferroptosis in pancreatic ductal adenocarcinoma (PDAC). Sirtuin 3 (SIRT3) is the main mitochondrial deacetylase, and we previously demonstrated that targeting SIRT3 sensitized glioblastoma to ferroptosis by promoting mitophagy and inhibiting SLC7A11. The purpose of this study was to analyze the effect of SIRT3-mediated deacetylation of mitochondrial SLC25A22 on RAS-selective lethal 3 (RSL3)-induced ferroptosis in lung adenocarcinoma (LUAD). We found that the expression of SLC25A22 and SIRT3 had a high positive correlation and that their expression was greater in LUAD tissues than in adjacent tissues. The RSL3-induced ferroptosis of LUAD led to upregulation of SLC25A22 and SIRT3, and SIRT3 protected RSL3-induced LUAD from ferroptosis in vitro and in vivo. At the molecular level, SIRT3 bound with SLC25A22 and deacetylated this protein. Targeting SIRT3 enhanced the acetylation of SLC25A22, decreased its ubiquitination, and promoted 26S proteasome degradation in LUAD cells. Therefore, our results demonstrated that SIRT3 protected LUAD cells from RSL3-induced ferroptosis, and this effect is at least partially due to its deacetylation of SLC25A22, revealing that the SIRT3-SLC25A22 axis has an important role in regulating the ferroptosis of LUAD cells. Full article
Show Figures

Figure 1

16 pages, 2663 KB  
Article
BUB1 Inhibition Induces Ferroptosis in Triple-Negative Breast Cancer Cell Lines
by Sushmitha Sriramulu, Shivani Thoidingjam, Stephen L. Brown, Farzan Siddiqui, Benjamin Movsas and Shyam Nyati
DNA 2025, 5(1), 16; https://doi.org/10.3390/dna5010016 - 12 Mar 2025
Viewed by 1909
Abstract
Background: Triple-negative breast cancer (TNBC) is a highly aggressive subtype with limited effective treatments available, including targeted therapies, often leading to poor prognosis. Mitotic checkpoint kinase BUB1 is frequently overexpressed in TNBC and correlates with poor survival outcomes suggesting its potential as [...] Read more.
Background: Triple-negative breast cancer (TNBC) is a highly aggressive subtype with limited effective treatments available, including targeted therapies, often leading to poor prognosis. Mitotic checkpoint kinase BUB1 is frequently overexpressed in TNBC and correlates with poor survival outcomes suggesting its potential as a therapeutic target. This study explores the cytotoxicity of TNBC cells to BUB1 inhibition, alone or in combination with radiation and demonstrates that ferroptosis, an iron-dependent form of programmed cell death, has a role. Methods: TNBC cell lines (SUM159, MDA-MB-231, and BT-549) were treated with a BUB1 inhibitor BAY1816032 (BUB1i) alone or in combination with the ferroptosis activator RSL3 with or without 4 Gy irradiation. Cell viability assays were conducted to assess treatment effects, qPCR analyses measured expression of key ferroptosis markers including ACSL4, GPX4, PTGS2, SLC7A11, NCOA4, IREB2, NFS1, and TFRC expression, and TBARS assay measured the lipid peroxidation levels. Ferroptosis specificity was confirmed through co-treatment with the ferroptosis inhibitor Ferrostatin-1 (F-1). Results: In all TNBC cell lines studied, BUB1 inhibition significantly induced ferroptosis, marked by increased expression of ACSL4 and PTGS2, decreased expression of GPX4 and SLC7A11, and increased lipid peroxidation levels. The combination of BUB1i with RSL3 further amplified these ferroptotic markers, suggesting at least an additive effect, which was not present with the combination of BUB1i and radiation. Co-treatment with Ferrostatin-1 reversed the expression of ferroptosis markers, suggesting that BUB1i-mediated cell death may involve ferroptotic signaling in TNBC cell lines. Conclusions: This study demonstrates that BUB1 inhibition may independently induce ferroptosis in TNBC cell lines, which is enhanced when combined with a ferroptosis activator. Further research is warranted to delineate the molecular mechanism of BUB1-mediated ferroptosis in TNBC. Full article
Show Figures

Figure 1

14 pages, 3368 KB  
Article
Medium-Chain Fatty Acids Selectively Sensitize Cancer Cells to Ferroptosis by Inducing CD36 and ACSL4
by Kai Han, Jiaxuan Li, Shutao Yin, Hongbo Hu and Chong Zhao
Nutrients 2025, 17(5), 794; https://doi.org/10.3390/nu17050794 - 25 Feb 2025
Cited by 4 | Viewed by 2216
Abstract
Background: Inducing ferroptosis in cancer cells is a promising therapeutic strategy. It has been shown that certain types of fatty acids can induce ferroptosis in multiple types of cancer cells. Methods: Here, we employed crystal violet staining and CCK8 to assess cell viability, [...] Read more.
Background: Inducing ferroptosis in cancer cells is a promising therapeutic strategy. It has been shown that certain types of fatty acids can induce ferroptosis in multiple types of cancer cells. Methods: Here, we employed crystal violet staining and CCK8 to assess cell viability, a Liperfluo probe and commercial kit to measure lipid peroxides, and western blotting and RNA interference to detect protein levels. Results: This study demonstrates for the first time that the medium-chain fatty acids lauric acid (LA-m), octanoic acid (OA-m), and decanoic acid (DA-m) selectively sensitize various cancer cell types to ferroptosis induced by either RSL3, a well-known inducer of ferroptosis, or linoleic acid (LA-l), a ω-6 polyunsaturated fatty acid (PUFA). Mechanistically, the ferroptosis-sensitizing effect of medium-chain fatty acids is associated with their ability to upregulate cluster of differentiation 36 (CD36) and acyl-CoA synthetase long-chain family member 4 (ACSL4) expression. Conclusions: These findings suggest that medium-chain fatty acids could be developed as novel ferroptosis sensitizers to enhance ferroptosis-based cancer therapy. Full article
Show Figures

Figure 1

21 pages, 2962 KB  
Article
Research for a Common Thread: Insights into the Mechanisms of Six Potential Anticancer Agents
by Dóra Varga, Anna Szentirmai and András Szarka
Molecules 2025, 30(5), 1031; https://doi.org/10.3390/molecules30051031 - 24 Feb 2025
Viewed by 1202
Abstract
Our research group aimed for the optimization of pharmacologic ascorbate (Ph-Asc)-induced cancer cell death. To reduce the required time and resources needed for development, an in silico system biological approach, an already approved medication, and a mild bioactive compound were used in our [...] Read more.
Our research group aimed for the optimization of pharmacologic ascorbate (Ph-Asc)-induced cancer cell death. To reduce the required time and resources needed for development, an in silico system biological approach, an already approved medication, and a mild bioactive compound were used in our previous studies. It was revealed that both Ph-Asc and resveratrol (RES) caused DSBs in the DNA, and chloroquine (CQ) treatment amplified the cytotoxic effect of both Ph-Asc and RES in an autophagy independent way. In the present study, we aimed at the further clarification of the cytotoxic mechanism of Ph-Asc, CQ, and RES by comparing their DNA damaging abilities, effects on the cells’ bioenergetic status, ROS, and lipid ROS generation abilities with those of the three currently investigated compounds (menadione, RSL3, H2O2). It could be assessed that the induction of DSBs is certainly a common point of their mechanism of action; furthermore, the observed cancer cell death due to the investigated treatments are independent of the bioenergetic status. Contrary to other investigated compounds, the DNA damaging effect of CQ seemed to be ROS independent. Surprisingly, the well-known ferroptosis inducer RSL3 was unable to induce lipid peroxidation in the pancreas ductal adenocarcinoma (PDAC) Mia PaCa-2 cell line. At the same time, it induced DSBs in the DNA, and the RSL3-induced cell death could not be suspended by the well-known ferroptosis inhibitors. All these observations suggest the ferroptosis resistance of this cell line. The observed DNA damaging effect of RSL3 definitely creates a new perspective in anticancer research. Full article
(This article belongs to the Special Issue The Anticancer Drugs: A New Perspective)
Show Figures

Figure 1

Back to TopTop