Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (142)

Search Parameters:
Keywords = fatty acid distillates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1298 KiB  
Article
Evaluation of the Quality and Nutritional Value of Modified Corn Wet Distillers’ Grains Plus Solubles (mcWDGS) Preserved in Aerobic and Anaerobic Conditions
by Mateusz Roguski, Marlena Zielińska-Górska, Andrzej Radomski, Janusz Zawadzki, Marlena Gzowska, Anna Rygało-Galewska and Andrzej Łozicki
Sustainability 2025, 17(15), 7097; https://doi.org/10.3390/su17157097 - 5 Aug 2025
Abstract
To enhance the effectiveness of sustainable preservation of modified corn wet distillers’ grains plus solubles (mcWDGS), various additives were tested under aerobic and anaerobic conditions. In Experiment I, the mcWDGS was stored under aerobic conditions for 5 days at 25 °C. Treatments included [...] Read more.
To enhance the effectiveness of sustainable preservation of modified corn wet distillers’ grains plus solubles (mcWDGS), various additives were tested under aerobic and anaerobic conditions. In Experiment I, the mcWDGS was stored under aerobic conditions for 5 days at 25 °C. Treatments included different organic acids applied at 0.3% or 0.6% of fresh matter (FM). In Experiment II, the mcWDGS was ensiled anaerobically for 8 weeks at 25 °C using organic acids, a commercial acid mixture, or a microbial inoculant at 0.2% FM. In aerobic conditions, the best preservability was achieved with propionic and formic acids at 0.6% FM, as indicated by the lowest temperature, pH, and microbial counts on days 3 and 5 (p ≤ 0.01). Under anaerobic storage, the highest lactic acid concentrations were recorded in the control, citric acid, and commercial acid mixture variants (p ≤ 0.01). Acetic acid levels were highest in the control (p ≤ 0.01). The highest NH3-N content was found in the formic acid variant and the lowest in the inoculant variant (p ≤ 0.01). Aerobic stability after ensiling was greatest in the control and propionic acid groups (p ≤ 0.01). Nutritional analysis showed that the citric acid group had the highest dry matter content (p ≤ 0.01), while the control group contained the most crude protein (p ≤ 0.01) and saturated fatty acids (p ≤ 0.05). The propionic acid and commercial acid mixture variants had the highest unsaturated fatty acids (p ≤ 0.05). Antioxidant capacity was also greatest in the control (p ≤ 0.01). In conclusion, mcWDGS can be effectively preserved aerobically with 0.6% FM of propionic or formic acid, and anaerobically via ensiling, even without additives. These findings support its potential as a stable and nutritious feed ingredient. Full article
Show Figures

Figure 1

20 pages, 2822 KiB  
Article
Nanoparticle Formulation Generated from DDGS and Its Anthraquinone Synthesis Elicitation in Rubia tinctorum Hairy Roots
by Gonzalo Galaburri, Yazmín R. Kalapuj, María Perassolo, Julián Rodríguez Talou, Patricio G. Márquez, Romina J. Glisoni, Antonia Infantes-Molina, Enrique Rodríguez-Castellón and Juan M. Lázaro-Martínez
Polymers 2025, 17(15), 2021; https://doi.org/10.3390/polym17152021 - 24 Jul 2025
Viewed by 308
Abstract
A nanoparticle formulation was generated from distiller dried grains with solubles (DDGS), and its effect on the production of anthraquinones (AQs) was evaluated on Rubia tinctorum hairy roots. The DDGS material was washed with water and ethyl acetate to remove mainly the soluble [...] Read more.
A nanoparticle formulation was generated from distiller dried grains with solubles (DDGS), and its effect on the production of anthraquinones (AQs) was evaluated on Rubia tinctorum hairy roots. The DDGS material was washed with water and ethyl acetate to remove mainly the soluble organic/inorganic molecules and reduce the fat content, respectively, followed by an alkaline treatment to remove the polysaccharides. The resulting alkaline solutions were then lyophilized and redispersed in deionized water to generate a monodispersed nanoparticulate formulation (DDGS-NP) with a hydrodynamic diameter and zeta potential of 227 ± 42 nm and −53 ± 7 mV, respectively. The formulation demonstrated good colloidal stability over time, and sterilized DDGS-NPs maintained comparable physicochemical properties. The nanoparticles were enriched in protein fractions, unsaturated fatty acids, and orthophosphate anion components from DDGS, as determined by solid-state Nuclear Magnetic Resonance (NMR), X-ray photoelectron spectroscopy (XPS), organic elemental analysis (OEA), and inductively coupled plasma optical emission spectrometry (ICP-OES) techniques. The DDGS-NPs were tested at different concentrations on Rubia tinctorum hairy roots, in comparison to or in combination with methyl jasmonate (MeJ), for their capacity to induce the production of AQs. All DDGS-NP concentrations increased the production of specific AQs to 7.7 (100 mg L−1), 7.8 (200 mg L−1), and 9.3 µmol/gFW (500 mg L−1), with an extracellular AQ accumulation of 18 µM for the highest DDGS-NP concentration, in comparison with the control hairy roots (~2 µM AQ). The plant growth was not affected at any of the tested nanoparticle concentrations. Interestingly, the combination of DDGS-NPs and MeJ resulted in the highest extracellular AQ accumulation in R. tinctorum root cultures. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

12 pages, 2715 KiB  
Article
Room-Temperature Plasma Hydrogenation of Fatty Acid Methyl Esters (FAMEs)
by Benjamin Wang, Trevor Jehl, Hongtao Zhong and Mark Cappelli
Processes 2025, 13(8), 2333; https://doi.org/10.3390/pr13082333 - 23 Jul 2025
Viewed by 277
Abstract
The increasing demand for sustainable energy has spurred the exploration of advanced technologies for biodiesel production. This paper investigates the use of Dielectric Barrier Discharge (DBD)-generated low-temperature plasmas to enhance the conversion of fatty acid methyl esters (FAMEs) into hydrogenated fatty acid methyl [...] Read more.
The increasing demand for sustainable energy has spurred the exploration of advanced technologies for biodiesel production. This paper investigates the use of Dielectric Barrier Discharge (DBD)-generated low-temperature plasmas to enhance the conversion of fatty acid methyl esters (FAMEs) into hydrogenated fatty acid methyl esters (H-FAMEs) and other high-value hydrocarbons. A key mechanistic advance is achieved via in situ distillation: at the reactor temperature, unsaturated C18 and C20 FAMEs remain liquid due to their low melting points, while the corresponding saturated C18:0 and C20:0 FAMEs (with melting points of approximately 37–39 °C and 46–47 °C, respectively) solidify and deposit on a glass substrate. This phase separation continuously exposes fresh unsaturated FAME to the plasma, driving further hydrogenation and thereby delivering high overall conversion efficiency. The non-thermal, energy-efficient nature of DBD plasmas offers a promising alternative to conventional high-pressure, high-temperature methods; here, we evaluate the process efficiency, product selectivity, and scalability of this room-temperature, atmospheric-pressure approach and discuss its potential for sustainable fuel-reforming applications. Full article
(This article belongs to the Special Issue Plasma Science and Plasma-Assisted Applications)
Show Figures

Figure 1

25 pages, 2029 KiB  
Article
Germination Enhances Phytochemical Profiles of Perilla Seeds and Promotes Hair Growth via 5α-Reductase Inhibition and Growth Factor Pathways
by Anurak Muangsanguan, Warintorn Ruksiriwanich, Pichchapa Linsaenkart, Pipat Tangjaidee, Korawan Sringarm, Chaiwat Arjin, Pornchai Rachtanapun, Sarana Rose Sommano, Korawit Chaisu, Apinya Satsook and Juan Manuel Castagnini
Biology 2025, 14(7), 889; https://doi.org/10.3390/biology14070889 - 20 Jul 2025
Viewed by 509
Abstract
Seed germination is recognized for enhancing the accumulation of bioactive compounds. Perilla frutescens (L.) Britt., commonly known as perilla seed, is rich in fatty acids that may be beneficial for anti-hair loss. This study investigated the hair regeneration potential of perilla seed extracts—non-germinated [...] Read more.
Seed germination is recognized for enhancing the accumulation of bioactive compounds. Perilla frutescens (L.) Britt., commonly known as perilla seed, is rich in fatty acids that may be beneficial for anti-hair loss. This study investigated the hair regeneration potential of perilla seed extracts—non-germinated (NG-PS) and germinated in distilled water (0 ppm selenium; G0-PS), and germinated with 80 ppm selenium (G80-PS)—obtained from supercritical fluid extraction (SFE) and screw compression (SC). SFE extracts exhibited significantly higher levels of polyphenols, tocopherols, and fatty acids compared to SC extracts. Among the germinated groups, G0-PS showed the highest bioactive compound content and antioxidant capacity. Remarkably, treatment with SFE-G0-PS led to a significant increase in the proliferation and migration of hair follicle cells, reaching 147.21 ± 2.11% (p < 0.05), and resulted in complete wound closure. In addition, its antioxidant and anti-inflammatory properties were reflected by a marked scavenging effect on TBARS (59.62 ± 0.66% of control) and suppressed nitrite amounts (0.44 ± 0.01 µM). Moreover, SFE-G0-PS markedly suppressed SRD5A1-3 gene expression—key regulators in androgenetic alopecia—in both DU-145 and HFDPCs, with approximately 2-fold and 1.5-fold greater inhibition compared to finasteride and minoxidil, respectively. Simultaneously, it upregulated the expression of hair growth-related genes, including CTNNB1, SHH, SMO, GLI1, and VEGF, by approximately 1.5-fold, demonstrating stronger activation than minoxidil. These findings suggest the potential of SFE-G0-PS as a natural therapeutic agent for promoting hair growth and preventing hair loss. Full article
Show Figures

Figure 1

18 pages, 1707 KiB  
Article
Effects of Low-Protein Diet Supplemented with Fermented Feed on Meat Quality, Fatty Acid Composition, and Gut Microbiota in Growing–Fattening Pigs
by Qidong Zhu, Xiaorong Zhou, Dingbiao Long, Laifu Leng, Rong Xiao, Renli Qi, Jing Wang, Xiaoyu Qiu and Qi Wang
Agriculture 2025, 15(13), 1457; https://doi.org/10.3390/agriculture15131457 - 6 Jul 2025
Viewed by 457
Abstract
Fermented feed has considerable potential as a high-quality protein source in animal production. This research aimed to examine the effects of a low-protein (LP) diet, supplemented with fermented feed, on the meat quality and intestinal health of growing–fattening pigs. The pigs were randomly [...] Read more.
Fermented feed has considerable potential as a high-quality protein source in animal production. This research aimed to examine the effects of a low-protein (LP) diet, supplemented with fermented feed, on the meat quality and intestinal health of growing–fattening pigs. The pigs were randomly divided into three groups, and a total of 72 growing–fattening pigs were subjected to the experiment. They were fed the control (CON) diet, LP diet, and LP diet supplemented with fermented rapeseed meals and fermented distiller’s grains (FLP), respectively. The results indicated that the FLP diet altered the structure of the intestinal microbiota and regulated the composition of unsaturated fatty acids in the longissimus dorsi. Furthermore, the FLP diet upregulated the expression of genes associated with myosin heavy chain isoforms (p < 0.05) and modified the content of short-chain fatty acids in the intestines (p < 0.05). In summary, the addition of fermented distiller’s grains (FDGs) and fermented rapeseed meals (FRMs) to the LP diet enhanced fatty acid metabolism and intestinal barrier function in growing–fattening pigs. Full article
(This article belongs to the Special Issue Assessment of Nutritional Value of Animal Feed Resources)
Show Figures

Figure 1

15 pages, 270 KiB  
Article
Performance, Metabolism, and Economic Implications of Replacing Soybean Meal with Dried Distillers Grains with Solubles in Feedlot Cattle Diets
by Andrei L. R. Brunetto, Guilherme L. Deolindo, Ana Luiza de F. dos Santos, Luisa Nora, Maksuel Gatto de Vitt, Renato S. de Jesus, Bruna Klein, Luiz Eduardo Lobo e Silva, Roger Wagner, Gilberto V. Kozloski and Aleksandro S. da Silva
Fermentation 2025, 11(7), 363; https://doi.org/10.3390/fermentation11070363 - 23 Jun 2025
Viewed by 617
Abstract
The growing demand for biofuels, especially ethanol produced from corn, has driven the production of co-products such as dried distillers grains with solubles (DDGS). With a high protein content (around 30%), fiber, and minerals, DDGS presents an economical alternative for animal nutrition, replacing [...] Read more.
The growing demand for biofuels, especially ethanol produced from corn, has driven the production of co-products such as dried distillers grains with solubles (DDGS). With a high protein content (around 30%), fiber, and minerals, DDGS presents an economical alternative for animal nutrition, replacing traditional sources like soybean meal while maintaining productive performance and reducing costs. This study evaluated the total replacement of soybean meal with DDGS in the diet of confined Holstein cattle, focusing on weight gain, feed intake, digestibility, feed efficiency, animal health, meat quality, and economic viability. The 24 animals received diets with 80% concentrate, containing either DDGS or soybean meal, and no significant differences were observed in terms of body weight (p = 0.92), feed intake (p = 0.98), or feed efficiency (p = 0.97) between the two treatments. The average daily gain was 1.25 and 1.28 kg for cattle in the DDGS and soybean meal groups, respectively (p = 0.92). Regarding metabolic and digestive parameters, no relevant changes were found in blood levels, except for higher serum cholesterol (p = 0.03) levels in animals fed DDGS. The digestibility of neutral detergent fiber (NDF) (p = 0.03) and acid detergent fiber (ADF) (p = 0.05) was lower in the DDGS group, while the digestibility of ether extract was higher (p = 0.02). Rumen fluid analysis revealed an increase in the production of short-chain fatty acids (p = 0.01), such as acetic and butyric acids (p = 0.01), in the DDG-fed animals. In terms of meat quality, animals fed DDGS produced meat with lower levels of saturated fatty acids (SFA) (p = 0.05) and higher levels of unsaturated fatty acids (UFA) (p = 0.02), especially oleic acid (p = 0.05). This resulted in a healthier lipid profile, with a higher UFA/SFA ratio (p = 0.01). In terms of economic viability, DDGS-based diets were 10.5% cheaper, reducing the cost of production per animal by 7.67%. Profitability increased by 110% with DDGS compared to soybean meal, despite the high transportation costs. Therefore, replacing soybean meal with DDGS is an efficient and economical alternative for feeding confined cattle, maintaining zootechnical performance, increasing meat lipid content and improving fatty acid profile, and promoting higher profitability. This alternative is particularly advantageous in regions with easy access to the product. Full article
28 pages, 6777 KiB  
Article
Upgrading/Deacidification of Biofuels (Gasoline, Kerosene, and Diesel-like Hydrocarbons) by Adsorption Using Activated Red-Mud-Based Adsorbents
by Nélio Teixeira Machado, Karen Marcela Barros da Costa, Silvio Alex Pereira da Mota, Luiz Eduardo Pizarro Borges and Andréia de Andrade Mancio da Mota
Energies 2025, 18(13), 3250; https://doi.org/10.3390/en18133250 - 21 Jun 2025
Viewed by 292
Abstract
This study explored the adsorption of carboxylic acids, especially free fatty acids (FFAs), present in biofuel (distilled fractions of bio-oil such as gasoline-like hydrocarbons, kerosene-like hydrocarbons, and diesel-like hydrocarbons) using red-mud-based adsorbents. The red mud was thermally activated at 40 °C and 600 [...] Read more.
This study explored the adsorption of carboxylic acids, especially free fatty acids (FFAs), present in biofuel (distilled fractions of bio-oil such as gasoline-like hydrocarbons, kerosene-like hydrocarbons, and diesel-like hydrocarbons) using red-mud-based adsorbents. The red mud was thermally activated at 40 °C and 600 °C and chemically activated with 0.25M, 1M, and 2M HCl. Analytical techniques were used to characterize the adsorbents’ properties. At the same time, the study examined factors like feed type, adsorbents, FFA contents, adsorbent percentage, activation temperature, acid solution concentration, and contact time to assess adsorption efficiency. The characterization results indicated that chemical activation with 0.25M HCl significantly increased the surface area to 84.3290 m2/g, surpassing that of the thermally activated samples (35.2450 m2/g at 400 °C). Adsorption experiments demonstrated that all chemically activated samples, with 5% adsorbent, adsorbed over 2000 mg of FFAs per gram of adsorbent, with CARM-1M HCl achieving 100% removal of acids from gasoline-like hydrocarbons. Kinetic modeling showed that the pseudo-second-order model best represented the adsorption data, as evidenced by high R2 values and close agreement between the experimental and calculated qe values. Therefore, adsorption with chemically activated red mud efficiently deacidifies biofuels, providing a cost-effective and promising approach for their upgrading. Full article
(This article belongs to the Special Issue Advances in Bioenergy and Waste-to-Energy Technologies)
Show Figures

Figure 1

26 pages, 589 KiB  
Review
Strategies for Efficient Utilization of Corn Distillers Dried Grains with Solubles in Diets of Pigs: A Review
by Chunsheng Wang, Xinru Huang, Xue Liu, Ruixue Wang, Jianping Li, Qingwei Meng and Anshan Shan
Animals 2025, 15(12), 1727; https://doi.org/10.3390/ani15121727 - 11 Jun 2025
Viewed by 1733
Abstract
With the increasing demand for ethanol fuel, corn distillers dried grains with solubles (DDGS) production is increasing annually. Current global ethanol output is approximately 120–130 billion liters annually, of which bioethanol constitutes 90–95% of total production. Corn DDGS is widely used as a [...] Read more.
With the increasing demand for ethanol fuel, corn distillers dried grains with solubles (DDGS) production is increasing annually. Current global ethanol output is approximately 120–130 billion liters annually, of which bioethanol constitutes 90–95% of total production. Corn DDGS is widely used as a feed ingredient for pigs due to its low cost and crude protein content ranging from 19% to 34%. However, corn DDGS is not effectively utilized because of factors such as raw material sources and inadequate drying processes, and a large portion of it is wasted and lost. It has become a difficult challenge to use DDGS in pig diets because of its weaknesses, including being rich in fiber and polyunsaturated fatty acids, which can lead to decreases in growth performance, feed conversion, and the pork shelf life of pigs. In recent years, researchers focusing on ways to improve the effective utility of corn DDGS in pig diets have made some progress. In this study, we review the nutritional characteristics of corn DDGS; the limiting factors in pig production, such as the higher concentration of non-starch polysaccharides, linoleic acid, and zein in corn DDGS; and the current improvement measures being taken to provide a reference for the improved utilization of corn DDGS resources in the diets of pigs. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Graphical abstract

16 pages, 475 KiB  
Article
Effects of Dried Distillers Grains in Supplements for Beef Cows During Late Gestation on Cow–Calf Performance and Metabolic Status
by Johnnatan Castro Cabral Gonçalves, Jean Marcelo Albuquerque, Edinael Rodrigues de Almeida, Luanna Carla Coelho, José Augusto Moura Godinho, Lilian Yukie Pacheco Toma, Matheus Fellipe de Lana Ferreira, Luciana Navajas Rennó, Cláudia Batista Sampaio, Edenio Detmann and Sidnei Antônio Lopes
Animals 2025, 15(12), 1698; https://doi.org/10.3390/ani15121698 - 8 Jun 2025
Viewed by 740
Abstract
Forty multiparous Nellore cows, with an average body weight, body condition score, and gestation days of 533 ± 32 kg, 5.7 ± 0.4 points, and 198 days, respectively, were managed under continuous grazing on a Urochloa decumbens pasture and either received or did [...] Read more.
Forty multiparous Nellore cows, with an average body weight, body condition score, and gestation days of 533 ± 32 kg, 5.7 ± 0.4 points, and 198 days, respectively, were managed under continuous grazing on a Urochloa decumbens pasture and either received or did not receive 1 kg/day of supplement varying in the levels of inclusion of dried distillers grains (DDG) (Control, 0% DDG, 42% DDG, or 84% DDG) during the last trimester of gestation. The objective was to evaluate the effects of prepartum DDG supplementation on performance, reproduction, fetal development, and calf performance. A quadratic effect of supplementation on BW variation pre- and postpartum was observed (p < 0.05), with cows treated with 42% DDG showing higher BW gain prepartum and low BW loss postpartum. Cows supplemented with 42% DDG had lower levels of non-esterified fatty acids and β-hydroxybutyrate prepartum (p < 0.05). However, body weight-related metrics, such as condition score, carcass traits, and metabolic indicators, varied only by measurement day (p < 0.05). No effect of supplementation was observed on fetal development, calf metabolic profile, milk yield, or postnatal calf performance (p > 0.05). It is recommended to include up to 42% DDG in supplements for beef cows during late gestation grazing on low-quality tropical forage conditions. Full article
Show Figures

Figure 1

25 pages, 23822 KiB  
Article
Gas Chromatography/Mass Spectrometry Chemical Profiling of Volatile Compounds from Cranberry Plant Byproducts as Potential Antibacterials, Antifungals, and Antioxidants
by Martin Aborah, Frank Scarano and Catherine Neto
Molecules 2025, 30(9), 2047; https://doi.org/10.3390/molecules30092047 - 4 May 2025
Viewed by 727
Abstract
The increasing resistance of microorganisms to currently used antimicrobials requires the urgent development of new effective treatments. Plant-based natural products can be an alternative solution. The aerial plant parts of the cranberry (Vaccinium macrocarpon) present a potential new source of antimicrobial [...] Read more.
The increasing resistance of microorganisms to currently used antimicrobials requires the urgent development of new effective treatments. Plant-based natural products can be an alternative solution. The aerial plant parts of the cranberry (Vaccinium macrocarpon) present a potential new source of antimicrobial secondary metabolites. Volatile essential oils were extracted from Stevens, Early Black, and Mullica Queen variety plants by steam distillation (SD) and the Clevenger method (CM), and their profiles were characterized by GC-MS. The extracts and two identified constituents, cinnamaldehyde and terpineol, were screened by the disc diffusion assay against Gram-positive B. cereus ATCC 11778 and S. aureus ATCC 25923 and Gram-negative bacteria E. coli ATCC 25922, P. aeruginosa ATCC 27853, and C. albicans ATCC 14053. Radical scavenging antioxidant activity was also determined using the DPPH assay. The CM extracts were rich in fatty acids, sesquiterpenes, and diterpenes, whereas the SD extracts contained more aldehydes, monoterpenes, and phenylpropanoids. All volatile extracts showed promising antioxidant activity; leaf extract activity was significantly higher than the vine (p < 0.05). The CM leaf and vine extracts exhibited antimicrobial activity against B. cereus, S. aureus, E. coli, and C. albicans compared to the SD, and the leaf extracts were more effective than the vine extracts. Individual constituents of leaf and vine extracts, cinnamaldehyde and α-terpineol, also showed antimicrobial activity against these organisms. The active constituents of the CM extracts are yet to be identified. A multivariate analysis revealed a particular pattern of inhibition of the tested organisms. Based on our results, cranberry volatile extracts have potential for future valorization as antibacterials, antifungals, and antioxidants. Full article
Show Figures

Figure 1

24 pages, 727 KiB  
Article
Former Food and Agro-Industrial By-Products in Dairy Cow Diets: Effects on Milk Quality and Cheese Production
by Ludovica Maria Eugenia Mammi, Francesca Ghiaccio, Elisa Benini, Carla Giuditta Vecchiato, Isa Fusaro, Giovanni Buonaiuto, Damiano Cavallini, Alberto Palmonari, Giorgia Canestrari, Riccardo Colleluori and Andrea Formigoni
Animals 2025, 15(8), 1113; https://doi.org/10.3390/ani15081113 - 11 Apr 2025
Viewed by 563
Abstract
The use of former foodstuff and by-products in cow diets could improve the environmental sustainability of livestock. However, knowledge about the effects of these feeds in ruminant diets on the quality of dairy products is lacking. This study investigated the effects of integrating [...] Read more.
The use of former foodstuff and by-products in cow diets could improve the environmental sustainability of livestock. However, knowledge about the effects of these feeds in ruminant diets on the quality of dairy products is lacking. This study investigated the effects of integrating wheat distillers’ grain with solubles (WDGS) and a former foodstuff product (FFP) into the diet of dairy cows on milk and cheese quality. The environmental impact of the two feeding systems has been evaluated by LCA. A double crossover design was set up with 84 Holstein cows, alternating a control diet and a circular one. In the circular diet, traditional feeds were partially replaced with 4 kg/d WDGS and 3 kg/d FFP. The results showed no effects on dry matter intake and milk yield, while fiber digestibility improved. A reduction in the milk fat content and a modification of the fatty acid profile of milk and cheese were observed. Conversely, cheese yield, composition, and sensory attributes were not affected. The environmental impact of the diet was significantly reduced in terms of land occupation, net fresh water, and global warming potential. These findings suggest that these feeds can be safely included in dairy cow diets. This approach could significantly contribute to reducing greenhouse gas emissions, enhancing the sustainability of the dairy system. Full article
Show Figures

Figure 1

20 pages, 1348 KiB  
Article
Recovery of Natural Hypoglycemic Compounds from Industrial Distillation Wastewater of Lamiaceae
by Claudia Sciacca, Nunzio Cardullo, Martina Savitteri, Maria Gaetana Giovanna Pittalà, Luana Pulvirenti, Edoardo Marco Napoli and Vera Muccilli
Molecules 2025, 30(6), 1391; https://doi.org/10.3390/molecules30061391 - 20 Mar 2025
Viewed by 508
Abstract
The food industry generates the largest number of valuable by-products. The recovery of compounds such as fatty acids and polyphenols with notorious biological properties from biowaste is a new challenge in the circular economy scenario, as they represent value-added starting materials for the [...] Read more.
The food industry generates the largest number of valuable by-products. The recovery of compounds such as fatty acids and polyphenols with notorious biological properties from biowaste is a new challenge in the circular economy scenario, as they represent value-added starting materials for the preparation of functional foods, food supplements, cosmetics and over-the-counter drugs. Less commonly explored are industrial wastewaters, which return to the nearby water streams without adequate treatment. Distillation wastewater (DWW) from the essential oils or agro-food industries may represent a valuable source of bioactive compounds to be valorized. In this work, DWW from rosemary was treated with different resins through dynamic and static adsorption/desorption approaches, for the recovery of phenolic compounds including rosmarinic acid. The most effective methodology, selected according to total phenolic and rosmarinic acid contents, as well as antioxidant activity evaluation, was applied to sage, thyme and oregano DWWs. The procedure provides several advantages compared with conventional separation processes, as it involves the lower consumption of reagents/solvents, low operational costs, ease of handling, and simplicity of scale-up. The results of this work highlight a fast and sustainable procedure for the recovery of rosmarinic acid and other phenolics (caffeic acid derivatives and flavonoid glycosides) from DWWS, thus affording a fraction with antioxidant and hypoglycemic activities. Full article
Show Figures

Figure 1

17 pages, 1113 KiB  
Article
Influence of a Combination of Glycerol Polyethylene Glycol Ricinoleate and Bi-Distilled Oleic Acid in Powder Form on Growth Performance, Nutrient Digestibility, Excreta Nitrogen and Liver Fatty Acid Profile of Broilers Fed Reduced-Energy Diets
by Luca Marchetti, Raffaella Rebucci, Caterina Piantoni, Paola Antonia Corsetto, Angela Maria Rizzo, Haijun Zhang, Xianren Jiang and Valentino Bontempo
Animals 2025, 15(6), 827; https://doi.org/10.3390/ani15060827 - 13 Mar 2025
Viewed by 632
Abstract
The present study aimed to evaluate the effects of an emulsifier in powder form composed of glycerol polyethylene glycol ricinoleate and bi-distilled oleic acid on the growth performance, nutrient digestibility, excreta nitrogen and liver fatty acid profile of broilers fed reduced-energy diets. A [...] Read more.
The present study aimed to evaluate the effects of an emulsifier in powder form composed of glycerol polyethylene glycol ricinoleate and bi-distilled oleic acid on the growth performance, nutrient digestibility, excreta nitrogen and liver fatty acid profile of broilers fed reduced-energy diets. A total of 720 male ROSS 308 chicks were divided into four homogeneous groups (9 pens/20 chicks per group): positive control (PC), negative control (NC, −70 kcal/kg of AME), EMUL1 and EMUL2 fed an NC diet + 250 and 500 mg/kg of emulsifier. Body weight, average daily gain, average daily feed intake and feed conversion ratio (FCR) were evaluated. Excreta were collected at 24 and 42 d directly from polyethylene trays and pooled to determine the apparent total tract digestibility of dry matter, crude protein, ether extract and gross energy. The apparent metabolizable energy (AME, AMEn) and nitrogen ammonia in excreta were determined. Performances were improved in EMUL1 and EMUL2 during the trial (p < 0.05). The digestibility of nutrients in EMUL1 and EMUL2 was increased in comparison to NC and PC (p < 0.05). Excreta nitrogen ammonia was reduced by EMUL2 at 42 d (p < 0.05). Glycerol polyethylene glycol ricinoleate and bi-distilled oleic acid in powder form modulated liver fatty acid profiles, enhancing oleic acid content in EMUL1 chickens (p < 0.05), while γ-linolenic acid and arachidonic acid were enhanced in EMUL2 (p < 0.05). Based on the findings, it is recommended to administer solidified glycerol polyethylene glycol ricinoleate and bi-distilled oleic acid in diets with reduced energy content for appreciable advantages in terms of growth through higher nutrient digestibility and better hepatic fatty acid composition. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

19 pages, 609 KiB  
Article
Promoting Circular Economy by Leveraging Annatto Byproducts from Bixa orellana L. into Sustainable Antioxidant Food Packaging
by Vanilda Aparecida Soares de Arruda-Peixoto, Paula Vera Estacho, Magdalena Wrona, Paulo Roberto Nogueira Carvalho, Roseli Aparecida Ferrari, Cristina Nerin and Elena Canellas
Foods 2025, 14(4), 704; https://doi.org/10.3390/foods14040704 - 19 Feb 2025
Cited by 1 | Viewed by 1271
Abstract
Annatto (Bixa orellana L.) is cultivated primarily for the extraction of bixin, a natural dye with substantial industrial importance, resulting in the generation of large quantities of residues that remain underutilized. This study provides the first in-depth characterization of annatto byproducts derived [...] Read more.
Annatto (Bixa orellana L.) is cultivated primarily for the extraction of bixin, a natural dye with substantial industrial importance, resulting in the generation of large quantities of residues that remain underutilized. This study provides the first in-depth characterization of annatto byproducts derived through molecular distillation, highlighting their untapped potential for sustainable innovation. Employing state-of-the-art techniques—HS-SPME-GC-MS for volatile compounds and UPLC-MS/QTOF for non-volatile ones—the research identified a remarkable array of bioactive constituents. Over thirty pharmacologically significant compounds were unveiled, many appearing for the first time in annatto byproducts. Notable discoveries include diterpenoid alcohols, oleamide, δ-tocotrienol, n-alkanes, fatty acid methyl esters, and springene among the volatiles. Among the non-volatiles, groundbreaking identifications such as dihydroactinidiolide, dihydrochalcone, 3-phenyl propiofenone, novel tetracosan amides, halisphingosine A, kauranetriols, and phytoene derivatives redefine the chemical profile of this residue. Further amplifying the value of these findings, the study successfully transformed these byproducts into innovative antioxidant packaging materials, demonstrating their high potential for food preservation and sustainable applications. The packaging films, developed from samples devoid of vegetable oil, exhibited robust antioxidant properties, offering a compelling solution to extend shelf life and reduce spoilage. This work underscores the importance of revalorizing agricultural residues like annatto byproducts, turning waste into high-value resources that align with the principles of the circular economy. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

19 pages, 969 KiB  
Article
Animal Fats and Vegetable Oils—Promising Resources for Obtaining Effective Corrosion Inhibitors for Oil Refinery Equipment
by Serhiy Pyshyev, Oleksandr Romanchuk, Petro Topilnytskyy, Viktoriya Romanchuk, Denis Miroshnichenko, Yurii Rohovyi, Hennadii Omelianchuk and Yurii Parkhomov
Resources 2025, 14(2), 30; https://doi.org/10.3390/resources14020030 - 10 Feb 2025
Cited by 1 | Viewed by 2330
Abstract
The equipment of refineries and oil production facilities is subject to corrosion due to the supply of crude oils with a high content of mineralized water. The use of inhibitors is one of the most common corrosion protection methods. However, increasing requirements of [...] Read more.
The equipment of refineries and oil production facilities is subject to corrosion due to the supply of crude oils with a high content of mineralized water. The use of inhibitors is one of the most common corrosion protection methods. However, increasing requirements of environmental standards give impetus to developing new types of corrosion inhibitors from natural raw materials. The article deals with the synthesis conditions of new corrosion inhibitors (CIs) produced from distilled higher acids of beef fat (DHFAs) or vegetable oils (VO), as well as research on the protective effect of the synthesized corrosion inhibitors compared with industrial inhibitors (5 samples). The gravimetric method studied the protective effect in a solution of salts and jet fuel using a St20 steel plate. At 50 °C and a CIs content of 100 ppm, the protective effect of corrosion inhibitors based on VO and triethanolamine was 9.7–75.6%. Under similar conditions, CIs obtained from DHFAs and diaminoethyl exhibited a protective effect of 81.6–94.1%. When DHFAs and diethanolamine were used to synthesize CIs, the protective effect was 93.0–95.6%. CI synthesized at 130 °C and a DHFAs: diethanolamine ratio of 72:28 showed a 99.2% protective effect at 50 °C and a CI content of 200 ppm, which was higher or equal to the impact of using industrial inhibitors (91.6–99.5%). The results prove the possibility of alternative use of animal fats and waste from their production as new resources for obtaining highly effective equipment corrosion inhibitors. Using alternative inexpensive raw materials (fats, vegetable oils, waste from their output) to obtain CIs will improve the economic performance of inhibitor production. In addition, at least the fatty (oil) part of organic CIs is biodegradable and will not harm the environment. Full article
(This article belongs to the Special Issue Alternative Use of Biological Resources)
Show Figures

Figure 1

Back to TopTop