Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (58,307)

Search Parameters:
Keywords = facilitators

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 1194 KiB  
Review
Transforming Data Annotation with AI Agents: A Review of Architectures, Reasoning, Applications, and Impact
by Md Monjurul Karim, Sangeen Khan, Dong Hoang Van, Xinyue Liu, Chunhui Wang and Qiang Qu
Future Internet 2025, 17(8), 353; https://doi.org/10.3390/fi17080353 (registering DOI) - 2 Aug 2025
Abstract
Data annotation serves as a critical foundation for artificial intelligence (AI) and machine learning (ML). Recently, AI agents powered by large language models (LLMs) have emerged as effective solutions to longstanding challenges in data annotation, such as scalability, consistency, cost, and limitations in [...] Read more.
Data annotation serves as a critical foundation for artificial intelligence (AI) and machine learning (ML). Recently, AI agents powered by large language models (LLMs) have emerged as effective solutions to longstanding challenges in data annotation, such as scalability, consistency, cost, and limitations in domain expertise. These agents facilitate intelligent automation and adaptive decision-making, thereby enhancing the efficiency and reliability of annotation workflows across various fields. Despite the growing interest in this area, a systematic understanding of the role and capabilities of AI agents in annotation is still underexplored. This paper seeks to fill that gap by providing a comprehensive review of how LLM-driven agents support advanced reasoning strategies, adaptive learning, and collaborative annotation efforts. We analyze agent architectures, integration patterns within workflows, and evaluation methods, along with real-world applications in sectors such as healthcare, finance, technology, and media. Furthermore, we evaluate current tools and platforms that support agent-based annotation, addressing key challenges such as quality assurance, bias mitigation, transparency, and scalability. Lastly, we outline future research directions, highlighting the importance of federated learning, cross-modal reasoning, and responsible system design to advance the development of next-generation annotation ecosystems. Full article
Show Figures

Figure 1

14 pages, 2315 KiB  
Communication
Accurate Wideband RCS Estimation from Limited Field Data Using Infinitesimal Dipole Modeling with Compressive Sensing
by Jeong-Wan Lee, Ye Chan Jung and Sung-Jun Yang
Sensors 2025, 25(15), 4771; https://doi.org/10.3390/s25154771 (registering DOI) - 2 Aug 2025
Abstract
This communication presents an accurate and computationally efficient approach for wideband radar cross-section (RCS) estimation and scattering point reconstruction using infinitesimal dipole modeling (IDM) with compressive sensing. The proposed method eliminates the need for field sampling at numerous frequency points across the wideband [...] Read more.
This communication presents an accurate and computationally efficient approach for wideband radar cross-section (RCS) estimation and scattering point reconstruction using infinitesimal dipole modeling (IDM) with compressive sensing. The proposed method eliminates the need for field sampling at numerous frequency points across the wideband range through Green’s function adjustment. Additionally, compressive sensing is employed for induced current calculation to reduce both frequency and angular sampling requirements. Numerical validation demonstrates that the method achieves a 50% reduction in field sample data and an 82.3% reduction in IDM processing time while maintaining comparable accuracy through Green’s function adjustment. Furthermore, compared to approaches without compressive sensing, the method shows a 55.1% and a 75.5% reduction in error in averaged RCS for VV-pol and HH-pol, respectively. The proposed method facilitates efficient wideband RCS estimation of various targets while significantly reducing measurement complexity and computational cost. Full article
(This article belongs to the Section Sensing and Imaging)
10 pages, 1191 KiB  
Article
RNA Sequencing on Muscle Biopsies from Exertional Rhabdomyolysis Patients Revealed Down-Regulation of Mitochondrial Function and Enhancement of Extracellular Matrix Composition
by Mingqiang Ren, Luke P. Michaelson, Ognoon Mungunsukh, Peter Bedocs, Liam Friel, Kristen Cofer, Carolyn E. Dartt, Nyamkhishig Sambuughin and Francis G. O’Connor
Genes 2025, 16(8), 930; https://doi.org/10.3390/genes16080930 (registering DOI) - 2 Aug 2025
Abstract
Background/Objective: Exertional rhabdomyolysis (ER) is primarily driven by mechanical stress on muscles during strenuous or unaccustomed exercise, often exacerbated by environmental factors like heat and dehydration. While the general cellular pathway involving energy depletion and calcium overload is understood in horse ER models, [...] Read more.
Background/Objective: Exertional rhabdomyolysis (ER) is primarily driven by mechanical stress on muscles during strenuous or unaccustomed exercise, often exacerbated by environmental factors like heat and dehydration. While the general cellular pathway involving energy depletion and calcium overload is understood in horse ER models, the underlying mechanisms specific to the ER are not universally known within humans. This study aimed to evaluate whether patients with ER exhibited transcriptional signatures that were significantly different from those of healthy individuals. Methods: This study utilized RNA sequencing on skeletal muscle samples from 19 human patients with ER history, collected at a minimum of six months after the most recent ER event, and eight healthy controls to investigate the transcriptomic landscape of ER. To identify any alterations in biological processes between the case and control groups, functional pathway analyses were conducted. Results: Functional pathway enrichment analyses of differentially expressed genes revealed strong suppression of mitochondrial function. This suppression included the “aerobic electron transport chain” and “oxidative phosphorylation” pathways, indicating impaired energy production. Conversely, there was an upregulation of genes associated with adhesion and extracellular matrix-related pathways, indicating active restoration of muscle function in ER cases. Conclusions: The study demonstrated that muscle tissue exhibited signs of suppressed mitochondrial function and increased extracellular matrix development. Both of these facilitate muscle recovery within several months after an ER episode. Full article
Show Figures

Figure 1

14 pages, 265 KiB  
Article
Bovine Leptospirosis: Serology, Isolation, and Risk Factors in Dairy Farms of La Laguna, Mexico
by Alejandra María Pescador-Gutiérrez, Jesús Francisco Chávez-Sánchez, Lucio Galaviz-Silva, Juan José Zarate-Ramos, José Pablo Villarreal-Villarreal, Sergio Eduardo Bernal-García, Uziel Castillo-Velázquez, Rubén Cervantes-Vega and Ramiro Avalos-Ramirez
Life 2025, 15(8), 1224; https://doi.org/10.3390/life15081224 (registering DOI) - 2 Aug 2025
Abstract
Leptospirosis is a globally significant zoonosis affecting animal health, productivity, and the environment. While typically associated with tropical climates, its persistence in semi-arid regions such as La Laguna, Mexico—characterized by low humidity, high temperatures, and limited water sources—remains poorly understood. Although these adverse [...] Read more.
Leptospirosis is a globally significant zoonosis affecting animal health, productivity, and the environment. While typically associated with tropical climates, its persistence in semi-arid regions such as La Laguna, Mexico—characterized by low humidity, high temperatures, and limited water sources—remains poorly understood. Although these adverse environmental conditions theoretically limit the survival of Leptospira, high livestock density and synanthropic reservoirs (e.g., rodents) may compensate, facilitating transmission. In this cross-sectional study, blood sera from 445 dairy cows (28 herds: 12 intensive [MI], 16 semi-intensive [MSI] systems) were analyzed via microscopic agglutination testing (MAT) against 10 pathogenic serovars. Urine samples were cultured for active Leptospira detection. Risk factors were assessed through epidemiological surveys and multivariable analysis. This study revealed an overall apparent seroprevalence of 27.0% (95% CI: 22.8–31.1), with significantly higher rates in MSI (54.1%) versus MI (12.2%) herds (p < 0.001) and an estimated true seroprevalence of 56.3% (95% CI: 50.2–62.1) in MSI and 13.1% (95% CI: 8.5–18.7) in MI herds (p < 0.001). The Sejroe serogroup was isolated from urine in both systems, confirming active circulation. In MI herds, rodent presence (OR: 3.6; 95% CI: 1.6–7.9) was identified as a risk factor for Leptospira seropositivity, while first-trimester abortions (OR:10.1; 95% CI: 4.2–24.2) were significantly associated with infection. In MSI herds, risk factors associated with Leptospira seropositivity included co-occurrence with hens (OR: 2.8; 95% CI: 1.5–5.3) and natural breeding (OR: 2.0; 95% CI: 1.1–3.9), whereas mastitis/agalactiae (OR: 2.8; 95% CI: 1.5–5.2) represented a clinical outcome associated with seropositivity. Despite semi-arid conditions, Leptospira maintains transmission in La Laguna, particularly in semi-intensive systems. The coexistence of adapted (Sejroe) and incidental serogroups underscores the need for targeted interventions, such as rodent control in MI systems and poultry management in MSI systems, to mitigate both zoonotic and economic impacts. Full article
(This article belongs to the Section Animal Science)
30 pages, 1130 KiB  
Review
Beyond the Backbone: A Quantitative Review of Deep-Learning Architectures for Tropical Cyclone Track Forecasting
by He Huang, Difei Deng, Liang Hu, Yawen Chen and Nan Sun
Remote Sens. 2025, 17(15), 2675; https://doi.org/10.3390/rs17152675 (registering DOI) - 2 Aug 2025
Abstract
Accurate forecasting of tropical cyclone (TC) tracks is critical for disaster preparedness and risk mitigation. While traditional numerical weather prediction (NWP) systems have long served as the backbone of operational forecasting, they face limitations in computational cost and sensitivity to initial conditions. In [...] Read more.
Accurate forecasting of tropical cyclone (TC) tracks is critical for disaster preparedness and risk mitigation. While traditional numerical weather prediction (NWP) systems have long served as the backbone of operational forecasting, they face limitations in computational cost and sensitivity to initial conditions. In recent years, deep learning (DL) has emerged as a promising alternative, offering data-driven modeling capabilities for capturing nonlinear spatiotemporal patterns. This paper presents a comprehensive review of DL-based approaches for TC track forecasting. We categorize all DL-based TC tracking models according to the architecture, including recurrent neural networks (RNNs), convolutional neural networks (CNNs), Transformers, graph neural networks (GNNs), generative models, and Fourier-based operators. To enable rigorous performance comparison, we introduce a Unified Geodesic Distance Error (UGDE) metric that standardizes evaluation across diverse studies and lead times. Based on this metric, we conduct a critical comparison of state-of-the-art models and identify key insights into their relative strengths, limitations, and suitable application scenarios. Building on this framework, we conduct a critical cross-model analysis that reveals key trends, performance disparities, and architectural tradeoffs. Our analysis also highlights several persistent challenges, such as long-term forecast degradation, limited physical integration, and generalization to extreme events, pointing toward future directions for developing more robust and operationally viable DL models for TC track forecasting. To support reproducibility and facilitate standardized evaluation, we release an open-source UGDE conversion tool on GitHub. Full article
(This article belongs to the Section AI Remote Sensing)
24 pages, 2419 KiB  
Review
Arbuscular Mycorrhizal Fungi in the Ecological Restoration of Tropical Forests: A Bibliometric Review
by Yajaira Arévalo, María Eugenia Avila-Salem, Paúl Loján, Narcisa Urgiles-Gómez, Darwin Pucha-Cofrep, Nikolay Aguirre and César Benavidez-Silva
Forests 2025, 16(8), 1266; https://doi.org/10.3390/f16081266 (registering DOI) - 2 Aug 2025
Abstract
Arbuscular mycorrhizal fungi (AMF) play a vital role in the restoration of tropical forests by enhancing soil fertility, facilitating plant establishment, and improving ecosystem resilience. This study presents a comprehensive bibliometric analysis of global scientific output on AMF in the context of ecological [...] Read more.
Arbuscular mycorrhizal fungi (AMF) play a vital role in the restoration of tropical forests by enhancing soil fertility, facilitating plant establishment, and improving ecosystem resilience. This study presents a comprehensive bibliometric analysis of global scientific output on AMF in the context of ecological restoration, based on 3835 publications indexed in the Web of Science and Scopus databases from 2001 to 2024. An average annual growth rate of approximately 9.45% was observed, with contributions from 10,868 authors across 880 journals. The most prominent journals included Mycorrhiza (3.34%), New Phytologist (3.00%), and Applied Soil Ecology (2.79%). Thematically, dominant research areas encompassed soil–plant interactions, phytoremediation, biodiversity, and microbial ecology. Keyword co-occurrence analysis identified “arbuscular mycorrhizal fungi,” “diversity,” “soil,” and “plant growth” as core topics, while emerging topics such as rhizosphere interactions and responses to abiotic stress showed increasing prominence. Despite the expanding body of literature, key knowledge gaps remain, particularly concerning AMF–plant specificity, long-term restoration outcomes, and integration of microbial community dynamics. These findings offer critical insights into the development of AMF research and underscore its strategic importance in tropical forest restoration, providing a foundation for future studies and informing ecosystem management policies. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

16 pages, 1526 KiB  
Article
Effects of Different Phosphorus Addition Levels on Physiological and Growth Traits of Pinus massoniana (Masson Pine) Seedlings
by Zhenya Yang and Hui Wang
Forests 2025, 16(8), 1265; https://doi.org/10.3390/f16081265 (registering DOI) - 2 Aug 2025
Abstract
Soil phosphorus (P) availability is an important determinant of productivity in Pinus massoniana (Masson pine) forests. The mechanistic bases governing the physiological and growth responses of Masson pine to varying soil P conditions remain insufficiently characterized. This study aims to decipher the adaptive [...] Read more.
Soil phosphorus (P) availability is an important determinant of productivity in Pinus massoniana (Masson pine) forests. The mechanistic bases governing the physiological and growth responses of Masson pine to varying soil P conditions remain insufficiently characterized. This study aims to decipher the adaptive strategies of Masson pine to different soil P levels, focusing on root morphological–architectural plasticity and the allocation dynamics of nutrient elements and photosynthetic assimilates. One-year-old potted Masson pine seedlings were exposed to four P addition treatments for one year: P0 (0 mg kg−1), P1 (25 mg kg−1), P2 (50 mg·kg−1), and P3 (100 mg kg−1). In July and December, measurements were conducted on seedling organ biomass, root morphological indices [root length (RL), root surface area (RSA), root diameter (RD), specific root length (SRL), and root length ratio (RLR) for each diameter grade], root architectural indices [number of root tips (RTs), fractal dimension (FD), root branching angle (RBA), and root topological index (TI)], as well as the content of nitrogen (N), phosphorus (P), carbon (C), and non-structural carbohydrates (NSCs) in roots, stems, and leaves. Compared with the P0 treatment, P2 and P3 significantly increased root biomass, root–shoot ratio, RL, RSA, RTs, RLR of finer roots (diameter ≤ 0.4 mm), nutrient accumulation ratio in roots, and starch (ST) content in roots, stems and leaves. Meanwhile, they decreased soluble sugar (SS) content, SS/ST ratio, C and N content, and N/P and C/P ratios in stems and leaves, as well as nutrient accumulation ratio in leaves. The P3 treatment significantly reduced RBA and increased FD and SRL. Our results indicated that Masson pine adapts to low P by developing shallower roots with a reduced branching intensity and promoting the conversion of ST to SS. P’s addition effectively alleviates growth limitations imposed by low P, stimulating root growth, branching, and gravitropism. Although a sole P addition promotes short-term growth and P uptake, it triggers a substantial consumption of N, C, and SS, leading to significant decreases in N/P and C/P ratios and exacerbating N’s limitation, which is detrimental to long-term growth. Under high-P conditions, Masson pine strategically prioritizes allocating limited N and SS to roots, facilitating the formation of thinner roots with low C costs. Full article
Show Figures

Figure 1

20 pages, 8858 KiB  
Article
Compressed Sensing Reconstruction with Zero-Shot Self-Supervised Learning for High-Resolution MRI of Human Embryos
by Kazuma Iwazaki, Naoto Fujita, Shigehito Yamada and Yasuhiko Terada
Tomography 2025, 11(8), 88; https://doi.org/10.3390/tomography11080088 (registering DOI) - 2 Aug 2025
Abstract
Objectives: This study investigates whether scan time in the high-resolution magnetic resonance imaging (MRI) of human embryos can be reduced without compromising spatial resolution by applying zero-shot self-supervised learning (ZS-SSL), a deep-learning-based reconstruction method. Methods: Simulations using a numerical phantom were [...] Read more.
Objectives: This study investigates whether scan time in the high-resolution magnetic resonance imaging (MRI) of human embryos can be reduced without compromising spatial resolution by applying zero-shot self-supervised learning (ZS-SSL), a deep-learning-based reconstruction method. Methods: Simulations using a numerical phantom were conducted to evaluate spatial resolution across various acceleration factors (AF = 2, 4, 6, and 8) and signal-to-noise ratio (SNR) levels. Resolution was quantified using a blur-based estimation method based on the Sparrow criterion. ZS-SSL was compared to conventional compressed sensing (CS). Experimental imaging of a human embryo at Carnegie stage 21 was performed at a spatial resolution of (30 μm)3 using both retrospective and prospective undersampling at AF = 4 and 8. Results: ZS-SSL preserved spatial resolution more effectively than CS at low SNRs. At AF = 4, image quality was comparable to that of fully sampled data, while noticeable degradation occurred at AF = 8. Experimental validation confirmed these findings, with clear visualization of anatomical structures—such as the accessory nerve—at AF = 4; there was reduced structural clarity at AF = 8. Conclusions: ZS-SSL enables significant scan time reduction in high-resolution MRI of human embryos while maintaining spatial resolution at AF = 4, assuming an SNR above approximately 15. This trade-off between acceleration and image quality is particularly beneficial in studies with limited imaging time or specimen availability. The method facilitates the efficient acquisition of ultra-high-resolution data and supports future efforts to construct detailed developmental atlases. Full article
Show Figures

Figure 1

18 pages, 1390 KiB  
Review
Fantastic Ferulic Acid Esterases and Their Functions
by Savvina Leontakianakou, Patrick Adlercreutz and Eva Nordberg Karlsson
Int. J. Mol. Sci. 2025, 26(15), 7474; https://doi.org/10.3390/ijms26157474 (registering DOI) - 2 Aug 2025
Abstract
Ferulic acid (FA) is one of the most abundant hydroxycinnamic acids found in plant cell walls. Its dehydrodimers play an important role in maintaining the structural rigidity of the plant cell wall. Ferulic acid esterases (FAEs) act as debranching enzymes, cleaving the ester [...] Read more.
Ferulic acid (FA) is one of the most abundant hydroxycinnamic acids found in plant cell walls. Its dehydrodimers play an important role in maintaining the structural rigidity of the plant cell wall. Ferulic acid esterases (FAEs) act as debranching enzymes, cleaving the ester bond between FA and the substituted carbohydrate moieties in FA-containing polysaccharides in the plant cell wall. This enzymatic reaction facilitates the degradation of lignocellulosic materials and is crucial for the efficient utilization of biomass resources. This review focuses on the occurrence of ferulic acid in nature and its different forms and outlines the various classification systems of FAEs, their substrate specificity, and the synergistic interactions of these enzymes with other CAZymes. Additionally, it highlights the various methods that have been developed for detecting hydroxycinnamic acids and estimating the enzyme activity, as well as the versatile applications of ferulic acid. Full article
(This article belongs to the Special Issue The Characterization and Application of Enzymes in Bioprocesses)
Show Figures

Figure 1

10 pages, 960 KiB  
Article
Study on the Vectoring Potential of Halyomorpha halys for Pantoea stewartii subsp. stewartii, the Pathogen Causing Stewart’s Disease in Maize
by Francesca Costantini, Agostino Strangi, Fabio Mosconi, Leonardo Marianelli, Giuseppino Sabbatini-Peverieri, Pio Federico Roversi and Valeria Scala
Agriculture 2025, 15(15), 1671; https://doi.org/10.3390/agriculture15151671 (registering DOI) - 2 Aug 2025
Abstract
Pantoea stewartii subsp. stewartii (Pss) is a Gram-negative bacterium first documented in North America, and is the causal agent of Stewart’s disease in maize (Zea mays), especially in sweet corn. First identified in North America, it is primarily spread by insect [...] Read more.
Pantoea stewartii subsp. stewartii (Pss) is a Gram-negative bacterium first documented in North America, and is the causal agent of Stewart’s disease in maize (Zea mays), especially in sweet corn. First identified in North America, it is primarily spread by insect vectors like the corn flea beetle (Chaetocnema Pulicaria) in the United States. However, Pss has since spread globally—reaching parts of Africa, Asia, the Americas, and Europe—mainly through the international seed trade. Although this trade is limited, it has still facilitated the pathogen’s global movement, as evidenced by numerous phytosanitary interceptions. Recent studies in Italy, as indicated in the EFSA journal, reported that potential alternative vectors were identified, including Phyllotreta spp. and the invasive Asian brown marmorated stink bug (Halyomorpha halys); the latter tested positive in PCR screenings, raising concerns due to its broad host range and global distribution. This information has prompted studies to verify the ability of Halyomorpha halys to vector Pss to assess the risk and prevent the further spread of Pss in Europe. In this study, we explored the potential transmission of Pss by the brown marmorated stink bugs in maize plants, following its feeding on Pss-inoculated maize, as well as the presence of Pss within the insect’s body. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

16 pages, 6322 KiB  
Article
Mechanism of Hardness Evolution in WC-Co Cemented Carbide Subjected to Liquid-Phase Laser Ablation
by Xiaoyan Guan, Yi Ding, Kang Zhao, Yujie Fan, Yuchen Du, Suyang Wang and Jing Xia
Coatings 2025, 15(8), 901; https://doi.org/10.3390/coatings15080901 (registering DOI) - 2 Aug 2025
Abstract
To investigate the effect of liquid-phase laser ablation on the hardness of WC-Co cemented carbide, this study performed hardness testing, elemental distribution analysis, and XRD phase analysis. The influence of ablation times on the hardness, elemental distribution, and phase composition of WC-Co cemented [...] Read more.
To investigate the effect of liquid-phase laser ablation on the hardness of WC-Co cemented carbide, this study performed hardness testing, elemental distribution analysis, and XRD phase analysis. The influence of ablation times on the hardness, elemental distribution, and phase composition of WC-Co cemented carbide was examined, and a model describing the hardness evolution mechanism under liquid-phase laser ablation was proposed. The results demonstrated that the hardness of WC-Co cemented carbide increased with the number of ablations. After 14 ablation times, the maximum hardness reached 2800 HV, representing an increase of 51%–56% compared to the matrix hardness. As the number of ablations increased, the content of ditungsten carbide (W2C) and tungsten carbide (WC) in the cemented carbide increased, the WC grain size decreased, the dislocation density increased, and the distribution became more uniform. The refinement of WC grains and the elevated dislocation density facilitated stronger intergranular bonding, thereby significantly enhancing the material’s hardness. This study provides theoretical guidance for improving the surface mechanical properties of WC-Co cemented carbide tools through liquid-phase laser ablation. Full article
Show Figures

Figure 1

18 pages, 7965 KiB  
Article
Identification of Environmental Noise Traces in Seismic Recordings Using Vision Transformer and Mel-Spectrogram
by Qianlong Ding, Shuangquan Chen, Jinsong Shen and Borui Wang
Appl. Sci. 2025, 15(15), 8586; https://doi.org/10.3390/app15158586 (registering DOI) - 1 Aug 2025
Abstract
Environmental noise is inevitable during seismic data acquisition, with major sources including heavy machinery, rivers, wind, and other environmental factors. During field data acquisition, it is important to assess the impact of environmental noise and evaluate data quality. In subsequent seismic data processing, [...] Read more.
Environmental noise is inevitable during seismic data acquisition, with major sources including heavy machinery, rivers, wind, and other environmental factors. During field data acquisition, it is important to assess the impact of environmental noise and evaluate data quality. In subsequent seismic data processing, these noise components also need to be eliminated. Accurate identification of noise traces facilitates rapid quality control (QC) during fieldwork and provides a reliable basis for targeted noise attenuation. Conventional environmental noise identification primarily relies on amplitude differences. However, in seismic data, high-amplitude signals are not necessarily caused by environmental noise. For example, surface waves or traces near the shot point may also exhibit high amplitudes. Therefore, relying solely on amplitude-based criteria has certain limitations. To improve noise identification accuracy, we use the Mel-spectrogram to extract features from seismic data and construct the dataset. Compared to raw time-series signals, the Mel-spectrogram more clearly reveals energy variations and frequency differences, helping to identify noise traces more accurately. We then employ a Vision Transformer (ViT) network to train a model for identifying noise in seismic data. Tests on synthetic and field data show that the proposed method performs well in identifying noise. Moreover, a denoising case based on synthetic data further confirms its general applicability, making it a promising tool in seismic data QC and processing workflows. Full article
Show Figures

Figure 1

20 pages, 5650 KiB  
Article
The In-Plane Deformation and Free Vibration Analysis of a Rotating Ring Resonator of a Gyroscope with Evenly Distributed Mass Imperfections
by Dongsheng Zhang and Shuming Li
Sensors 2025, 25(15), 4764; https://doi.org/10.3390/s25154764 (registering DOI) - 1 Aug 2025
Abstract
A rotating imperfect ring resonator of the gyroscope is modeled by a rotating thin ring with evenly distributed point masses. The free response of the rotating ring structure at constant speed is investigated, including the steady elastic deformation and wave response. The dynamic [...] Read more.
A rotating imperfect ring resonator of the gyroscope is modeled by a rotating thin ring with evenly distributed point masses. The free response of the rotating ring structure at constant speed is investigated, including the steady elastic deformation and wave response. The dynamic equations are formulated by using Hamilton’s principle in the ground-fixed coordinates. The coordinate transformation is applied to facilitate the solution of the steady deformation, and the displacements and tangential tension for the deformation are calculated by the perturbation method. Employing Galerkin’s method, the governing equation of the free vibration is casted in matrix differential operator form after the separation of the real and imaginary parts with the inextensional assumption. The natural frequencies are calculated through the eigenvalue analysis, and the numerical results are obtained. The effects of the point masses on the natural frequencies of the forward and backward traveling wave curves of different orders are discussed, especially on the measurement accuracy of gyroscopes for different cases. In the ground-fixed coordinates, the frequency splitting results in a crosspoint of the natural frequencies of the forward and backward traveling waves. The finite element method is applied to demonstrate the validity and accuracy of the model. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Graphical abstract

18 pages, 919 KiB  
Article
The Effect of Short-Term Healthy Ketogenic Diet Ready-To-Eat Meals Versus Healthy Ketogenic Diet Counselling on Weight Loss in Overweight Adults: A Pilot Randomized Controlled Trial
by Melissa Hui Juan Tay, Qai Ven Yap, Su Lin Lim, Yuki Wei Yi Ong, Victoria Chantel Hui Ting Wee and Chin Meng Khoo
Nutrients 2025, 17(15), 2541; https://doi.org/10.3390/nu17152541 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Conventional ketogenic diets, although effective for weight loss, often contain high total and saturated fat intake, which leads to increased low-density lipoprotein cholesterol (LDL-C). Thus, the Healthy Ketogenic Diet (HKD) was developed to address these concerns. It emphasizes calorie restriction, limiting [...] Read more.
Background/Objectives: Conventional ketogenic diets, although effective for weight loss, often contain high total and saturated fat intake, which leads to increased low-density lipoprotein cholesterol (LDL-C). Thus, the Healthy Ketogenic Diet (HKD) was developed to address these concerns. It emphasizes calorie restriction, limiting net carbohydrate intake to 50 g per day, prioritizing unsaturated fats, and reducing saturated fat intake. However, adherence to the HKD remains a challenge in urban, time-constrained environments. Therefore, this pilot randomized controlled trial aimed to investigate the effects of Healthy Ketogenic Diet Ready-To-Eat (HKD-RTE) meals (provided for the first month only) versus HKD alone on weight loss and metabolic parameters among overweight adults. Methods: Multi-ethnic Asian adults (n = 50) with a body mass index (BMI) ≥ 27.5 kg/m2 were randomized into the HKD-RTE group (n = 24) and the HKD group (n = 26). Both groups followed the HKD for six months, with the HKD-RTE group receiving HKD-RTE meals during the first month. Five in-person workshops and mobile health coaching through the Nutritionist Buddy Keto app helped to facilitate dietary adherence. The primary outcome was the change in body weight at 6 months. Linear regression was performed on the change from baseline for each continuous outcome, adjusting for demographics and relevant covariates. Logistic regression was performed on binary weight loss ≥5%, adjusting for demographics and relevant covariates. Results: In the HKD group, participants’ adherence to the 50 g net carbohydrate target was 15 days, while that in the HKD-RTE group was 19 days over a period of 30 days. Participants’ adherence to calorie targets was 21 days in the HKD group and 23 days in the HKD-RTE. The average compliance with the HKD-RTE meals provided in the HKD-RTE group was 55%. The HKD-RTE group experienced a greater percentage weight loss at 1 month (−4.8 ± 3.0% vs. −1.8 ± 6.2%), although this was not statistically significant. This trend continued up to 6 months, with the HKD-RTE group showing a greater percentage weight reduction (−8.6 ± 6.8% vs. −3.9 ± 8.6%; p = 0.092). At 6 months, the HKD-RTE group had a greater reduction in total cholesterol (−0.54 ± 0.76 mmol/L vs. −0.05 ± 0.56 mmol/L; p = 0.283) and LDL-C (−0.43 ± 0.67 mmol/L vs. −0.03 ± 0.52 mmol/L; p = 0.374) compared to the HKD group. Additionally, the HKD-RTE group exhibited greater reductions in systolic blood pressure (−8.3 ± 9.7 mmHg vs. −5.3 ± 11.0 mmHg), diastolic blood pressure (−7.7 ± 8.8 mmHg vs. −2.0 ± 7.0 mmHg), and HbA1c (−0.3 ± 0.5% vs. −0.1 ± 0.4%) than the HKD group (not statistically significant for any). Conclusions: Both HKD-RTE and HKD led to weight loss and improved metabolic profiles. The HKD-RTE group tended to show more favorable outcomes. Short-term HKD-RTE meal provision may enhance initial weight loss, with sustained long-term effects. Full article
41 pages, 1651 KiB  
Review
Progress and Challenges in the Process of Using Solid Waste as a Catalyst for Biodiesel Synthesis
by Zhaolin Dong, Kaili Dong, Haotian Li, Liangyi Zhang and Yitong Wang
Molecules 2025, 30(15), 3243; https://doi.org/10.3390/molecules30153243 (registering DOI) - 1 Aug 2025
Abstract
Biodiesel, as one of the alternatives to fossil fuels, faces significant challenges in large-scale industrial production due to its high production costs. In addition to raw material costs, catalyst costs are also a critical factor that cannot be overlooked. This review summarizes various [...] Read more.
Biodiesel, as one of the alternatives to fossil fuels, faces significant challenges in large-scale industrial production due to its high production costs. In addition to raw material costs, catalyst costs are also a critical factor that cannot be overlooked. This review summarizes various methods for preparing biodiesel catalysts from solid waste. These methods not only enhance the utilization rate of waste but also reduce the production costs and environmental impact of biodiesel. Finally, the limitations of waste-based catalysts and future research directions are discussed. Research indicates that solid waste can serve as a catalyst carrier or active material for biodiesel production. Methods such as high-temperature calcination, impregnation, and coprecipitation facilitate structural modifications to the catalyst and the formation of active sites. The doping of metal ions not only alters the catalyst’s acid-base properties but also forms stable metal bonds with functional groups on the carrier, thereby maintaining catalyst stability. The application of microwave-assisted and ultrasound-assisted methods reduces reaction parameters, making biodiesel production more economical and sustainable. Overall, this study provides a scientific basis for the reuse of solid waste and ecological protection, emphasizes the development potential of waste-based catalysts in biodiesel production, and offers unique insights for innovation in this field, thereby accelerating the commercialization of biodiesel. Full article
Show Figures

Graphical abstract

Back to TopTop