Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (32,700)

Search Parameters:
Keywords = feeds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 580 KB  
Article
Functional Food Potential of White Tea from East Black Sea Region: Targeting GREM1 Expression and Metabolic Dysregulation in Obesity
by Mehtap Atak, Hülya Kılıç, Bayram Şen and Medeni Arpa
Int. J. Mol. Sci. 2026, 27(2), 929; https://doi.org/10.3390/ijms27020929 (registering DOI) - 16 Jan 2026
Abstract
Obesity is a major global health concern, being associated with insulin resistance and multiple metabolic disorders. Gremlin 1 (GREM1), a bone morphogenetic protein (BMP) antagonist, is increasingly recognized as a key regulator of adipose tissue dysfunction and impaired thermogenesis in obesity. Orlistat, a [...] Read more.
Obesity is a major global health concern, being associated with insulin resistance and multiple metabolic disorders. Gremlin 1 (GREM1), a bone morphogenetic protein (BMP) antagonist, is increasingly recognized as a key regulator of adipose tissue dysfunction and impaired thermogenesis in obesity. Orlistat, a lipase inhibitor that reduces dietary fat absorption, is one of the most commonly used pharmacological agents for obesity management. White tea has demonstrated antioxidant and anti-obesity properties in experimental models. The aim of this study was to evaluate the effects of white tea on metabolic parameters (HOMA-IR, BMP4, Gremlin1) and GREM1 expression in rats made obese by a high-fat diet (HFD). A total of 40 male Sprague-Dawley rats were randomized into five groups: a standard diet group (STD); a high-fat diet group (HFD); an HFD + orlistat group (ORL); an HFD + 50 mg/kg white tea group (WT50); and an HFD + 150 mg/kg white tea group (WT150). Obesity was induced by feeding the rats a 45% high-fat diet for 3 weeks. Serum insulin, glucose and HOMA-IR levels were measured. Levels of GREM1 and BMP4 in serum and retroperitoneal adipose tissue were assessed. White tea supplementation significantly reduced weight gain and HOMA-IR compared to the HFD group. GREM1 mRNA expression in visceral adipose tissue decreased markedly in the WT50 and WT150 groups (p = 0.002 and p = 0.017, respectively). Serum GREM1 levels were significantly lower in the white tea-treated groups than in the HFD group (p = 0.011). Tissue BMP4 levels were only significantly reduced in the WT50 group (p = 0.005), indicating a non-linear dose–response pattern. There was a negative correlation between serum BMP4 levels and weight gain (rho = –0.440, p = 0.015). White tea was associated with improvements in metabolic parameters in an HFD-induced obesity model. These observations suggest a potential association between white tea bioactives and adipose tissue-related molecular pathways implicated in obesity. Given the short intervention duration and the exploratory design of this animal study, the findings should be interpreted with caution. Full article
(This article belongs to the Special Issue Bioactive Compounds from Foods Against Diseases)
12 pages, 331 KB  
Article
Environmental Variables in the Mexican Tropics and Their Relationship to Management and Welfare in Crossbreed Zebu Cattle
by Miguel A. Damián Valdez, Virginio Aguirre, Saul Rojas Hernández, Jaime Olivares Pérez, Mariana Pedernera, Abel Villa Mancera, Lucero Sarabia Salgado, Agustín Olmedo-Juárez, Fredy Quiroz Cardoso and Moises Cipriano Salazar
Animals 2026, 16(2), 288; https://doi.org/10.3390/ani16020288 (registering DOI) - 16 Jan 2026
Abstract
Most animal welfare (AW) assessment protocols have been developed for intensive production systems and European cattle, raising concerns about their applicability in the tropics. To compare the results obtained by using the welfare quality (WQ) assessment for fattening cattle in the dry tropics, [...] Read more.
Most animal welfare (AW) assessment protocols have been developed for intensive production systems and European cattle, raising concerns about their applicability in the tropics. To compare the results obtained by using the welfare quality (WQ) assessment for fattening cattle in the dry tropics, relevant modifications were implemented in 20 cattle production units (PUs) during the dry (DS) and rainy (RS) seasons. Regarding the principle of good feeding, only during the RS, between 20% and 25% of the farms maintained their animals in the acceptable and good categories, compared to the DS, where all PUs were classified as unacceptable (p < 0.04). Under the “Appropriate Behavior” principle, only 15% and 60% of the PUs maintained their animals at good and acceptable levels, respectively, in the RS, but not in the DS (p < 0.001). Conversely, during the DS, better scores were obtained for the measures and criteria in the Good housing group, with 45%, 50%, and 5% of PU classified as acceptable, good, and excellent, respectively, while for the RS, only 15%, 30%, and 5% reached these levels (p < 0.01). Meanwhile, under the “Good Health” principle, better animal health scores were observed during the RS, with 20%, 30%, and 50% of farms classified as acceptable, good, and excellent, compared to the DS, where only 70% and 10% of farms maintained their animals at good and excellent levels (p < 0.01). It is concluded that better animal welfare (AW) indicators were recorded during the RS, and the adjustments we applied to the conventional WQ protocol comprised a modification for the criterion that included the prolonged absence of thirst as well as adding six new indicators (measures) to the principles of housing, health, and behavior, which are considered essential for evaluating AW in cattle that are managed under extensive conditions by season. Full article
(This article belongs to the Special Issue Methodological Advancements in Predicting Gas Emissions of Livestock)
Show Figures

Figure 1

23 pages, 1041 KB  
Article
Dietary Green-Algae Chaetomorpha linum Extract Supplementation on Growth, Digestive Enzymes, Antioxidant Defenses, Immunity, Immune-Related Gene Expression, and Resistance to Aeromonas hydrophila in Adult Freshwater Snail, Bellamya bengalensis
by Hairui Yu, Govindharajan Sattanathan, Mansour Torfi Mozanzadeh, Pitchai Ruba Glory, Swaminathan Padmapriya, Thillainathan Natarajan, Ramasamy Rajesh and Sournamanikam Venkatalakshmi
Animals 2026, 16(2), 289; https://doi.org/10.3390/ani16020289 (registering DOI) - 16 Jan 2026
Abstract
Macroalgae plays a significant role in the formulation of innovative and environmentally sustainable approaches to address food challenges. Specifically, green macroalgae serve as dietary supplements aimed at improving the health, growth, and feeding efficiency of various species of marine and freshwater fishes, as [...] Read more.
Macroalgae plays a significant role in the formulation of innovative and environmentally sustainable approaches to address food challenges. Specifically, green macroalgae serve as dietary supplements aimed at improving the health, growth, and feeding efficiency of various species of marine and freshwater fishes, as well as mollusks. The effects of Chaetomorpha linum extract (CLE) on growth performance, physiological responses, and disease resistance are studied in Bellamya bengalensis against Aeromonas hydrophila. In this experiment, adult B. bengalensis (4412 ± 165.25 mg) were randomly divided into 15 rectangular glass aquariums (35 snail/aquaria; 45 L capacity) and their basal diet was supplemented with different levels of CLE, including 0 (CLE0), 1 (CLE1), 2 (CLE2), 3 (CLE3), and 4 (CLE4) g/kg for 60 days. The growth performance in the CLE3 dietary group was significantly higher that of the CLE0 group, exhibiting both linear and quadratic trends in relation to dietary CLE levels (p < 0.05). The activities of pepsin, amylase, and lipase were found to be highest in CLE3 and lowest in CLE0. Both linear and quadratic responses to dietary CLE levels in digestive enzymes were observed (p < 0.05). The activities of superoxide dismutase and catalase in the hepatopancreas were found to be elevated in snails due to the synergistic effect of the supplemented CLE diet. Among different levels of diet given, CLE2-supplemented snails showed an increase in their enzyme activity (p < 0.05). Interestingly, all the CLE-treated snails expressed elevated levels of mucus lysozyme and mucus protein when compared to control (p < 0.05). Additionally, hepatopancreatic acid phosphatase and alkaline phosphatase activity were elevated in snails consuming CLE3 (p < 0.05). The transcription levels of immune-related genes, including mucin-5ac and cytochrome, were significantly elevated in snails that were fed a diet supplemented with 2–4 g of CLE/kg. Furthermore, the transcription level of the acid phosphatase-like 7 protein gene also increased in snails receiving CLE-supplemented diets. After a 14-day period of infection, snails that consumed a diet supplemented with 3–4 g/kg of CLE exhibited a notable increase in survival rates against virulent A. hydrophila. Based on the above findings, it is suggested that a diet supplemented with 3 g/kg of CLE may enhance growth, antioxidant and immune defense, and disease resistance in the freshwater snail B. bengalensis. Full article
Show Figures

Figure 1

23 pages, 1103 KB  
Article
Nutritional Efficiency of Mulberry Leaves Enriched with a Concentrated Probiotic in Two Breeds (Kahuri/T and AO/T) of Bombyx mori L. Silkworm
by Mihaela Hăbeanu, Anca Gheorghe, Nicoleta Aurelia Lefter and Teodor Mihalcea
Appl. Sci. 2026, 16(2), 961; https://doi.org/10.3390/app16020961 (registering DOI) - 16 Jan 2026
Abstract
This study aimed to assess the effect of mulberry leaf fortification with a probiotic (Enterococcus faecium and rosemary) on larval development, feed utilization efficiency, digestive performance, and cocoon-related traits in two Bombyx mori breeds. The results showed that a probiotic addition to [...] Read more.
This study aimed to assess the effect of mulberry leaf fortification with a probiotic (Enterococcus faecium and rosemary) on larval development, feed utilization efficiency, digestive performance, and cocoon-related traits in two Bombyx mori breeds. The results showed that a probiotic addition to the silkworms’ diet, particularly at a 2% inclusion level, enhances key productive traits such as larval weight, silk gland weight, cocoon weight, digestibility, and feed efficiency, while reducing excreta. Breed-specific differences were evident, with Kahuri/T exhibiting superior nutrient intake, assimilation, and overall productivity compared to AO/T (p < 0.0001). Productive traits during the 5th instar increased significantly over time, with both larval growth and silk gland development following rapid, exponential patterns. The Kahuri/T breed and the probiotic-supplemented groups—particularly at a 2% concentration—showed the most notable improvements compared with the AO/T breed and the control diet. Pearson correlation analyses identified strong positive relationships between feed efficiency, protein intake, and silk yield, underscoring probiotics as a viable strategy for sustainable productivity gains in sericulture. In conclusion, mulberry leaf fortification with Enterococcus faecium and rosemary, especially at a 2% inclusion level, significantly improved performance and nutrient utilization, with the strongest responses observed in the Kahuri/T breed. These findings highlight probiotic supplementation as an effective and sustainable strategy for enhancing sericulture. Full article
(This article belongs to the Special Issue Biotechnology in Animals)
21 pages, 5812 KB  
Article
Ferulic Acid Attenuates Heat Stress-Induced Hepatic and Intestinal Oxidative Stress and Cholesterol Metabolism Dysregulation in Juvenile Blunt Snout Bream (Megalobrama amblycephala)
by Yan Lin, Xiangjun Leng, Linjie Qian, Linghong Miao, Xiaoqin Li, Wenqiang Jiang, Siyue Lu and Zhengyan Gu
Int. J. Mol. Sci. 2026, 27(2), 925; https://doi.org/10.3390/ijms27020925 (registering DOI) - 16 Jan 2026
Abstract
Ferulic acid (FA) is a green feed additive. To investigate the molecular mechanisms by which FA attenuates heat stress-induced hepatic and intestinal oxidative stress, as well as cholesterol metabolism disorders in Megalobrama amblycephala (9.75 ± 0.04 g), individuals were fed diets supplemented with [...] Read more.
Ferulic acid (FA) is a green feed additive. To investigate the molecular mechanisms by which FA attenuates heat stress-induced hepatic and intestinal oxidative stress, as well as cholesterol metabolism disorders in Megalobrama amblycephala (9.75 ± 0.04 g), individuals were fed diets supplemented with 0, 100, or 200 mg/kg FA for eight weeks, followed by exposure to heat stress at 34 °C for 48 h. The results indicated that FA supplementation reduced malondialdehyde levels and downregulation genes involved in inflammatory responses (e.g., interleukin-6), apoptosis (e.g., caspase 8), and endoplasmic reticulum stress (e.g., immunoglobulin binding protein) (p < 0.05), which collectively alleviated heat stress-induced hepatic and intestinal oxidative stress. FA supplementation increased the expression of ATP-binding cassette transporter A1, apolipoprotein A1, and liver X receptor α (p < 0.05), and restored liver and plasma TC levels to pre-stress levels (p < 0.05). Additionally, FA ameliorated the heat stress-induced dysbiosis of the intestinal microbiota and modulated the composition and abundance of metabolites in intestinal contents and plasma, some of which are associated with cholesterol metabolism. In conclusion, dietary FA can alleviate heat stress-induced hepatic and intestinal oxidative stress, maintain the stability of the intestinal microbiota and regulate metabolic profiles, and improve the cholesterol metabolism disorders caused by heat stress. Full article
Show Figures

Graphical abstract

16 pages, 738 KB  
Article
Real-World Evidence of Growth Improvement in Children 1 to 5 Years of Age Receiving Enteral Formula Administered Through an Immobilized Lipase Cartridge
by Alvin Jay Freeman, Elizabeth Reid, Terri Schindler, Thomas J. Sferra, Barbara Bice, Ashley Deschamp, Heather Thomas, David P. Recker and Ann E. Remmers
Nutrients 2026, 18(2), 287; https://doi.org/10.3390/nu18020287 (registering DOI) - 16 Jan 2026
Abstract
Background/Objectives: RELiZORB immobilized lipase cartridge (ILC) is a single-use digestive enzyme cartridge that connects in-line with enteral feeding circuits to hydrolyze triglycerides in enteral formulas. It is cleared by the FDA for pediatric and adult use. Limited data have been published regarding the [...] Read more.
Background/Objectives: RELiZORB immobilized lipase cartridge (ILC) is a single-use digestive enzyme cartridge that connects in-line with enteral feeding circuits to hydrolyze triglycerides in enteral formulas. It is cleared by the FDA for pediatric and adult use. Limited data have been published regarding the effect of ILC use on growth in children younger than 5 years of age. Methods: We performed a retrospective evaluation of real-world data extracted from a third-party reimbursement program database. All patients in the program database who initiated ILC use with enteral formula when 1 to 4 years of age between 2019 and 2023 were included. Baseline and follow-up weight, height/length, and body mass index (BMI) data were collected for up to 12 months. Results: A total of 186 patients from 90 clinics in the United States were included. A subset (143 patients) with baseline and follow-up growth measurements was included in the efficacy analysis population; 76% were diagnosed with cystic fibrosis. Mean weight and BMI z-scores improved significantly (0.63 [p < 0.001] and 0.53 [p = 0.006], respectively) from baseline to 12 months after initiation of ILC use. Significant improvement in the mean weight z-score was observed after 3 months. Among people with cystic fibrosis (pwCF) who initiated ILC use when 2 to 4 years of age, those with a BMI ≥ 50th percentile increased from 22% at baseline to 43% after 12 months (p = 0.021). Improvement in weight-for-length was also observed in 1-year-old pwCF. Conclusions: Real-world evidence showed that initiation of ILC use was associated with significant improvements in mean weight and BMI z-scores among young children. Full article
(This article belongs to the Section Pediatric Nutrition)
Show Figures

Figure 1

39 pages, 5114 KB  
Article
Optimal Sizing of Electrical and Hydrogen Generation Feeding Electrical and Thermal Load in an Isolated Village in Egypt Using Different Optimization Technique
by Mohammed Sayed, Mohamed A. Nayel, Mohamed Abdelrahem and Alaa Farah
Energies 2026, 19(2), 452; https://doi.org/10.3390/en19020452 (registering DOI) - 16 Jan 2026
Abstract
This paper analyzes the functional feasibility and strategic value of hybrid hydrogen storage and photovoltaic (PV) energy systems at isolated areas, specifically at Egypt’s Shalateen station. The paper is significant as it formulates a solution to the energy independence coupled with economic feasibility [...] Read more.
This paper analyzes the functional feasibility and strategic value of hybrid hydrogen storage and photovoltaic (PV) energy systems at isolated areas, specifically at Egypt’s Shalateen station. The paper is significant as it formulates a solution to the energy independence coupled with economic feasibility issue in regions where the basic energy infrastructure is non-existent or limited. Through the integration of a portfolio of advanced optimization algorithms—Differential Evolution (DE), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), Multi-Objective Genetic Algorithm (MOGA), Pattern Search, Sequential Quadratic Programming (SQP), and Simulated Annealing—the paper evaluates the performance of two scenarios. The first evaluates the PV system in the absence of hydrogen production to demonstrate how system parameters are optimized by Pattern Search and PSO to achieve a minimum Cost of Energy (COE) of 0.544 USD/kWh. The second extends the system to include hydrogen production, which becomes important to ensure energy continuity during solar irradiation-free months like those during winter months. In this scenario, the same methods of optimization enhance the COE to 0.317 USD/kWh, signifying the economic value of integrating hydrogen storage. The findings underscore the central role played by hybrid renewable energy systems in ensuring high resilience and sustainability of supplies in far-flung districts, where continued enhancement by means of optimization is needed to realize maximum environmental and technological gains. The paper offers a futuristic model towards sustainable, dependable energy solutions key to the energy independence of the future in such challenging environments. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

23 pages, 1174 KB  
Article
Size-Dependent Tissue Translocation and Physiological Responses to Dietary Polystyrene Microplastics in Salmo trutta
by Buumba Hampuwo, Anna Duenser, Elias Lahnsteiner, Thomas Friedrich and Franz Lahnsteiner
Animals 2026, 16(2), 285; https://doi.org/10.3390/ani16020285 - 16 Jan 2026
Abstract
Microplastics (MPs) are prevalent in freshwater systems; consequently, fish ingest them either accidentally or intentionally. Once ingested, MPs can translocate to various organs and cause physiological effects. Most studies have focused on tropical and marine fishes, and many have used mass-based methods that [...] Read more.
Microplastics (MPs) are prevalent in freshwater systems; consequently, fish ingest them either accidentally or intentionally. Once ingested, MPs can translocate to various organs and cause physiological effects. Most studies have focused on tropical and marine fishes, and many have used mass-based methods that measure exposure only by the total mass of microplastics, ignoring particle number and size. These studies have also rarely examined MP effects or fate after a depuration period, limiting our understanding of MP impacts on temperate fishes, hindering the harmonisation of toxicological studies, and complicating assessments of food safety for cultured and wild fish. This study investigated the physiological impacts of dietary exposure to polystyrene microplastics (PS-MPs; 1–10 µm) in Salmo trutta fed a diet with ~5.4 × 106 PS-MPs g−1 feed for 21 days, followed by a 90-day depuration period. PS-MPs translocation from the intestine to the liver and muscle was investigated. Enzymatic biomarkers of oxidative stress and metabolism were analysed in the liver, digestive enzyme activity was assessed in the intestine, and inflammatory enzyme responses were evaluated in both liver and intestinal tissues. In addition, malondialdehyde (MDA) concentration, an indicator of lipid peroxidation, was quantified in blood, muscle, and liver samples. Results show that 1–5 µm PS-MPs translocated to the liver and muscle, while 10 µm particles largely remained in the intestine, with a small fraction detected in muscle tissue but not in the liver. Most biochemical markers were unaffected; however, both trypsin and peroxidase activities significantly decreased after 21 days, and lipid peroxidation increased in blood following 90 days of depuration. PS-MPs persisted in muscle following 90 days of depuration. These findings demonstrate that dietary exposure to PS-MPs in the size range 1–10 µm leads to selective physiological alterations in S. trutta and results in persistent accumulation of MPs in organs, especially muscle tissue consumed by humans, highlighting a clear concern for food safety. Full article
(This article belongs to the Section Aquatic Animals)
27 pages, 4956 KB  
Article
StaticPigDetv2: Performance Improvement of Unseen Pig Monitoring Environment Using Depth-Based Background and Facility Information
by Seungwook Son, Munki Park, Sejun Lee, Jongwoong Seo, Seunghyun Yu, Daihee Park and Yongwha Chung
Sensors 2026, 26(2), 621; https://doi.org/10.3390/s26020621 - 16 Jan 2026
Abstract
Standard Deep Learning-based detectors generally face a trade-off between accuracy and latency, as well as a significant performance degradation when applied to unseen environments. To address these challenges, this study proposes a method that enhances both accuracy and latency by leveraging the static [...] Read more.
Standard Deep Learning-based detectors generally face a trade-off between accuracy and latency, as well as a significant performance degradation when applied to unseen environments. To address these challenges, this study proposes a method that enhances both accuracy and latency by leveraging the static characteristics of fixed-camera pig pen monitoring. Specifically, we utilize background and infrastructure information obtained through a one-time preprocessing step upon camera installation. By integrating this information, we introduce three distinct modules, Background-suppressed Image Generator (BIG), Facility Image Generator (FIG), and Background Suppression Integration (BSI), that improve detection accuracy and operational efficiency without the need for model retraining. BIG creates background-suppressed images that integrate foreground and background information. FIG creates facility mask images that can be used to identify pigs that are occluded by facilities, enabling more efficient learning in unseen environments. BSI leverages both the input image and the background-suppressed image generated by BIG, feeding them into a 3D convolution layer for efficient feature fusion. This difference-aware fusion helps the model focus on foreground information and gradually reduce the domain gap. After training on the German pig dataset and testing on the unseen Korean Hadong pig dataset, the proposed method could improve AP50 accuracy (from 75% to 86%) and Jetson Orin Nano latency (from 67 ms to 41 ms) compared to the baseline model YOLOV12m. Full article
(This article belongs to the Special Issue Smart Decision Systems for Digital Farming: 2nd Edition)
20 pages, 4104 KB  
Article
Integrated Targeted and Untargeted Metabolomics Reveals the Toxic Mechanisms of Zearalenone in Goat Leydig Cells
by Chunmei Ning, Jinkui Sun, Ying Zhao, Houqiang Xu, Wenxuan Wu and Yi Yang
Animals 2026, 16(2), 283; https://doi.org/10.3390/ani16020283 - 16 Jan 2026
Abstract
Zearalenone (ZEA) is a mycotoxin commonly found in animal feed and is associated with pronounced reproductive toxicity. However, most studies on ZEA’s reproductive effects have focused on female monogastric animals, while research on male ruminants remains limited. This study aimed to investigate the [...] Read more.
Zearalenone (ZEA) is a mycotoxin commonly found in animal feed and is associated with pronounced reproductive toxicity. However, most studies on ZEA’s reproductive effects have focused on female monogastric animals, while research on male ruminants remains limited. This study aimed to investigate the cytotoxic and metabolic mechanisms underlying ZEA-induced damage in goat Leydig cells (LCs). The CCK8 assay was first used to determine the effective ZEA concentration (IC50 ≈ 20 μM), and a cytotoxicity model was subsequently established. The model’s validity was confirmed using qRT-PCR, transmission electron microscopy, flow cytometry, and JC-1 staining. Results showed that ZEA significantly reduced LCs viability in a dose-dependent manner, decreased mitochondrial membrane potential, induced cell cycle arrest, and triggered apoptosis. Targeted and untargeted metabolomics analyses revealed that ZEA disrupts steroidogenic pathways and alters steroid hormone secretion, resulting in elevated levels of progesterone, corticosterone, and androstenedione, and reduced dihydrotestosterone levels. Furthermore, 52 significantly altered metabolites were identified, predominantly enriched in glycerophospholipid metabolism, choline metabolism, and neurotransmitter vesicle pathways, with corresponding changes in gene expression. Collectively, this study has confirmed that ZEA causes harm to the reproductive cells of male goats in multiple aspects, underscoring the link between metabolic dysregulation and reproductive impairment, and offering a foundation for evaluating ZEA’s impact on goat reproductive performance. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

33 pages, 3513 KB  
Article
Effects of Red Kojic Rice Supplementation on Growth, Immunity, Antioxidant Capacity, and Intestinal Health of Litopenaeus vannamei Fed a Diet with Fish Meal Replacement by Soybean Meal
by Qianping Huang, Hongkai Ye, Zhanzhan Wang, Bo Liu, Min Yang, Xiaobin Chen, Shengli Liu and Chuanpeng Zhou
Fishes 2026, 11(1), 58; https://doi.org/10.3390/fishes11010058 - 16 Jan 2026
Abstract
This study aimed to investigate the effects of adding Red kojic rice (RKR) on the growth performance, digestive enzyme activity, non-specific immunity, antioxidant capacity, and intestinal health of Litopenaeus vannamei fed a diet with fishmeal replacement by soybean meal. Shrimps (initial mean weight [...] Read more.
This study aimed to investigate the effects of adding Red kojic rice (RKR) on the growth performance, digestive enzyme activity, non-specific immunity, antioxidant capacity, and intestinal health of Litopenaeus vannamei fed a diet with fishmeal replacement by soybean meal. Shrimps (initial mean weight = 1.88 ± 0.03 g) were fed six experimental diets for 8 weeks, including a normal fishmeal control group (FM), a soybean meal-replaced fishmeal group (H0), and four soybean meal-replaced fishmeal groups supplemented with 0.5%, 1%, 2%, and 4% RKR, respectively, which are designated as H1, H2, H3, and H4, respectively. Each group had three replicates, with 30 shrimp per replicate. The results showed that the final average weight (FWG), weight gain rate (WG), and specific growth rate (SGR) of H2 group were significantly higher than those of H0, H3, and H4 groups (p < 0.05). The feed conversion ratio (FCR) of H2 group was significantly lower than that of H0 and H4 groups (p < 0.05). In contrast to the H0 group, the blood ACP activity in the H2 group was significantly increased (p < 0.05). The blood lysozyme (LYZ) activity in H3 group was significantly higher than that in H1 group (p < 0.05), while the opposite was true for phenoloxidase (PO). The activities of trypsin and amylase in hepatopancreas of H3 group were significantly higher than those of H0 and H1 groups (p < 0.05). Compared with the FM group, the hepatopancreatic malondialdehyde (MDA) levels in H0, H3, and H4 groups were significantly increased (p < 0.05). Compared with the H0 group, the hepatopancreatic MDA levels in H1 and H2 groups were significantly decreased (p < 0.05). Analysis of gene expression levels in hepatopancreas revealed that antioxidant (gpx, sod, cat, gst, nrf2, trx, and ho-1), non-specific immune (tnf-α, il-1β, and ifn-γ), and digestive (trypsin and α-amylase) genes were suppressed in the H0 group but enhanced by RKR supplementation. Similar expression patterns of those genes were observed in the intestine. Microbial community analysis showed reduced diversity and altered composition in the H0 group, which were partially restored by RKR. Network analysis showed “small-world” property in microbial co-occurrence network. Metabolomic analysis revealed that among the differential metabolites, Bismurrayaquinone A and Harmol exhibit highly significant differences. Correlation analysis revealed that beneficial bacteria Rhodococcus_C and Oceanobacillus in H2 group exhibited higher richness and showed significant correlation. In conclusion, supplementation of 0.5–2% RKR promoted the growth performance, digestive enzyme activity, non-specific immunity, antioxidant capacity, and intestinal health of shrimp fed a diet with fishmeal replacement by soybean meal. The optimal RKR supplementing content is 1%. Full article
(This article belongs to the Section Nutrition and Feeding)
23 pages, 1051 KB  
Review
Early-Life Gut Microbiota: Education of the Immune System and Links to Autoimmune Diseases
by Pleun de Groen, Samantha C. Gouw, Nordin M. J. Hanssen, Max Nieuwdorp and Elena Rampanelli
Microorganisms 2026, 14(1), 210; https://doi.org/10.3390/microorganisms14010210 - 16 Jan 2026
Abstract
Early life is a critical window for immune system development, during which the gut microbiome shapes innate immunity, antigen presentation, and adaptive immune maturation. Disruptions in microbial colonization—driven by factors such as cesarean delivery, antibiotic exposure, and formula feeding—deplete beneficial early-life taxa (e.g., [...] Read more.
Early life is a critical window for immune system development, during which the gut microbiome shapes innate immunity, antigen presentation, and adaptive immune maturation. Disruptions in microbial colonization—driven by factors such as cesarean delivery, antibiotic exposure, and formula feeding—deplete beneficial early-life taxa (e.g., Bifidobacterium, Bacteroides, and Enterococcus) and impair key microbial functions, including short-chain fatty acid (SCFA) production by these keystone species, alongside regulatory T cell induction. These dysbiosis patterns are associated with an increased risk of pediatric autoimmune diseases, notably type 1 diabetes, inflammatory bowel disease, celiac disease, and juvenile idiopathic arthritis. This review synthesizes current evidence on how the early-life microbiota influences immune maturation, with potential effects on the development of autoimmune diseases later in life. We specifically focus on human observational and intervention studies, where treatments with probiotics, synbiotics, vaginal microbial transfer, or maternal fecal microbiota transplantations have been shown to partially restore a disrupted microbiome. While restoration of the gut microbiome composition and function is the main reported outcome of these studies, to date, no reports have disclosed direct prevention of autoimmune disease development by targeting the early-life gut microbiome. In this regard, a better understanding of the early-life microbiome–immune axis is essential for developing targeted preventive strategies. Future research must prioritize longitudinal evaluation of autoimmune outcomes after microbiome modulation to reduce the burden of chronic immune-mediated diseases. Full article
(This article belongs to the Special Issue Microbiomes in Human Health and Diseases)
35 pages, 2832 KB  
Article
Dietary Methionine Supplementation Improves Rainbow Trout (Oncorhynchus mykiss) Immune Responses Against Viral Haemorrhagic Septicaemia Virus (VHSV)
by Mariana Vaz, Gonçalo Espregueira Themudo, Inês Carvalho, Felipe Bolgenhagen Schöninger, Carolina Tafalla, Patricia Díaz-Rosales, Benjamín Costas and Marina Machado
Biology 2026, 15(2), 163; https://doi.org/10.3390/biology15020163 - 16 Jan 2026
Abstract
Several studies have demonstrated that methionine supplementation in fish diets enhances immune status, inflammatory response, and resistance to bacterial infections by modulating for DNA methylation, aminopropylation, and transsulfuration pathways. However, the immunomodulatory effects of methionine in viral infections remain unexplored. This study aimed [...] Read more.
Several studies have demonstrated that methionine supplementation in fish diets enhances immune status, inflammatory response, and resistance to bacterial infections by modulating for DNA methylation, aminopropylation, and transsulfuration pathways. However, the immunomodulatory effects of methionine in viral infections remain unexplored. This study aimed to evaluate the effect of methionine supplementation on immune modulation and resistance to the viral haemorrhagic septicaemia virus (VHSV) in rainbow trout (Oncorhynchus mykiss). Two diets were formulated and fed to juvenile rainbow trout for four weeks: a control diet (CTRL) with all nutritional requirements, including the amino acid profile required for the species, and a methionine-supplemented diet (MET), containing twice the normal requirement of DL-methionine. After feeding, fish were bath-infected with VHSV, while control fish were exposed to a virus-free bath. Samples were collected at 0 (after feeding trial), 24, 72, and 120 h post-infection for the haematological profile, humoral immune response, oxidative stress, viral load, RNAseq, and gene expression analysis. In both diets, results showed a peak in viral activity at 72 h, followed by a reduction in viral load at 120 h, indicating immune recovery. During the peak of infection, leukocytes, thrombocytes, and monocytes migrated to the infection site, while oxidative stress biomarkers (superoxide dismutase glutathione S-transferase, and glutathione redox ratio) suggested a compromised ability to manage cellular imbalance due to intense viral activity. At 120 h, immune recovery and homeostasis were observed due to an increase in the amount of nitric oxide, GSH/GSSG levels, leukocyte replacement, monocyte influx, and a reduction in the viral load. When focusing on the infection peak, gene ontology (GO) analysis showed several exclusively enriched pathways in the skin and gills of MET-fed fish, driven by the upregulation of several key genes. Genes involved in recognition/signalling, inflammatory response, and other genes with direct antiviral activity, such as TLR3, MYD88, TRAF2, NF-κB, STING, IRF3, -7, VIG1, caspases, cathepsins, and TNF, were observed. Notably, VIG1 (viperin), a key antiviral protein, was significantly upregulated in gills, confirming the modulatory role of methionine in inducing its transcription. Viperin, which harbours an S-adenosyl-L-methionine (SAM) radical domain, is directly related to methionine biosynthesis and plays a critical role in the innate immune response to VHSV infection in rainbow trout. In summary, this study suggests that dietary methionine supplementation can enhance a more robust fish immune response to viral infections, with viperin as a crucial mediator. The improved antiviral readiness observed in MET-fed fish underscores the potential of targeted nutritional adjustments to sustain fish health and welfare in aquaculture. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

13 pages, 1048 KB  
Article
Supplemented Feed for Broiler Chickens: The Influence of Red Grape Pomace and Grape Seed Flours on Meat Characteristics
by Manuela Mauro, Alessandro Attanzio, Carla Buzzanca, Marialetizia Ponte, Vita Di Stefano, Ignazio Restivo, Giuseppe Maniaci, Angela D’Amico, Antonino Di Grigoli, Emiliano Gurrieri, Antonio Fabbrizio, Sabrina Sallemi, Luisa Tesoriere, Francesco Longo, Rosario Badalamenti, Aiti Vizzini, Maria Grazia Cappai, Mirella Vazzana and Vincenzo Arizza
Animals 2026, 16(2), 280; https://doi.org/10.3390/ani16020280 - 16 Jan 2026
Abstract
Intensive broiler chicken farming is one of the most important livestock sectors globally. However, intensive production systems raise concerns about farm sustainability, as well as ensuring animal welfare and product quality. For this reason, identifying novel, high-value-added feed ingredients is crucial. Winery by-products [...] Read more.
Intensive broiler chicken farming is one of the most important livestock sectors globally. However, intensive production systems raise concerns about farm sustainability, as well as ensuring animal welfare and product quality. For this reason, identifying novel, high-value-added feed ingredients is crucial. Winery by-products (WBPs) are a valuable source of bioactive compounds and can be utilized as functional feed ingredients. This study evaluated the effects of dietary supplementation with grape seed meal and grape pomace meal in diets for broilers up to 42 days of age. Three dietary treatments were formulated—grape seed meal (3% and 6%), grape pomace meal (3% and 6%), and a combination (3% seed meal + 3% pomace meal)—along with a standard diet (control). The proximal composition (moisture, protein, fatty acid profile, fats, ash), antioxidant parameters (ROS, GSH, NO, POV), free radical scavenging activity (DPPH and ABTS•+), and total phenolic content of the meat and physical characteristics (color) were assessed. While proximal composition of meat was not significantly influenced by the dietary treatment, some parameters, such as total phenolic content, PUFA levels, and antioxidant and free radical scavenging activity, were improved. These results demonstrate enhanced favorable traits improving chicken meat quality and confirm the potential of WBPs as functional feed ingredients, promoting a more sustainable production model aligned with the principles of the circular economy. Full article
(This article belongs to the Section Animal Products)
Show Figures

Figure 1

16 pages, 5511 KB  
Article
Enhancing Lithium Extraction: Effect of Mechanical Activation on the Sulfuric Acid Leaching Behavior of Lepidolite
by Yuik Eom, Laurence Dyer, Aleksandar N. Nikoloski and Richard Diaz Alorro
Minerals 2026, 16(1), 87; https://doi.org/10.3390/min16010087 - 16 Jan 2026
Abstract
This study investigated the effect of mechanical activation on the physicochemical properties of lepidolite and the leaching behavior of mechanically activated samples in sulfuric acid (H2SO4). Lepidolite was mechanically activated using a high-energy planetary ball mill (PBM) at 400 [...] Read more.
This study investigated the effect of mechanical activation on the physicochemical properties of lepidolite and the leaching behavior of mechanically activated samples in sulfuric acid (H2SO4). Lepidolite was mechanically activated using a high-energy planetary ball mill (PBM) at 400 RPM with a 20:1 ball-to-feed weight ratio (BFR, g:g) and the samples activated for different durations were characterized for amorphous phase content, particle size, and morphology using various solid analyses. X-ray diffraction (XRD) revealed the progressive amorphization of lepidolite, with the amorphous fraction increased from 34.1% (unactivated) to 81.4% after 60 min of mechanical activation. Scanning electron microscopy (SEM) showed that mechanically activated particles became fluffy and rounded, whereas unactivated particles retained lamellar and angular shapes. The reactivity of minerals after mechanical activation was evaluated through a 2 M H2SO4 leaching test at different leaching temperatures (25–80 °C) and time periods (30–180 min). Although the leaching efficiencies of Li and Al slightly improved at higher leaching temperatures and longer leaching times, the leaching of these metals was primarily governed by the mechanical activation time. The highest Li and Al leaching efficiencies—87.0% for Li and 79.4% for Al—were obtained from lepidolite that was mechanically activated for 60 min under leaching conditions of 80 °C and a 10% (w/v) solid/liquid (S/L) ratio for 30 min. The elemental mapping images of leaching feed and residue produced via energy dispersive spectroscopy (EDS) indicated that unactivated particles in the leaching residue had much higher metal content than mechanically activated particles. Kinetic analysis further suggested that leaching predominantly occurs at mechanically activated sites and the apparent activation energies calculated in this study (<3.1 kJ·mol−1) indicate diffusion-controlled behavior with weak temperature dependence. This result confirmed that mechanical activation significantly improves reactivity and that the residual unleached fraction can be attributed to unactivated particles. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

Back to TopTop