Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (507)

Search Parameters:
Keywords = face geometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5136 KiB  
Article
Application of UAVs to Support Blast Design for Flyrock Mitigation: A Case Study from a Basalt Quarry
by Józef Pyra and Tomasz Żołądek
Appl. Sci. 2025, 15(15), 8614; https://doi.org/10.3390/app15158614 (registering DOI) - 4 Aug 2025
Abstract
Blasting operations in surface mining pose a risk of flyrock, which is a critical safety concern for both personnel and infrastructure. This study presents the use of unmanned aerial vehicles (UAVs) and photogrammetric techniques to improve the accuracy of blast design, particularly in [...] Read more.
Blasting operations in surface mining pose a risk of flyrock, which is a critical safety concern for both personnel and infrastructure. This study presents the use of unmanned aerial vehicles (UAVs) and photogrammetric techniques to improve the accuracy of blast design, particularly in relation to controlling burden values and reducing flyrock. The research was conducted in a basalt quarry in Lower Silesia, where high rock fracturing complicated conventional blast planning. A DJI Mavic 3 Enterprise UAV was used to capture high-resolution aerial imagery, and 3D models were created using Strayos software. These models enabled precise analysis of bench face geometry and burden distribution with centimeter-level accuracy. The results showed a significant improvement in identifying zones with improper burden values and allowed for real-time corrections in blasthole design. Despite a ten-fold reduction in the number of images used, no loss in model quality was observed. UAV-based surveys followed software-recommended flight paths, and the application of this methodology reduced the flyrock range by an average of 42% near sensitive areas. This approach demonstrates the operational benefits and enhanced safety potential of integrating UAV-based photogrammetry into blasting design workflows. Full article
(This article belongs to the Special Issue Advanced Blasting Technology for Mining)
Show Figures

Figure 1

34 pages, 7571 KiB  
Article
Passive Design for Residential Buildings in Arid Desert Climates: Insights from the Solar Decathlon Middle East
by Esra Trepci and Edwin Rodriguez-Ubinas
Buildings 2025, 15(15), 2731; https://doi.org/10.3390/buildings15152731 - 2 Aug 2025
Viewed by 167
Abstract
This study investigates the effectiveness of passive design in low-rise residential buildings located in arid desert climates, using the Dubai Solar Decathlon Middle East (SDME) competition as a case study. This full-scale experiment offers a unique opportunity to evaluate design solutions under controlled, [...] Read more.
This study investigates the effectiveness of passive design in low-rise residential buildings located in arid desert climates, using the Dubai Solar Decathlon Middle East (SDME) competition as a case study. This full-scale experiment offers a unique opportunity to evaluate design solutions under controlled, realistic conditions; prescriptive, modeled performance; and monitored performance assessments. The prescriptive assessment reviews geometry, orientation, envelope thermal properties, and shading. Most houses adopt compact forms, with envelope-to-volume and envelope-to-floor area ratios averaging 1 and 3.7, respectively, and window-to-wall ratios of approximately 17%, favoring north-facing openings to optimize daylight while reducing heat gain. Shading is strategically applied, horizontal on south façades and vertical on east and west. The thermal properties significantly exceed the local code requirements, with wall performance up to 80% better than that mandated. The modeled assessment uses Building Energy Models (BEMs) to simulate the impact of prescriptive measures on energy performance. Three variations are applied: assigning minimum local code requirements to all the houses to isolate the geometry (baseline); removing shading; and applying actual envelope properties. Geometry alone accounts for up to 60% of the variation in cooling intensity; shading reduces loads by 6.5%, and enhanced envelopes lower demand by 14%. The monitored assessment uses contest-period data. Indoor temperatures remain stable (22–25 °C) despite outdoor fluctuations. Energy use confirms that houses with good designs and airtightness have lower cooling loads. Airtightness varies widely (avg. 14.5 m3/h/m2), with some well-designed houses underperforming due to construction flaws. These findings highlight the critical role of passive design as the first layer for improving the energy performance of the built environment and advancing toward net-zero targets, specifically in arid desert climates. Full article
(This article belongs to the Special Issue Climate-Responsive Architectural and Urban Design)
Show Figures

Figure 1

39 pages, 14288 KiB  
Article
Design and Performance Study of a Magnetic Flux Leakage Pig for Subsea Pipeline Defect Detection
by Fei Qu, Shengtao Chen, Meiyu Zhang, Kang Zhang and Yongjun Gong
J. Mar. Sci. Eng. 2025, 13(8), 1462; https://doi.org/10.3390/jmse13081462 - 30 Jul 2025
Viewed by 252
Abstract
Subsea pipelines, operating in high-pressure and high-salinity conditions, face ongoing risks of leakage. Pipeline leaks can pollute the marine environment and, in severe cases, cause safety incidents, endangering human lives and property. Regular integrity inspections of subsea pipelines are critical to prevent corrosion-related [...] Read more.
Subsea pipelines, operating in high-pressure and high-salinity conditions, face ongoing risks of leakage. Pipeline leaks can pollute the marine environment and, in severe cases, cause safety incidents, endangering human lives and property. Regular integrity inspections of subsea pipelines are critical to prevent corrosion-related leaks. This study develops a magnetic flux leakage (MFL)-based pig for detecting corrosion in subsea pipelines. Using a three-dimensional finite element model, this study analyzes the effects of defect geometry, lift-off distance, and operating speed on MFL signals. It proposes a defect estimation method based on axial peak-to-valley values and radial peak spacing, with inversion accuracy validated against simulation results. This study establishes a theoretical and practical framework for subsea pipeline integrity management, providing an effective solution for corrosion monitoring. Full article
(This article belongs to the Special Issue Theoretical Research and Design of Subsea Pipelines)
Show Figures

Figure 1

19 pages, 6937 KiB  
Article
Optimal Placement of Distributed Solar PV Adapting to Electricity Real-Time Market Operation
by Xi Chen and Hai Long
Sustainability 2025, 17(15), 6879; https://doi.org/10.3390/su17156879 - 29 Jul 2025
Viewed by 254
Abstract
Distributed photovoltaic (PV) generation is increasingly important for urban energy systems amid global climate change and the shift to renewable energy. Traditional PV deployment prioritizes maximizing energy output, often neglecting electricity price variability caused by time-of-use tariffs. This study develops a high-resolution planning [...] Read more.
Distributed photovoltaic (PV) generation is increasingly important for urban energy systems amid global climate change and the shift to renewable energy. Traditional PV deployment prioritizes maximizing energy output, often neglecting electricity price variability caused by time-of-use tariffs. This study develops a high-resolution planning and economic assessment model for building-integrated PV (BIPV) systems, incorporating hourly electricity real-time market prices, solar geometry, and submeter building spatial data. Wuhan (30.60° N, 114.05° E) serves as the case study to evaluate optimal PV placement and tilt angles on rooftops and façades, focusing on maximizing economic returns rather than energy production alone. The results indicate that adjusting rooftop PV tilt from a maximum generation angle (30°) to a maximum revenue angle (15°) slightly lowers generation but increases revenue, with west-facing orientations further improving returns by aligning output with peak electricity prices. For façades, south-facing panels yielded the highest output, while north-facing panels with tilt angles above 20° also showed significant potential. Façade PV systems demonstrated substantially higher generation potential—about 5 to 15 times that of rooftop PV systems under certain conditions. This model provides a spatially detailed, market-responsive framework supporting sustainable urban energy planning, quantifying economic and environmental benefits, and aligning with integrated approaches to urban sustainability. Full article
(This article belongs to the Special Issue Sustainable Energy Planning and Environmental Assessment)
Show Figures

Figure 1

20 pages, 3386 KiB  
Article
Design of Realistic and Artistically Expressive 3D Facial Models for Film AIGC: A Cross-Modal Framework Integrating Audience Perception Evaluation
by Yihuan Tian, Xinyang Li, Zuling Cheng, Yang Huang and Tao Yu
Sensors 2025, 25(15), 4646; https://doi.org/10.3390/s25154646 - 26 Jul 2025
Viewed by 374
Abstract
The rise of virtual production has created an urgent need for both efficient and high-fidelity 3D face generation schemes for cinema and immersive media, but existing methods are often limited by lighting–geometry coupling, multi-view dependency, and insufficient artistic quality. To address this, this [...] Read more.
The rise of virtual production has created an urgent need for both efficient and high-fidelity 3D face generation schemes for cinema and immersive media, but existing methods are often limited by lighting–geometry coupling, multi-view dependency, and insufficient artistic quality. To address this, this study proposes a cross-modal 3D face generation framework based on single-view semantic masks. It utilizes Swin Transformer for multi-level feature extraction and combines with NeRF for illumination decoupled rendering. We utilize physical rendering equations to explicitly separate surface reflectance from ambient lighting to achieve robust adaptation to complex lighting variations. In addition, to address geometric errors across illumination scenes, we construct geometric a priori constraint networks by mapping 2D facial features to 3D parameter space as regular terms with the help of semantic masks. On the CelebAMask-HQ dataset, this method achieves a leading score of SSIM = 0.892 (37.6% improvement from baseline) with FID = 40.6. The generated faces excel in symmetry and detail fidelity with realism and aesthetic scores of 8/10 and 7/10, respectively, in a perceptual evaluation with 1000 viewers. By combining physical-level illumination decoupling with semantic geometry a priori, this paper establishes a quantifiable feedback mechanism between objective metrics and human aesthetic evaluation, providing a new paradigm for aesthetic quality assessment of AI-generated content. Full article
(This article belongs to the Special Issue Convolutional Neural Network Technology for 3D Imaging and Sensing)
Show Figures

Figure 1

25 pages, 4919 KiB  
Article
Integrating BIM Forward Design with CFD Numerical Simulation for Wind Turbine Blade Analysis
by Shaonan Sun, Mengna Li, Yifan Shi, Chunlu Liu and Ailing Wang
Energies 2025, 18(15), 3989; https://doi.org/10.3390/en18153989 - 25 Jul 2025
Viewed by 331
Abstract
Wind turbine blades face significant challenges from stochastic wind loads, impacting structural integrity. Traditional analysis often isolates Computational Fluid Dynamics (CFD) from Building Information Modeling (BIM) in the design process. This study bridges this gap by integrating BIM forward design with CFD simulation. [...] Read more.
Wind turbine blades face significant challenges from stochastic wind loads, impacting structural integrity. Traditional analysis often isolates Computational Fluid Dynamics (CFD) from Building Information Modeling (BIM) in the design process. This study bridges this gap by integrating BIM forward design with CFD simulation. A universal BIM modeling framework is developed for rapid blade modeling, which is compatible with ANSYS Workbench 2022 R1 through intermediate format conversion. The influence of wind load on the blades under various wind speed conditions is analyzed, and the results indicate a significant correlation between wind load intensity and blade structural response. The maximum windward pressure reaches 4.96 kPa, while the leeward suction peaks at −6.28 kPa. The displacement at the tip and middle part of the blades significantly increases with the increase in wind speed. The growth rate of displacement between adjacent speeds rises from 1.20 to 1.94, and the overall increase rate within the entire range rises from 1.02 to 4.16. These results demonstrate the feasibility of using BIM forward design in accurate performance analysis, and also extends the value of BIM in wind energy. Furthermore, a bidirectional information flow is established, where BIM provides geometry for CFD, and simulation results will inform BIM design refinement. Full article
(This article belongs to the Special Issue Wind Generators Modelling and Control: 2nd Edition)
Show Figures

Figure 1

24 pages, 3182 KiB  
Article
Application of Indoor Greenhouses in the Production of Thermal Energy in Circular Buildings
by Eusébio Conceição, João Gomes, Maria Inês Conceição, Margarida Conceição, Maria Manuela Lúcio and Hazim Awbi
Energies 2025, 18(15), 3962; https://doi.org/10.3390/en18153962 - 24 Jul 2025
Viewed by 280
Abstract
The production of thermal energy in buildings using internal greenhouses makes it possible to obtain substantial gains in energy consumption and, at the same time, contribute to improving occupants’ thermal comfort (TC) levels. This article proposes a study on the producing and transporting [...] Read more.
The production of thermal energy in buildings using internal greenhouses makes it possible to obtain substantial gains in energy consumption and, at the same time, contribute to improving occupants’ thermal comfort (TC) levels. This article proposes a study on the producing and transporting of renewable thermal energy in a circular auditorium equipped with an enveloping semi-circular greenhouse. The numerical study is based on software that simulates the building geometry and the building thermal response (BTR) numerical model and assesses the TC level and indoor air quality (IAQ) provided to occupants in spaces ventilated by the proposed system. The building considered in this study is a circular auditorium constructed from three semi-circular auditoriums supplied with internal semi-circular greenhouses. Each of the semi-circular auditoriums faces south, northeast, and northwest, respectively. The semi-circular auditoriums are occupied by 80 people each: the one facing south throughout the day, while the one facing northeast is only occupied in the morning, and the one facing northwest is only occupied in the afternoon. The south-facing semi-circular greenhouse is used by itself to heat all three semi-circular auditoriums. The other two semi-circular greenhouses are only used to heat the interior space of the greenhouse. It was considered that the building is located in a Mediterranean-type climate and subject to the typical characteristics of clear winter days. The results allow us to verify that the proposed heating system, in which the heat provided to the occupied spaces is generated only in the semi-circular greenhouse facing south, can guarantee acceptable TC conditions for the occupants throughout the occupancy cycle. Full article
Show Figures

Figure 1

17 pages, 1594 KiB  
Article
Molecular-Level Insights into Meta-Phenylenediamine and Sulfonated Zinc Phthalocyanine Interactions for Enhanced Polyamide Membranes: A DFT and TD-DFT Study
by Ameni Gargouri and Bassem Jamoussi
Polymers 2025, 17(15), 2019; https://doi.org/10.3390/polym17152019 - 24 Jul 2025
Viewed by 280
Abstract
Access to clean water is a pressing global concern and membrane technologies play a vital role in addressing this challenge. Thin-film composite membranes prepared via interfacial polymerization (IPol) using meta-phenylenediamine (MPD) and trimesoyl chloride (TMC) exhibit excellent separation performance, but face limitations such [...] Read more.
Access to clean water is a pressing global concern and membrane technologies play a vital role in addressing this challenge. Thin-film composite membranes prepared via interfacial polymerization (IPol) using meta-phenylenediamine (MPD) and trimesoyl chloride (TMC) exhibit excellent separation performance, but face limitations such as fouling and low hydrophilicity. This study investigated the interaction between MPD and sulfonated zinc phthalocyanine, Zn(SO2)4Pc, as a potential strategy for enhancing membrane properties. Using Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT), we analyzed the optimized geometries, electronic structures, UV–Vis absorption spectra, FT-IR vibrational spectra, and molecular electrostatic potentials of MPD, Zn(SO2)4Pc, and their complexes. The results show that MPD/Zn(SO2)4Pc exhibits reduced HOMO-LUMO energy gaps and enhanced charge delocalization, particularly in aqueous environments, indicating improved stability and reactivity. Spectroscopic features confirmed strong interactions via hydrogen bonding and π–π stacking, suggesting that Zn(SO2)4Pc can act as a co-monomer or additive during IPol to improve polyamide membrane functionality. A conformational analysis of MPD/Zn(SO2)4Pc was conducted using density functional theory (DFT) to evaluate the impact of dihedral rotation on molecular stability. The 120° conformation was identified as the most stable, due to favorable π–π interactions and intramolecular hydrogen bonding. These findings offer computational evidence for the design of high-performance membranes with enhanced antifouling, selectivity, and structural integrity for sustainable water treatment applications. Full article
(This article belongs to the Special Issue Nanocomposite Polymer Membranes for Advanced Water Treatment)
Show Figures

Figure 1

37 pages, 1099 KiB  
Review
Application Advances and Prospects of Ejector Technologies in the Field of Rail Transit Driven by Energy Conservation and Energy Transition
by Yiqiao Li, Hao Huang, Shengqiang Shen, Yali Guo, Yong Yang and Siyuan Liu
Energies 2025, 18(15), 3951; https://doi.org/10.3390/en18153951 - 24 Jul 2025
Viewed by 303
Abstract
Rail transit as a high-energy consumption field urgently requires the adoption of clean energy innovations to reduce energy consumption and accelerate the transition to new energy applications. As an energy-saving fluid machinery, the ejector exhibits significant application potential and academic value within this [...] Read more.
Rail transit as a high-energy consumption field urgently requires the adoption of clean energy innovations to reduce energy consumption and accelerate the transition to new energy applications. As an energy-saving fluid machinery, the ejector exhibits significant application potential and academic value within this field. This paper reviewed the recent advances, technical challenges, research hotspots, and future development directions of ejector applications in rail transit, aiming to address gaps in existing reviews. (1) In waste heat recovery, exhaust heat is utilized for propulsion in vehicle ejector refrigeration air conditioning systems, resulting in energy consumption being reduced by 12~17%. (2) In vehicle pneumatic pressure reduction systems, the throttle valve is replaced with an ejector, leading to an output power increase of more than 13% and providing support for zero-emission new energy vehicle applications. (3) In hydrogen supply systems, hydrogen recirculation efficiency exceeding 68.5% is achieved in fuel cells using multi-nozzle ejector technology. (4) Ejector-based active flow control enables precise ± 20 N dynamic pantograph lift adjustment at 300 km/h. However, current research still faces challenges including the tendency toward subcritical mode in fixed geometry ejectors under variable operating conditions, scarcity of application data for global warming potential refrigerants, insufficient stability of hydrogen recycling under wide power output ranges, and thermodynamic irreversibility causing turbulence loss. To address these issues, future efforts should focus on developing dynamic intelligent control technology based on machine learning, designing adjustable nozzles and other structural innovations, optimizing multi-system efficiency through hybrid architectures, and investigating global warming potential refrigerants. These strategies will facilitate the evolution of ejector technology toward greater intelligence and efficiency, thereby supporting the green transformation and energy conservation objectives of rail transit. Full article
(This article belongs to the Special Issue Advanced Research on Heat Exchangers Networks and Heat Recovery)
Show Figures

Figure 1

22 pages, 4620 KiB  
Article
Spatial Strategies for the Renewable Energy Transition: Integrating Solar Photovoltaics into Barcelona’s Urban Morphology
by Maryam Roodneshin, Adrian Muros Alcojor and Torsten Masseck
Solar 2025, 5(3), 34; https://doi.org/10.3390/solar5030034 - 23 Jul 2025
Viewed by 449
Abstract
This study investigates strategies for urban-scale renewable energy integration through a photovoltaic-centric approach, with a case study of a district in Barcelona. The methodology integrates spatial and morphological data using a geographic information system (GIS)-based and clustering framework to address challenges of CO [...] Read more.
This study investigates strategies for urban-scale renewable energy integration through a photovoltaic-centric approach, with a case study of a district in Barcelona. The methodology integrates spatial and morphological data using a geographic information system (GIS)-based and clustering framework to address challenges of CO2 emissions, air pollution, and energy inefficiency. Rooftop availability and photovoltaic (PV) design constraints are analysed under current urban regulations. The spatial analysis incorporates building geometry and solar exposure, while an evolutionary optimisation algorithm in Grasshopper refines shading analysis, energy yield, and financial performance. Clustering methods (K-means and 3D proximity) group PV panels by solar irradiance uniformity and spatial coherence to enhance system efficiency. Eight PV deployment scenarios are evaluated, incorporating submodule integrated converter technology under a solar power purchase agreement model. Results show distinct trade-offs among PV scenarios. The standard fixed tilted (31.5° tilt, south-facing) scenario offers a top environmental and performance ratio (PR) = 66.81% but limited financial returns. In contrast, large- and huge-sized modules offer peak financial returns, aligning with private-sector priorities but with moderate energy efficiency. Medium- and large-size scenarios provide balanced outcomes, while a small module and its optimised rotated version scenarios maximise energy output yet suffer from high capital costs. A hybrid strategy combining standard fixed tilted with medium and large modules balances environmental and economic goals. The district’s morphology supports “solar neighbourhoods” and demonstrates how multi-scenario evaluation can guide resilient PV planning in Mediterranean cities. Full article
Show Figures

Figure 1

21 pages, 4341 KiB  
Article
Structural Monitoring Without a Budget—Laboratory Results and Field Report on the Use of Low-Cost Acceleration Sensors
by Sven Giermann, Thomas Willemsen and Jörg Blankenbach
Sensors 2025, 25(15), 4543; https://doi.org/10.3390/s25154543 - 22 Jul 2025
Viewed by 283
Abstract
Authorities responsible for critical infrastructure, particularly bridges, face significant challenges. Many bridges, constructed in the 1960s and 1970s, are now approaching or have surpassed their intended service life. A report from the German Federal Ministry for Digital and Transport (BMVI) indicates that about [...] Read more.
Authorities responsible for critical infrastructure, particularly bridges, face significant challenges. Many bridges, constructed in the 1960s and 1970s, are now approaching or have surpassed their intended service life. A report from the German Federal Ministry for Digital and Transport (BMVI) indicates that about 12% of the 40,000 federal trunk road bridges in Germany are in “inadequate or unsatisfactory” condition. Similar issues are observed in other countries worldwide. Economic constraints prevent ad hoc replacements, necessitating continued operation with frequent and costly inspections. This situation creates an urgent need for cost-effective, permanent monitoring solutions. This study explores the potential use of low-cost acceleration sensors for monitoring infrastructure structures. Inclination is calculated from the acceleration data of the sensor, using gravitational acceleration as a reference point. Long-term changes in inclination may indicate a change in the geometry of the structure, thereby triggering alarm thresholds. It is particularly important to consider specific challenges associated with low measurement accuracy and the susceptibility of sensors to environmental influences in a low-cost setting. The results of laboratory tests allow for an estimation of measurement accuracy and an analysis of the various error characteristics of the sensors. The article outlines the methodology for developing low-cost inclination sensor systems, the laboratory tests conducted, and the evaluation of different measures to enhance sensor accuracy. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

21 pages, 1661 KiB  
Article
Performance Assessment of B-Series Marine Propellers with Cupping and Face Camber Ratio Using Machine Learning Techniques
by Mina Tadros and Evangelos Boulougouris
J. Mar. Sci. Eng. 2025, 13(7), 1345; https://doi.org/10.3390/jmse13071345 - 15 Jul 2025
Viewed by 365
Abstract
This study investigates the performance of B-series marine propellers enhanced through geometric modifications, namely face camber ratio (FCR) and cupping percentage modifications, using a machine learning (ML)-driven optimization framework. A large dataset of over 7000 open-water propeller configurations is curated, incorporating variations in [...] Read more.
This study investigates the performance of B-series marine propellers enhanced through geometric modifications, namely face camber ratio (FCR) and cupping percentage modifications, using a machine learning (ML)-driven optimization framework. A large dataset of over 7000 open-water propeller configurations is curated, incorporating variations in blade number, expanded area ratio (EAR), pitch-to-diameter ratio (P/D), FCR, and cupping percentage. A multi-layer artificial neural network (ANN) is trained to predict thrust, torque, and open-water efficiency (ηo) with a high coefficient of determination (R2), greater than 0.9999. The ANN is integrated into an optimization algorithm to identify optimal propeller designs for the KRISO Container Ship (KCS) using empirical constraints for cavitation and tip speed. Unlike prior studies that rely on boundary element method (BEM)-ML hybrids or multi-fidelity simulations, this study introduces a geometry-coupled analysis of FCR and cupping—parameters often treated independently—and applies empirical cavitation and acoustic (tip speed) limits to guide the design process. The results indicate that incorporating 1.0–1.5% cupping leads to a significant improvement in efficiency, up to 9.3% above the reference propeller, while maintaining cavitation safety margins and acoustic limits. Conversely, designs with non-zero FCR values (0.5–1.5%) show a modest efficiency penalty (up to 4.3%), although some configurations remain competitive when compensated by higher EAR, P/D, or blade count. The study confirms that the combination of cupping with optimized geometric parameters yields high-efficiency, cavitation-safe propellers. Furthermore, the ML-based framework demonstrates excellent potential for rapid, accurate, and scalable propeller design optimization that meets both performance and regulatory constraints. Full article
Show Figures

Figure 1

22 pages, 8767 KiB  
Article
Towards Efficiency and Endurance: Energy–Aerodynamic Co-Optimization for Solar-Powered Micro Air Vehicles
by Weicheng Di, Xin Dong, Zixing Wei, Haoji Liu, Zhan Tu, Daochun Li and Jinwu Xiang
Drones 2025, 9(7), 493; https://doi.org/10.3390/drones9070493 - 11 Jul 2025
Viewed by 333
Abstract
Despite decades of development, micro air vehicles (MAVs) still face challenges related to endurance. While solar power has been successfully implemented in larger aircraft as a clean and renewable source of energy, its adaptation to MAVs presents unique challenges due to payload constraints [...] Read more.
Despite decades of development, micro air vehicles (MAVs) still face challenges related to endurance. While solar power has been successfully implemented in larger aircraft as a clean and renewable source of energy, its adaptation to MAVs presents unique challenges due to payload constraints and complex surface geometries. To address this, this work proposes an automated algorithm for optimal solar panel arrangement on complex upper surfaces of the MAV. In addition to that, the aerodynamic performance is evaluated through computational fluid dynamics (CFD) simulations based on the Reynolds-Averaged Navier–Stokes (RANS) method. A multi-objective optimization approach simultaneously considers photovoltaic energy generation and aerodynamic efficiency. Wind tunnel validation and stability analysis of flight dynamics confirm the advantages of our optimized design. To our knowledge, this represents the first systematic framework for the energy–aerodynamic co-optimization of solar-powered MAVs (SMAVs). Flight tests of a 500mm-span tailless prototype demonstrate the practical feasibility of our approach with maximum solar cell deployment. Full article
Show Figures

Figure 1

26 pages, 4555 KiB  
Article
Influence of Geometric Effects on Dynamic Stall in Darrieus-Type Vertical-Axis Wind Turbines for Offshore Renewable Applications
by Qiang Zhang, Weipao Miao, Kaicheng Zhao, Chun Li, Linsen Chang, Minnan Yue and Zifei Xu
J. Mar. Sci. Eng. 2025, 13(7), 1327; https://doi.org/10.3390/jmse13071327 - 11 Jul 2025
Viewed by 225
Abstract
The offshore implementation of vertical-axis wind turbines (VAWTs) presents a promising new paradigm for advancing marine wind energy utilization, owing to their omnidirectional wind acceptance, compact structural design, and potential for lower maintenance costs. However, VAWTs still face major aerodynamic challenges, particularly due [...] Read more.
The offshore implementation of vertical-axis wind turbines (VAWTs) presents a promising new paradigm for advancing marine wind energy utilization, owing to their omnidirectional wind acceptance, compact structural design, and potential for lower maintenance costs. However, VAWTs still face major aerodynamic challenges, particularly due to the pitching motion, where the angle of attack varies cyclically with the blade azimuth. This leads to strong unsteady effects and susceptibility to dynamic stalls, which significantly degrade aerodynamic performance. To address these unresolved issues, this study conducts a comprehensive investigation into the dynamic stall behavior and wake vortex evolution induced by Darrieus-type pitching motion (DPM). Quasi-three-dimensional CFD simulations are performed to explore how variations in blade geometry influence aerodynamic responses under unsteady DPM conditions. To efficiently analyze geometric sensitivity, a surrogate model based on a radial basis function neural network is constructed, enabling fast aerodynamic predictions. Sensitivity analysis identifies the curvature near the maximum thickness and the deflection angle of the trailing edge as the most influential geometric parameters affecting lift and stall behavior, while the blade thickness is shown to strongly impact the moment coefficient. These insights emphasize the pivotal role of blade shape optimization in enhancing aerodynamic performance under inherently unsteady VAWT operating conditions. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Data Analysis)
Show Figures

Figure 1

14 pages, 2265 KiB  
Article
Octahedral Paclobutrazol–Zinc Complex for Enhanced Chemical Topping Efficacy in Mechanized Cotton Production: A Two-Year Field Evaluation in Xinjiang
by Jincheng Shen, Sumei Wan, Guodong Chen, Jianwei Zhang, Chen Liu, Junke Wu, Yong Li, Jie Liu, Shuren Liu, Baojiu Zhang, Meng Lu and Hongqiang Dong
Agronomy 2025, 15(7), 1659; https://doi.org/10.3390/agronomy15071659 - 8 Jul 2025
Viewed by 488
Abstract
Topping is an essential step in cotton cultivation in Xinjiang, China, which can effectively increase the number of bolls per plant and optimize the yield and quality. Paclobutrazol, as a common chemical topping agent for cotton, faces challenges such as unstable topping effect [...] Read more.
Topping is an essential step in cotton cultivation in Xinjiang, China, which can effectively increase the number of bolls per plant and optimize the yield and quality. Paclobutrazol, as a common chemical topping agent for cotton, faces challenges such as unstable topping effect and limited leaf surface absorption during application. In this study, paclobutrazol was used as the ligand and a zinc complex was synthesized by the thermosolvent method to replace paclobutrazol and improve the topping effect on cotton. The structure of the complex was characterized using FTIR, UV-vis, TG, and XRD analyses. The results confirmed that each zinc ion coordinated with four nitrogen atoms from the triazole rings of paclobutrazol and two oxygen atoms from nitrate ions, forming an octahedral geometry. Surface tension measurement and analysis revealed that the complex had a surface tension reduction of 12.75 mN/m compared to paclobutrazol, thereby enhancing the surface activity of the complex in water systems and improving its absorption efficiency on plant leaves. Two-year field trials indicated that the foliar application of the complex at a dosage of 120 g·hm−2 in inhibiting cotton plant height was more stable to that of paclobutrazol or mepiquat chloride. It also shortened the length of fruiting branches, making the shape of cotton plants compact, thereby indirectly improving the ventilation and light penetration of the cotton field and the convenience of mechanical harvesting. Yield data showed that, compared with artificial topping, the complex at a dosage of 120 g·hm−2 treatment increased cotton yield by approximately 4.6%. Therefore, the paclobutrazol–zinc complex is a promising alternative to manual topping and have great application potential in future mechanized cotton production. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

Back to TopTop