Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,324)

Search Parameters:
Keywords = fault diagnostic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7521 KiB  
Article
ResNet + Self-Attention-Based Acoustic Fingerprint Fault Diagnosis Algorithm for Hydroelectric Turbine Generators
by Wei Wang, Jiaxiang Xu, Xin Li, Kang Tong, Kailun Shi, Xin Mao, Junxue Wang, Yunfeng Zhang and Yong Liao
Processes 2025, 13(8), 2577; https://doi.org/10.3390/pr13082577 - 14 Aug 2025
Abstract
To address the issues of reduced operational efficiency, shortened equipment lifespan, and significant safety hazards caused by bearing wear and blade cavitation in hydroelectric turbine generators due to prolonged high-load operation, this paper proposes a ResNet + self-attention-based acoustic fingerprint fault diagnosis algorithm [...] Read more.
To address the issues of reduced operational efficiency, shortened equipment lifespan, and significant safety hazards caused by bearing wear and blade cavitation in hydroelectric turbine generators due to prolonged high-load operation, this paper proposes a ResNet + self-attention-based acoustic fingerprint fault diagnosis algorithm for hydroelectric turbine generators. First, to address the issue of severe noise interference in acoustic signature signals, the ensemble empirical mode decomposition (EEMD) is employed to decompose the original signal into multiple intrinsic mode function (IMF) components. By calculating the correlation coefficients between each IMF component and the original signal, effective components are selected while noise components are removed to enhance the signal-to-noise ratio; Second, a fault identification network based on ResNet + self-attention fusion is constructed. The residual structure of ResNet is used to extract features from the acoustic signature signal, while the self-attention mechanism is introduced to focus the model on fault-sensitive regions, thereby enhancing feature representation capabilities. Finally, to address the challenge of model hyperparameter optimization, a Bayesian optimization algorithm is employed to accelerate model convergence and improve diagnostic performance. Experiments were conducted in the real working environment of a pumped-storage power station in Zhejiang Province, China. The results show that the algorithm significantly outperforms traditional methods in both single-fault and mixed-fault identification, achieving a fault identification accuracy rate of 99.4% on the test set. It maintains high accuracy even in real-world scenarios with superimposed noise and environmental sounds, fully validating its generalization capability and interference resistance, and providing effective technical support for the intelligent maintenance of hydroelectric generator units. Full article
Show Figures

Figure 1

25 pages, 625 KiB  
Review
Evolution of Shipboard Motor Failure Monitoring Technology: Multi-Physics Field Mechanism Modeling and Intelligent Operation and Maintenance System Integration
by Jun Sun, Pan Sun, Boyu Lin and Weibo Li
Energies 2025, 18(16), 4336; https://doi.org/10.3390/en18164336 - 14 Aug 2025
Abstract
As a core component of both the ship propulsion system and mission-critical equipment, shipboard motors are undergoing a technological transition from traditional fault diagnosis to multi-physical-field collaborative modeling and integrated intelligent maintenance systems. This paper provides a systematic review of recent advances in [...] Read more.
As a core component of both the ship propulsion system and mission-critical equipment, shipboard motors are undergoing a technological transition from traditional fault diagnosis to multi-physical-field collaborative modeling and integrated intelligent maintenance systems. This paper provides a systematic review of recent advances in shipboard motor fault monitoring, with a focus on key technical challenges under complex service environments, and offers several innovative insights and analyses in the following aspects. First, regarding the fault evolution under electromagnetic–thermal–mechanical coupling, this study summarizes the typical fault mechanisms, such as bearing electrical erosion, rotor eccentricity, permanent magnet demagnetization, and insulation aging, and analyzes their modeling approaches and multi-physics coupling evolution paths. Second, in response to the problem of multi-source signal fusion, the applicability and limitations of feature extraction methods—including current analysis, vibration demodulation, infrared thermography, and Dempster–Shafer (D-S) evidence theory—are evaluated, providing a basis for designing subsequent signal fusion strategies. With respect to intelligent diagnostic models, this paper compares model-driven and data-driven approaches in terms of their suitability for different scenarios, highlighting their complementarity and integration potential in the complex operating conditions of shipboard motors. Finally, considering practical deployment needs, the key aspects of monitoring platform implementation under shipborne edge computing environments are discussed. The study also identifies current research gaps and proposes future directions, such as digital twin-driven intelligent maintenance, fleet-level PHM collaborative management, and standardized health data transmission. In summary, this paper offers a comprehensive analysis in the areas of fault mechanism modeling, feature extraction method evaluation, and system deployment frameworks, aiming to provide a theoretical reference and engineering insights for the advancement of shipboard motor health management technologies. Full article
19 pages, 6060 KiB  
Article
Gramian Angular Field–Gramian Adversial Network–ResNet34: High-Accuracy Fault Diagnosis for Transformer Windings with Limited Samples
by Hongwen Liu, Kun Yang, Guochao Qian, Jin Hu, Weiju Dai, Liang Zhu, Tao Guo, Jun Shi and Dongyang Wang
Energies 2025, 18(16), 4329; https://doi.org/10.3390/en18164329 - 14 Aug 2025
Abstract
Transformers are critical equipment in power transmission and distribution systems, and the condition of their windings significantly impacts their reliable operation. Therefore, the fault diagnosis of transformer windings is of great importance. Addressing the challenge of limited fault samples in traditional diagnostic methods, [...] Read more.
Transformers are critical equipment in power transmission and distribution systems, and the condition of their windings significantly impacts their reliable operation. Therefore, the fault diagnosis of transformer windings is of great importance. Addressing the challenge of limited fault samples in traditional diagnostic methods, this study proposes a small-sample fault diagnosis method for transformer windings. This method combines data augmentation using the Gramian angular field (GAF) and generative adversarial networks (GAN) with a deep residual network (ResNet). First, by establishing a transformer winding fault simulation experiment platform, frequency response curves for three types of faults—axial displacement, bulging and warping, and cake-to-cake short circuits—and different fault regions were obtained using the frequency response analysis method (FRA). Second, a frequency response curve image conversion technique based on the Gramian angular field was proposed, converting the frequency response curves into Gramian angular summation field (GASF) and Gramian angular difference field (GADF) images using the Gramian angular field. Next, we introduce several improved GANs to augment the frequency response data and evaluate the quality of the generated samples. We compared and analysed the diagnostic accuracy of ResNet34 networks trained using different GAF–GAN combination datasets for winding fault types, and we proposed a transformer winding small-sample fault diagnosis method based on GAF-GAN-ResNet34, which can achieve a fault identification accuracy rate of 96.88% even when using only 28 real samples. Finally, we applied the proposed fault diagnosis method to on-site transformers to verify its classification performance under small-sample conditions. The results show that, even with insufficient fault samples, the proposed method can achieve high diagnostic accuracy. Full article
Show Figures

Figure 1

23 pages, 7894 KiB  
Article
Bearing-Weak-Fault Signal Enhancement and Diagnosis Based on Multivariate Statistical Hilbert Differential TEO
by Zhiqiang Liao, Renchao Cai, Zhijia Yan, Peng Chen and Xuewei Song
Machines 2025, 13(8), 722; https://doi.org/10.3390/machines13080722 - 13 Aug 2025
Viewed by 71
Abstract
The enhancement of weak-fault signal characteristics in rolling bearings under strong background noise interference has always been a challenging problem in rotating machinery fault diagnosis. Research indicates that multivariate statistical indicators such as skewness and kurtosis can characterize the fault features of vibration [...] Read more.
The enhancement of weak-fault signal characteristics in rolling bearings under strong background noise interference has always been a challenging problem in rotating machinery fault diagnosis. Research indicates that multivariate statistical indicators such as skewness and kurtosis can characterize the fault features of vibration signals. However, when the fault features in the signal are weak and severely affected by noise, the characterization capability of these indicators diminishes, significantly compromising diagnostic accuracy. To address this issue, this paper proposes a novel multivariate statistical filtering (MSF) method for multi-band filtering, which can effectively screen the target fault information bands in vibration signals during bearing faults. The core idea involves constructing a multivariate matrix of fused-fault multidimensional features by integrating fault and healthy signals, and then utilizing eigenvalue distance metrics to significantly characterize the spectral differences between fault and healthy signals. This enables the selection of frequency bands containing the most informative fault features from the segmented frequency spectrum. To address the inherent in-band residual noise in the MSF-processed signals, this paper further proposes the Hilbert differential Teager energy operator (HDTEO) based on MSF to suppress the filtered in-band noise, thereby enhancing transient fault impulses more effectively. The proposed method has been validated using both public datasets and laboratory datasets. Results demonstrate its effectiveness in accurately identifying fault characteristic frequencies, even under challenging conditions such as incipient bearing faults or severely weak vibration signatures caused by strong background noise. Finally, comparative experiments confirm the superior performance of the proposed approach. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

15 pages, 2830 KiB  
Article
Decision Tree and ANOVA as Feature Selection from Vibration Signals to Improve the Diagnosis of Belt Conveyor Idlers
by João L. L. Soares, Thiago B. Costa, Geovane S. do Nascimento, Walter S. Sousa, Jullyane M. S. de Figueiredo, Danilo S. Braga, André L. A. Mesquita and Alexandre L. A. Mesquita
Signals 2025, 6(3), 42; https://doi.org/10.3390/signals6030042 - 13 Aug 2025
Viewed by 138
Abstract
This study aims to compare decision tree and Analysis of Variance (ANOVA) techniques as feature selection methods, combined with Wavelet Packet Decomposition (WPD) for feature extraction, to enhance the diagnosis of faults in belt conveyor idlers. Belt conveyors are widely used in mining [...] Read more.
This study aims to compare decision tree and Analysis of Variance (ANOVA) techniques as feature selection methods, combined with Wavelet Packet Decomposition (WPD) for feature extraction, to enhance the diagnosis of faults in belt conveyor idlers. Belt conveyors are widely used in mining for efficient transport, but idlers composed of rollers are frequently subject to failure, making continuous monitoring essential to ensure reliability. Automated diagnostic solutions using vibration signals and machine learning rely on signal processing for feature extraction, often requiring dimensionality reduction or feature selection to improve classification accuracy. Due to the limitations of traditional techniques such as Principal Component Analysis (PCA) in handling temporal variations, Decision Tree and ANOVA emerge as effective alternatives for feature selection. This framework applied to each feature selection method, and Support Vector Machine (SVM) was used as a classification technique. The diagnostic performance of each method, including the case without feature selection, was evaluated. The results showed a higher diagnostic accuracy performance for the approaches that applied the features from the decision tree and from ANOVA. The improvement in the diagnosis of roller failures with feature selection was corroborated with the hit rates of failure mode, severity level, and location of a defective roller above 93.5%. Full article
Show Figures

Figure 1

18 pages, 2645 KiB  
Article
Demonstration of a Condition Monitoring Scheme for a Locomotive Suspension System
by Xiaoyuan Liu and Adam Bevan
Machines 2025, 13(8), 719; https://doi.org/10.3390/machines13080719 - 12 Aug 2025
Viewed by 85
Abstract
A condition-based monitoring (CBM) system provides the possibility for the railway industry to guarantee reliability by executing prompt and low-cost maintenance. In this study, a simple model-based condition monitoring strategy for the railway vehicle suspension system is demonstrated. The method is based on [...] Read more.
A condition-based monitoring (CBM) system provides the possibility for the railway industry to guarantee reliability by executing prompt and low-cost maintenance. In this study, a simple model-based condition monitoring strategy for the railway vehicle suspension system is demonstrated. The method is based on a recursive least-square (RLS) algorithm regarding a deterministic parametric model. The fault detection approach for the locomotive suspension system is illustrated with three diagnostic modules. Multi-body simulation data are employed to validate the feasibility of this CBM strategy. The designed diagnostic model reveals that the suspension parameter estimates are consistent with the reference values. The corresponding demonstrator provides evidence that the monitoring system has potential applications and is suitable for further development. Full article
Show Figures

Figure 1

15 pages, 746 KiB  
Article
Consensus-Regularized Federated Learning for Superior Generalization in Wind Turbine Diagnostics
by Lan Li, Juncheng Zhou, Qiankun Peng, Quan Zhou and Haoming Zhang
Mathematics 2025, 13(16), 2570; https://doi.org/10.3390/math13162570 - 11 Aug 2025
Viewed by 231
Abstract
Ensuring the reliable operation of wind turbines is critical for the global transition to sustainable energy, yet it is challenged by faults that are difficult to detect in real-time. Traditional diagnostics rely on centralized data, which raises significant privacy and scalability concerns. To [...] Read more.
Ensuring the reliable operation of wind turbines is critical for the global transition to sustainable energy, yet it is challenged by faults that are difficult to detect in real-time. Traditional diagnostics rely on centralized data, which raises significant privacy and scalability concerns. To address these limitations, this study introduces a Consensus-Regularized Federated Learning (CR-FL) framework. This framework mathematically formalizes and mitigates the problem of “client drift” caused by heterogeneous data from different turbines by augmenting the local training objective with a proximal regularization term. This forces models to learn generalizable fault features while preserving data privacy. To validate our framework, we implemented a lightweight neural network within a federated paradigm and benchmarked it against a powerful, centralized Light Gradient Boosting Machine (LightGBM) model using real-world SCADA data. The federated training process, through its inherent constraint on local updates, acts as a practical implementation of our consensus-regularization principle. Model performance was comprehensively evaluated using accuracy, precision, F1-score, and Area Under the ROC Curve (AUC) metrics. The results demonstrate that our federated approach not only preserves privacy but also achieves superior performance in key metrics, including AUC and precision. This confirms that the regularizing effect of the federated process enables the global model to generalize better across heterogeneous data distributions than its centralized counterpart. This study provides a practical, scalable, and methodologically superior solution for fault diagnosis in wind turbine systems, paving the way for more collaborative and secure infrastructure monitoring. Full article
Show Figures

Figure 1

18 pages, 18060 KiB  
Article
A Cross-Modal Multi-Layer Feature Fusion Meta-Learning Approach for Fault Diagnosis Under Class-Imbalanced Conditions
by Haoyu Luo, Mengyu Liu, Zihao Deng, Zhe Cheng, Yi Yang, Guoji Shen, Niaoqing Hu, Hongpeng Xiao and Zhitao Xing
Actuators 2025, 14(8), 398; https://doi.org/10.3390/act14080398 - 11 Aug 2025
Viewed by 170
Abstract
In practical applications, intelligent diagnostic methods for actuator-integrated gearboxes in industrial driving systems encounter challenges such as the scarcity of fault samples and variable operating conditions, which undermine diagnostic accuracy. This paper introduces a multi-layer feature fusion meta-learning (MLFFML) approach to address fault [...] Read more.
In practical applications, intelligent diagnostic methods for actuator-integrated gearboxes in industrial driving systems encounter challenges such as the scarcity of fault samples and variable operating conditions, which undermine diagnostic accuracy. This paper introduces a multi-layer feature fusion meta-learning (MLFFML) approach to address fault diagnosis problems in cross-condition scenarios with class imbalance. First, meta-training is performed to develop a mature fault diagnosis model on the source domain, obtaining cross-domain meta-knowledge; subsequently, meta-testing is conducted on the target domain, extracting meta-features from limited fault samples and abundant healthy samples to rapidly adjust model parameters. For data augmentation, this paper proposes a frequency-domain weighted mixing (FWM) method that preserves the physical plausibility of signals while enhancing sample diversity. Regarding the feature extractor, this paper integrates shallow and deep features by replacing the first layer of the feature extraction module with a dual-stream wavelet convolution block (DWCB), which transforms actuator vibration or acoustic signals into the time-frequency space to flexibly capture fault characteristics and fuses information from both amplitude and phase aspects; following the convolutional network, an encoder layer of the Transformer network is incorporated, containing multi-head self-attention mechanisms and feedforward neural networks to comprehensively consider dependencies among different channel features, thereby achieving a larger receptive field compared to other methods for actuation system monitoring. Furthermore, this paper experimentally investigates cross-modal scenarios where vibration signals exist in the source domain while only acoustic signals are available in the target domain, specifically validating the approach on industrial actuator assemblies. Full article
Show Figures

Figure 1

24 pages, 5723 KiB  
Article
Fault Diagnosis of Rolling Bearings Under Variable Speed for Energy Conversion Systems: An ACMD and SP-DPS Clustering Approach with Traction Motor Validation
by Shunyan Peng, Enyong Xu, Yuan Zhuang, Hanqing Jian, Zhenzhen Jin and Zexian Wei
Energies 2025, 18(16), 4254; https://doi.org/10.3390/en18164254 - 11 Aug 2025
Viewed by 215
Abstract
Rolling bearing failures in rotating machinery essential to energy systems (e.g., motors, generators, or turbines) can cause downtime, energy inefficiency, and safety hazards—especially under variable speed conditions common in traction drives. Traditional diagnosis methods struggle with nonstationary signals from speed variations. In response, [...] Read more.
Rolling bearing failures in rotating machinery essential to energy systems (e.g., motors, generators, or turbines) can cause downtime, energy inefficiency, and safety hazards—especially under variable speed conditions common in traction drives. Traditional diagnosis methods struggle with nonstationary signals from speed variations. In response, there is a growing trend toward unsupervised and adaptive signal processing techniques, which offer better generalization in complex operating scenarios. This paper proposes an intelligent fault diagnosis framework combining Adaptive Chirp Mode Decomposition (ACMD)-based order tracking with a novel Shortest Paths Density Peak Search (SP-DPS) clustering algorithm. ACMD is chosen for its proven ability to extract instantaneous speed profiles from nonstationary signals, enabling angular domain resampling and quasi-stationary signal representation. SP-DPS enhances clustering robustness by incorporating global structure awareness into the analysis of statistical features in both the time and frequency domains. The method is validated using both a public bearing dataset and a custom-built metro traction motor test bench, representative of electric traction systems. The results show over 96% diagnostic accuracy under significant speed fluctuations, outperforming several state-of-the-art clustering approaches. This study presents a scalable and accurate unsupervised solution for bearing fault diagnosis, with strong potential to improve reliability, reduce maintenance costs, and prevent energy losses in critical energy conversion machinery. Full article
Show Figures

Figure 1

19 pages, 1038 KiB  
Article
Edge-Based Real-Time Fault Detection in UAV Systems via B-Spline Telemetry Reconstruction and Lightweight Hybrid AI
by Manuel J. C. S. Reis and António J. D. Reis
Sensors 2025, 25(16), 4944; https://doi.org/10.3390/s25164944 - 10 Aug 2025
Viewed by 396
Abstract
Unmanned aerial vehicles (UAVs) increasingly demand robust onboard diagnostic frameworks to ensure safe operation under irregular telemetry and mission-critical conditions. This paper presents a real-time fault detection framework for unmanned aerial vehicles (UAVs), optimized for deployment on edge devices and designed to handle [...] Read more.
Unmanned aerial vehicles (UAVs) increasingly demand robust onboard diagnostic frameworks to ensure safe operation under irregular telemetry and mission-critical conditions. This paper presents a real-time fault detection framework for unmanned aerial vehicles (UAVs), optimized for deployment on edge devices and designed to handle irregular, nonuniform telemetry. The system reconstructs raw sensor data using compactly supported B-spline interpolation, ensuring stable recovery of flight dynamics under jitter, dropouts, and asynchronous sampling. A lightweight hybrid anomaly detection module—combining a Long Short-Term Memory (LSTM) autoencoder with an Isolation Forest—analyzes both temporal patterns and statistical deviations across reconstructed signals. The full pipeline operates entirely onboard embedded platforms such as the Raspberry Pi 4 and NVIDIA Jetson Nano, with end-to-end inference latency under 50 milliseconds. Experiments using real PX4 UAV flight logs and synthetic fault injection demonstrate a detection accuracy of 93.6% and strong resilience to telemetry disruptions. These results support the feasibility of autonomous, sensor-based health monitoring in UAV systems and broader real-time cyber–physical applications. Full article
Show Figures

Figure 1

20 pages, 6192 KiB  
Article
A Data-Driven Fault Diagnosis Method for Marine Steam Turbine Condensate System Based on Deep Transfer Learning
by Yuhui Liu, Liping Chen, Duansen Shangguan and Chengcheng Yu
Machines 2025, 13(8), 708; https://doi.org/10.3390/machines13080708 - 10 Aug 2025
Viewed by 246
Abstract
Accurate fault diagnosis in marine steam turbine condensate systems is challenged by insufficient real fault samples and dynamic operational conditions. To address this limitation, DTL-DFD, a novel framework integrating digital twins (DTs) and deep transfer learning (DTL), is proposed, wherein a high-fidelity physics-constrained [...] Read more.
Accurate fault diagnosis in marine steam turbine condensate systems is challenged by insufficient real fault samples and dynamic operational conditions. To address this limitation, DTL-DFD, a novel framework integrating digital twins (DTs) and deep transfer learning (DTL), is proposed, wherein a high-fidelity physics-constrained digital twin model is constructed through the systematic injection of six diagnostic classes (1 normal + 5 faults), including insufficient circulation water flow.Through an innovative all-layer parameter initialization with a partial fine-tuning (ALPT-PF) strategy, all weights and biases from a pre-trained one-dimensional convolutional neural network (1D-CNN) were fully transferred to the target model, which was subsequently fine-tuned via a hierarchical learning rate mechanism to adapt to real-world distribution discrepancies. Experimental results demonstrate 94.34% accuracy on cross-distribution test sets with a 4.72% improvement over state-of-the-art methods, confirming significant enhancements in generalization capability and diagnostic stability under small-sample conditions with significant real data reduction, thereby providing an effective solution for the intelligent operation and maintenance of marine steam turbine systems. Full article
Show Figures

Figure 1

22 pages, 3293 KiB  
Article
Spatiotemporal-Imbalance-Aware Risk Prediction Framework for Lightning-Caused Distribution Grid Failures
by Shenqin Tang, Xin Yang, Jie Huang, Junyao Hu, Jiawu Zuo and Shuo Li
Sustainability 2025, 17(16), 7228; https://doi.org/10.3390/su17167228 - 10 Aug 2025
Viewed by 328
Abstract
Lightning strikes pose a significant threat to the reliability of power distribution networks, with cascading effects on energy sustainability and community resilience. This paper proposes a lightning disaster risk prediction model for distribution networks, designing a lightning strike hazard matrix to classify historical [...] Read more.
Lightning strikes pose a significant threat to the reliability of power distribution networks, with cascading effects on energy sustainability and community resilience. This paper proposes a lightning disaster risk prediction model for distribution networks, designing a lightning strike hazard matrix to classify historical fault records and incorporating future multi-source heterogeneous data to predict lightning-induced fault hazard levels and enhance the sustainability of grid operations. To address spatiotemporal imbalances in data distribution, we first propose diagnostic threshold settings for low-frequency elements alongside a method for calculating hazard diagnostic criteria. This approach systematically integrates high-hazard, low-frequency factors into risk analyses. Second, we introduce an adaptive weight optimization algorithm that dynamically adjusts risk factor weights by quantifying their contributions to overall system risk. This method overcomes the limitations of traditional frequency-weighted approaches, ensuring more robust hazard assessment. Experimental results demonstrate that, compared to baseline models, the proposed model achieves average improvements of 21%/8.3% in AUROC, 30.2%/47.4% in SE, and 20.5%/8.1% in CI, empirically validating its superiority in risk prediction and engineering applicability. Full article
(This article belongs to the Special Issue Disaster Prevention, Resilience and Sustainable Management)
Show Figures

Figure 1

31 pages, 7697 KiB  
Article
YConvFormer: A Lightweight and Robust Transformer for Gearbox Fault Diagnosis with Time–Frequency Fusion
by Yihang Peng, Jianjie Zhang, Songpeng Liu, Mingyang Zhang and Yichen Guo
Sensors 2025, 25(15), 4862; https://doi.org/10.3390/s25154862 - 7 Aug 2025
Viewed by 339
Abstract
This paper addresses the core contradiction in fault diagnosis of gearboxes in heavy-duty equipment, where it is challenging to achieve both lightweight and robustness in dynamic industrial environments. Current diagnostic algorithms often struggle with balancing computational efficiency and diagnostic accuracy, particularly in noisy [...] Read more.
This paper addresses the core contradiction in fault diagnosis of gearboxes in heavy-duty equipment, where it is challenging to achieve both lightweight and robustness in dynamic industrial environments. Current diagnostic algorithms often struggle with balancing computational efficiency and diagnostic accuracy, particularly in noisy and variable operating conditions. Many existing methods either rely on complex architectures that are computationally expensive or oversimplified models that lack robustness to environmental interference. A novel, lightweight, and robust diagnostic network, YConvFormer, is proposed. Firstly, a time–frequency joint input channel is introduced, which integrates time-domain waveforms and frequency-domain spectrums at the input layer. It incorporates an Efficient Channel Attention mechanism with dynamic weighting to filter noise in specific frequency bands, suppressing high-frequency noise and enhancing the complementary relationship between time–frequency features. Secondly, an axial-enhanced broadcast attention mechanism is proposed. It models long-range temporal dependencies through spatial axial modeling, expanding the receptive field of shock features, while channel axial reinforcement strengthens the interaction of harmonics across frequency bands. This mechanism refines temporal modeling with minimal computation. Finally, the YConvFormer lightweight architecture is proposed, which combines shallow feature processing with global–local modeling, significantly reducing computational load. The experimental results on the XJTU and SEU gearbox datasets show that the proposed method improves the average accuracy by 6.55% and 19.58%, respectively, compared to the best baseline model, LiteFormer. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

18 pages, 3548 KiB  
Article
A Fault Diagnosis Framework for Waterjet Propulsion Pump Based on Supervised Autoencoder and Large Language Model
by Zhihao Liu, Haisong Xiao, Tong Zhang and Gangqiang Li
Machines 2025, 13(8), 698; https://doi.org/10.3390/machines13080698 - 7 Aug 2025
Viewed by 208
Abstract
The ship waterjet propulsion system is a crucial power unit for high-performance vessels, and the operational state of its core component, the waterjet pump, is directly related to navigation safety and mission reliability. To enhance the intelligence and accuracy of pump fault diagnosis, [...] Read more.
The ship waterjet propulsion system is a crucial power unit for high-performance vessels, and the operational state of its core component, the waterjet pump, is directly related to navigation safety and mission reliability. To enhance the intelligence and accuracy of pump fault diagnosis, this paper proposes a novel diagnostic framework that integrates a supervised autoencoder (SAE) with a large language model (LLM). This framework first employs an SAE to perform task-oriented feature learning on raw vibration signals collected from the pump’s guide vane casing. By jointly optimizing reconstruction and classification losses, the SAE extracts deep features that both represent the original signal information and exhibit high discriminability for different fault classes. Subsequently, the extracted feature vectors are converted into text sequences and fed into an LLM. Leveraging the powerful sequential information processing and generalization capabilities of LLM, end-to-end fault classification is achieved through parameter-efficient fine-tuning. This approach aims to avoid the traditional dependence on manually extracted time-domain and frequency-domain features, instead guiding the feature extraction process via supervised learning to make it more task-specific. To validate the effectiveness of the proposed method, we compare it with a baseline approach that uses manually extracted features. In two experimental scenarios, direct diagnosis with full data and transfer diagnosis under limited-data, cross-condition settings, the proposed method significantly outperforms the baseline in diagnostic accuracy. It demonstrates excellent performance in automated feature extraction, diagnostic precision, and small-sample data adaptability, offering new insights for the application of large-model techniques in critical equipment health management. Full article
(This article belongs to the Special Issue Fault Diagnosis and Fault Tolerant Control in Mechanical System)
Show Figures

Figure 1

23 pages, 4024 KiB  
Article
WaveCORAL-DCCA: A Scalable Solution for Rotor Fault Diagnosis Across Operational Variabilities
by Nima Rezazadeh, Mario De Oliveira, Giuseppe Lamanna, Donato Perfetto and Alessandro De Luca
Electronics 2025, 14(15), 3146; https://doi.org/10.3390/electronics14153146 - 7 Aug 2025
Viewed by 297
Abstract
This paper presents WaveCORAL-DCCA, an unsupervised domain adaptation (UDA) framework specifically developed to address data distribution shifts and operational variabilities (OVs) in rotor fault diagnosis. The framework introduces the novel integration of discrete wavelet transformation for robust time–frequency feature extraction and an enhanced [...] Read more.
This paper presents WaveCORAL-DCCA, an unsupervised domain adaptation (UDA) framework specifically developed to address data distribution shifts and operational variabilities (OVs) in rotor fault diagnosis. The framework introduces the novel integration of discrete wavelet transformation for robust time–frequency feature extraction and an enhanced deep canonical correlation analysis (DCCA) network with correlation alignment (CORAL) loss for superior domain-invariant representation learning. This combination enables more effective alignment of source and target feature distributions without requiring any labelled data from the target domain. Comprehensive validation on both experimental and numerically simulated rotor datasets across three health conditions—i.e., normal, unbalanced, and misaligned—demonstrates that WaveCORAL-DCCA achieves an average diagnostic accuracy of 95%. Notably, it outperforms established UDA benchmarks by at least 5–17% in cross-domain scenarios. These results confirm that WaveCORAL-DCCA provides robust generalisation across machines, fault severities, and operational conditions, even with scarce target domain samples, offering a scalable and practical solution for industrial rotor fault diagnosis. Full article
Show Figures

Figure 1

Back to TopTop