Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (323)

Search Parameters:
Keywords = façade solutions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 6464 KiB  
Article
Eco-Friendly Sandwich Panels for Energy-Efficient Façades
by Susana P. B. Sousa, Helena C. Teixeira, Giorgia Autretto, Valeria Villamil Cárdenas, Stefano Fantucci, Fabio Favoino, Pamela Voigt, Mario Stelzmann, Robert Böhm, Gabriel Beltrán, Nicolás Escribano, Belén Hernández-Gascón, Matthias Tietze and Andreia Araújo
Sustainability 2025, 17(15), 6848; https://doi.org/10.3390/su17156848 - 28 Jul 2025
Viewed by 154
Abstract
To meet the European Green Deal targets, the construction sector must improve building thermal performance via advanced insulation systems. Eco-friendly sandwich panels offer a promising solution. Therefore, this work aims to develop and validate a new eco-friendly composite sandwich panel (basalt fibres and [...] Read more.
To meet the European Green Deal targets, the construction sector must improve building thermal performance via advanced insulation systems. Eco-friendly sandwich panels offer a promising solution. Therefore, this work aims to develop and validate a new eco-friendly composite sandwich panel (basalt fibres and recycled extruded polystyrene) with enhanced multifunctionality for lightweight and energy-efficient building façades. Two panels were produced via vacuum infusion—a reference panel and a multifunctional panel incorporating phase change materials (PCMs) and silica aerogels (AGs). Their performance was evaluated through lab-based thermal and acoustic tests, numerical simulations, and on-site monitoring in a living laboratory. The test results from all methods were consistent. The PCM-AG panel showed 16% lower periodic thermal transmittance (0.16 W/(m2K) vs. 0.19 W/(m2K)) and a 92% longer time shift (4.26 h vs. 2.22 h), indicating improved thermal inertia. It also achieved a single-number sound insulation rating of 38 dB. These findings confirm the panel’s potential to reduce operational energy demand and support long-term climate goals. Full article
Show Figures

Figure 1

17 pages, 1742 KiB  
Article
Assessment of Aerodynamic Properties of the Ventilated Cavity in Curtain Wall Systems Under Varying Climatic and Design Conditions
by Nurlan Zhangabay, Aizhan Zhangabay, Kenzhebek Akmalaiuly, Akmaral Utelbayeva and Bolat Duissenbekov
Buildings 2025, 15(15), 2637; https://doi.org/10.3390/buildings15152637 - 25 Jul 2025
Viewed by 272
Abstract
Creating a comfortable microclimate in the premises of buildings is currently becoming one of the priorities in the field of architecture, construction and engineering systems. The increased attention from the scientific community to this topic is due not only to the desire to [...] Read more.
Creating a comfortable microclimate in the premises of buildings is currently becoming one of the priorities in the field of architecture, construction and engineering systems. The increased attention from the scientific community to this topic is due not only to the desire to ensure healthy and favorable conditions for human life but also to the need for the rational use of energy resources. This area is becoming particularly relevant in the context of global challenges related to climate change, rising energy costs and increased environmental requirements. Practice shows that any technical solutions to ensure comfortable temperature, humidity and air exchange in rooms should be closely linked to the concept of energy efficiency. This allows one not only to reduce operating costs but also to significantly reduce greenhouse gas emissions, thereby contributing to sustainable development and environmental safety. In this connection, this study presents a parametric assessment of the influence of climatic and geometric factors on the aerodynamic characteristics of the air cavity, which affect the heat exchange process in the ventilated layer of curtain wall systems. The assessment was carried out using a combined analytical calculation method that provides averaged thermophysical parameters, such as mean air velocity (Vs), average internal surface temperature (tin.sav), and convective heat transfer coefficient (αs) within the air cavity. This study resulted in empirical average values, demonstrating that the air velocity within the cavity significantly depends on atmospheric pressure and façade height difference. For instance, a 10-fold increase in façade height leads to a 4.4-fold increase in air velocity. Furthermore, a three-fold variation in local resistance coefficients results in up to a two-fold change in airflow velocity. The cavity thickness, depending on atmospheric pressure, was also found to affect airflow velocity by up to 25%. Similar patterns were observed under ambient temperatures of +20 °C, +30 °C, and +40 °C. The analysis confirmed that airflow velocity is directly affected by cavity height, while the impact of solar radiation is negligible. However, based on the outcomes of the analytical model, it was concluded that the method does not adequately account for the effects of solar radiation and vertical temperature gradients on airflow within ventilated façades. This highlights the need for further full-scale experimental investigations under hot climate conditions in South Kazakhstan. The findings are expected to be applicable internationally to regions with comparable climatic characteristics. Ultimately, a correct understanding of thermophysical processes in such structures will support the advancement of trends such as Lightweight Design, Functionally Graded Design, and Value Engineering in the development of curtain wall systems, through the optimized selection of façade configurations, accounting for temperature loads under specific climatic and design conditions. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

27 pages, 4254 KiB  
Review
Dynamic Skin: A Systematic Review of Energy-Saving Design for Building Facades
by Jian Wang, Shengcai Li and Peng Ye
Buildings 2025, 15(14), 2572; https://doi.org/10.3390/buildings15142572 - 21 Jul 2025
Viewed by 308
Abstract
The construction industry is one of the main areas of energy consumption and carbon emissions, and strengthening research on the thermal performance of building facades can effectively promote energy conservation and emission reduction. Compared with traditional static enclosure structures, dynamic skin can adapt [...] Read more.
The construction industry is one of the main areas of energy consumption and carbon emissions, and strengthening research on the thermal performance of building facades can effectively promote energy conservation and emission reduction. Compared with traditional static enclosure structures, dynamic skin can adapt its functions, characteristics, and methods based on constantly changing environmental conditions and performance requirements. It has great potential in adapting to the environment, reducing energy consumption, adjusting shading and natural ventilation, and improving human thermal and visual comfort. To comprehensively understand the key technologies of dynamic skin energy-saving design, previous research results were comprehensively compiled from relevant databases. The research results indicate that various types of dynamic skins, intelligent materials, multi-layer facades, dynamic shading, and biomimetic facades are commonly used core technologies for dynamic facades. Parametric modeling, computer simulation, and multi-objective algorithms are commonly used to optimize the performance of dynamic skin. In addition, integrated technology design, interaction design, and lifecycle design should be effective methods for improving dynamic skin energy efficiency, resident satisfaction, and economic benefits. Despite current challenges, dynamic skin energy-saving technology remains one of the most effective solutions for future sustainable building design. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

31 pages, 16050 KiB  
Article
Biomimetic Opaque Ventilated Façade for Low-Rise Buildings in Hot Arid Climate
by Ahmed Alyahya, Simon Lannon and Wassim Jabi
Buildings 2025, 15(14), 2491; https://doi.org/10.3390/buildings15142491 - 16 Jul 2025
Viewed by 390
Abstract
Enhancing the thermal performance of building façades is vital for reducing energy demand in hot desert climates, where envelope heat gain increases cooling loads. This study investigates the integration of biomimicry into opaque ventilated façade (OVF) systems as a novel approach to reduce [...] Read more.
Enhancing the thermal performance of building façades is vital for reducing energy demand in hot desert climates, where envelope heat gain increases cooling loads. This study investigates the integration of biomimicry into opaque ventilated façade (OVF) systems as a novel approach to reduce façade surface temperatures. Thirteen bio-inspired façade configurations, modeled after strategies observed in nature, were evaluated using computational fluid dynamics simulations to assess their effectiveness in increasing airflow and reducing inner skin surface temperatures. Results show that all proposed biomimetic solutions outperformed the baseline OVF in terms of thermal performance, with the wide top mound configuration achieving the greatest temperature reduction—up to 5.9 °C below the baseline OVF and 16.4 °C below an unventilated façade. The study introduces an innovative methodology that derives façade design parameters from nature and validates them through simulation. These findings highlight the potential of nature-based solutions to improve building envelope performance in extreme climates. Full article
Show Figures

Figure 1

3 pages, 155 KiB  
Editorial
Phase Change Materials for Building Energy Applications
by Facundo Bre, Antonio Caggiano and Umberto Berardi
Energies 2025, 18(13), 3534; https://doi.org/10.3390/en18133534 - 4 Jul 2025
Viewed by 308
Abstract
This editorial introduces the Special Issue entitled “Phase Change Materials for Building Energy Applications”, which gathers nine original research articles focused on advancing thermal energy storage solutions in the built environment. The selected contributions explore the application of phase change materials (PCMs) across [...] Read more.
This editorial introduces the Special Issue entitled “Phase Change Materials for Building Energy Applications”, which gathers nine original research articles focused on advancing thermal energy storage solutions in the built environment. The selected contributions explore the application of phase change materials (PCMs) across a range of building components and systems, including façades, flooring, glazing, and pavements, aimed at enhancing energy efficiency, reducing peak loads, and improving thermal comfort. This Special Issue highlights both experimental and numerical investigations, ranging from nanomaterial-enhanced PCMs and solid–solid PCM glazing systems to full-scale applications and the modeling of encapsulated PCM geometries. Collectively, these studies reflect the growing potential of PCMs to support sustainable, low-carbon construction and provide new insights into material design, system optimization, and energy resilience. We thank all contributing authors and reviewers for their valuable input and hope that this Special Issue serves as a resource for ongoing innovation in the field. Full article
(This article belongs to the Special Issue Phase Change Materials for Building Energy Applications)
29 pages, 7665 KiB  
Article
Energy Sustainability, Resilience, and Climate Adaptability of Modular and Panelized Buildings with a Lightweight Envelope Integrating Active Thermal Protection: Part 2—Design and Implementation of an Experimental Prototype of a Building Module for Modular Buildings
by Daniel Kalús, Veronika Mučková, Zuzana Straková, Rastislav Ingeli, Naďa Antošová, Patrik Šťastný, Marek Ďubek, Mária Füri and Martin Bolček
Coatings 2025, 15(7), 781; https://doi.org/10.3390/coatings15070781 - 2 Jul 2025
Viewed by 664
Abstract
The integration of energy-active elements into the building envelope in the form of large-area heating/cooling, active thermal protection (ATP), thermal barriers (TB), and TABS represents a technical solution that is consistent with the principles of energy sustainability, resilience, and adaptability to climate change [...] Read more.
The integration of energy-active elements into the building envelope in the form of large-area heating/cooling, active thermal protection (ATP), thermal barriers (TB), and TABS represents a technical solution that is consistent with the principles of energy sustainability, resilience, and adaptability to climate change and ensures affordable and clean energy for all while protecting the climate in the context of the UN Sustainable Development Goals. The aim and innovation of our research is to develop energy multifunctional facades (EMFs) that are capable of performing a dual role, which includes the primary known energy functions of end elements and the additional innovative ability to serve as a source of heat/cooling/electricity. This new function of EMFs will facilitate heat dissipation from overheated facade surfaces, preheating of hot water, and electricity generation for the operation of building energy systems through integrated photovoltaic components. The theoretical assumptions and hypotheses presented in our previous research work must be verified by experimental measurements with predictions of the optimal operation of building energy systems. Most existing studies on thermal barriers are based on calculations. However, there are few empirical measurements that quantify the benefits of ATP in real operation and specify the conditions under which different types of ATP are feasible. In this article, we present the development, design, and implementation of an experimental prototype of a prefabricated building module with integrated energy-active elements. The aim is to fill the knowledge gaps by providing a comprehensive framework that includes the development, research, design, and implementation of combined energy systems for buildings. The design of energy systems will be developed in BIM. An important result of this research is the development of a technological process for the implementation of a contact insulation system with integrated ATP in modular and panel buildings with a lightweight envelope. Full article
Show Figures

Figure 1

25 pages, 1759 KiB  
Article
A Comparative Evaluation of the Thermal Performance of Passive Facades with Variable Cavity Widths for Near-Zero Energy Buildings (nZEB): A Modeling Study
by Eugen Iavorschi, Laurențiu Dan Milici, Constantin Ungureanu and Ciprian Bejenar
Appl. Sci. 2025, 15(13), 7019; https://doi.org/10.3390/app15137019 - 22 Jun 2025
Cited by 1 | Viewed by 779
Abstract
In the current context of the transition toward climate neutrality and the pressing need to reduce energy consumption in the construction sector, nZEBs have become a central benchmark in European sustainability policies. These buildings offer multiple benefits, such as reduced operational costs, enhanced [...] Read more.
In the current context of the transition toward climate neutrality and the pressing need to reduce energy consumption in the construction sector, nZEBs have become a central benchmark in European sustainability policies. These buildings offer multiple benefits, such as reduced operational costs, enhanced thermal comfort, and improved indoor air quality. Achieving such performance requires the integration of advanced technological solutions, including passive façades with ventilated cavities. The primary objective of this study is to investigate the influence of cavity geometry on the thermal behavior of a passive façade, through numerical simulations conducted in ANSYS Fluent 17. The study focuses on comparing five distinct configurations with varying cavity widths, aiming to identify the optimal solution in terms of heat transfer efficiency. The main contribution lies in the analysis and correlation of air temperature and velocity distributions with the cavity’s geometric parameters, highlighting the impact of channel width on thermal performance. The configuration with a 12 cm wide air channel recorded the highest heat flux at the outlet, approximately 44 times greater than the façade with a 4 cm wide channel, making it the most efficient solution. The results indicate significantly higher thermal efficiency for the configuration with a larger cavity width, contrary to initial intuitive assumptions. These insights provide a valuable framework for the optimal design of passive façades in nZEB applications and highlight the need for further research, combining numerical and experimental approaches, to develop sustainable and energy-efficient building envelope solutions. Full article
(This article belongs to the Special Issue Advancements in HVAC Technologies and Zero-Emission Buildings)
Show Figures

Figure 1

21 pages, 3571 KiB  
Article
An Experimental Study of Wind-Driven Ventilation with Double Skin Facade During Transition Seasons
by Guoqing He, Zhewen Fan, Yuan Meng, Linfeng Yao and Changqing Ye
Energies 2025, 18(13), 3249; https://doi.org/10.3390/en18133249 - 21 Jun 2025
Viewed by 325
Abstract
Double skin facade (DSF) is an energy-efficient solution for glazing facades. However, previous studies have reported inconsistent findings regarding thermal comfort in naturally ventilated DSF buildings. To examine this issue, this study evaluated airflow velocities in naturally ventilated DSF buildings during transition seasons [...] Read more.
Double skin facade (DSF) is an energy-efficient solution for glazing facades. However, previous studies have reported inconsistent findings regarding thermal comfort in naturally ventilated DSF buildings. To examine this issue, this study evaluated airflow velocities in naturally ventilated DSF buildings during transition seasons through a comparative study approach. A full-scale box-type DSF room and a traditional window-wall room were simultaneously monitored in a laboratory building under real climatic conditions, with indoor environmental parameters recorded for 10 days. Airflow sensation surveys complemented the physical measurements to evaluate perceived comfort. The results showed that the DSF room consistently exhibited lower air velocities (≤0.2 m/s) compared to the traditional room, demonstrating minimal response to wind conditions related to its small openings (opening ratio of 4.7%) and increased flow resistance from the dual-layer structure of the DSF. Under unfavorable wind conditions, the DSF room demonstrated higher ventilation rates due to the enhanced stack effect. However, this advantage had a negligible effect on the thermal comfort vote for the indoor temperature range (26 °C to 28 °C). These findings highlight the climate-dependent performance of DSFs: while advantageous for thermal comfort in cooler climates, they may lead to reduced thermal comfort in warm and hot climates due to low indoor airflow velocities. Future work could include the optimization of DSF opening configurations to enhance wind-driven ventilation while maintaining stack ventilation benefits. Full article
(This article belongs to the Special Issue Energy Efficiency and Energy Performance in Buildings—2nd Edition)
Show Figures

Figure 1

27 pages, 7310 KiB  
Article
Energy and Thermal Comfort Performance of Vacuum Glazing-Based Building Envelope Retrofit in Subtropical Climate: A Case Study
by Changyu Qiu, Hongxing Yang and Kaijun Dong
Buildings 2025, 15(12), 2038; https://doi.org/10.3390/buildings15122038 - 13 Jun 2025
Viewed by 801
Abstract
In the context of global warming, building transformation takes on a dual responsibility to be more energy-efficient and sustainable for climate change mitigation and to be more climate-resilient for occupants’ comfort. The building energy retrofitting is an urgent need due to the large [...] Read more.
In the context of global warming, building transformation takes on a dual responsibility to be more energy-efficient and sustainable for climate change mitigation and to be more climate-resilient for occupants’ comfort. The building energy retrofitting is an urgent need due to the large amount of existing building stock. Especially in high-rise and high-density cities under a subtropical climate, like Hong Kong, existing buildings with large glazed façades face the challenges of high energy consumption and overheating risks. An advanced glazing system, namely the vacuum insulating glazing (VIG), shows the potential for effective building envelope retrofitting due to its excellent thermal insulation ability. Yet, its performance for practical applications in the subtropical region has not been investigated. To enhance the energy performance and thermal comfort of existing high-rise buildings, this study proposed a novel retrofitting approach by integrating the VIG into the existing window system as secondary glazing. Field experiments were conducted in a commercial building in Hong Kong to investigate the thermal performance of the VIG retrofit application under real-world conditions. Furthermore, the energy-saving potential and thermal comfort performance of the VIG retrofit were evaluated by building energy simulations. The experimental results indicate that the VIG retrofit can effectively stabilize the fluctuation of the inside glass surface temperature and significantly reduce the heat gain by up to 85.3%. The simulation work shows the significant energy-saving potential of the VIG retrofit in Hong Kong. For the VIG retrofit cases under different scenarios, the energy-saving potential varies from 12.5% to 29.7%. In terms of occupants’ thermal comfort, the VIG retrofit can significantly reduce the overheating risk and improve thermal satisfaction by 9.2%. Due to the thermal comfort improvement, the cooling setpoint could be reset to 1 °C higher without compromising the overall thermal comfort. The average payback period for the VIG application is 5.8 years and 8.6 years for the clear glass retrofit and the coated glass retrofit, respectively. Therefore, the VIG retrofit approach provides a promising solution for building envelope retrofits under subtropical climate conditions. It not only benefits building owners and occupants but also contributes to achieving long-term climate resilience and the carbon neutrality of urban areas. Full article
Show Figures

Figure 1

21 pages, 7361 KiB  
Article
How Can Urban Forms Balance Solar and Noise Exposition for a Sustainable Design?
by Marta Oliveira, Hélder Coutinho, Paulo Mendonça, Martin Tenpierik, José F. Silva and Lígia Torres Silva
Sustainability 2025, 17(11), 5125; https://doi.org/10.3390/su17115125 - 3 Jun 2025
Viewed by 445
Abstract
Sustainable development requires efficient planning and management of both natural and built resources. The identification of urban forms that best balance exposure to solar radiation and urban noise, ensuring compliance with residential construction regulations and European directives may be carried out through simulations. [...] Read more.
Sustainable development requires efficient planning and management of both natural and built resources. The identification of urban forms that best balance exposure to solar radiation and urban noise, ensuring compliance with residential construction regulations and European directives may be carried out through simulations. The proposed methodology involves simulating various scenarios and adjusting parameters of selected urban forms to evaluate the availability of solar radiation and the noise exposure on building façades within a specific context. In addressing the requirements for solar and noise optimization, predictive models (solar and noise) were employed, utilizing urban form indicators to relate these three variables. The case study demonstrates the inverse behavior of these variables in relation to the same urban forms. The findings highlight the optimal urban forms for each scenario. The enclosed form was identified as the most suitable for minimizing noise exposure, while the linear form is optimal for maximizing solar radiation exposure. This approach allows the designer to make informed decisions that balance these competing requirements, achieving a compromise between optimizing thermal and acoustic performance. The ultimate goal is to enhance the overall comfort of the building, reduce energy consumption, and promote a sustainable building solution. Full article
Show Figures

Figure 1

26 pages, 3016 KiB  
Article
Towards a Regenerative and Climate-Resilient Built Environment: Greening Lessons from European Cities
by Francesco Sommese, Lorenzo Diana, Simona Colajanni, Marco Bellomo, Gaetano Sciuto and Grazia Lombardo
Buildings 2025, 15(11), 1878; https://doi.org/10.3390/buildings15111878 - 29 May 2025
Viewed by 493
Abstract
Nature-Based Solutions offer a concrete opportunity to integrate nature into cities and strengthen their resilience, in response to global challenges related to climate change, biodiversity loss, and water management, which are exacerbated by urban expansion and its impacts on the built environment. This [...] Read more.
Nature-Based Solutions offer a concrete opportunity to integrate nature into cities and strengthen their resilience, in response to global challenges related to climate change, biodiversity loss, and water management, which are exacerbated by urban expansion and its impacts on the built environment. This study aims to analyze various European policies and urban greening practices, considering not only some European Union member states but also other cities geographically located in Europe. The main goal is to explore how these solutions are used in various European cities to address environmental challenges and improve urban quality of life. The study highlights the growing role of greening strategies in EU urban policies as key tools to tackle global challenges. It finds that green interventions—such as green roofs, façades, and green urban spaces—offer multifunctional benefits, but their effectiveness relies on integrated planning, strong public–private cooperation, and active community involvement. Key challenges include the limited scalability of these solutions in dense or economically constrained areas and the need for long-term financial and institutional support. Overall, the study highlights that greening is not merely aesthetic but central to building regenerative and climate-resilient cities. Full article
Show Figures

Figure 1

28 pages, 7741 KiB  
Article
Computational Evaluation of a Biomimetic Kinetic Façade Inspired by the Venus Flytrap for Daylight and Glare Performance
by Fataneh Farmani, Seyed Morteza Hosseini, Morteza Khalaji Assadi and Soroush Hassanzadeh
Buildings 2025, 15(11), 1853; https://doi.org/10.3390/buildings15111853 - 28 May 2025
Cited by 1 | Viewed by 1109
Abstract
Centralized daylight control has been extensively studied for its ability to optimize useful daylight while mitigating glare in targeted areas. However, this approach lacks a comprehensive visual comfort framework, as it does not simultaneously address spatial glare distribution, uniform high useful daylight levels [...] Read more.
Centralized daylight control has been extensively studied for its ability to optimize useful daylight while mitigating glare in targeted areas. However, this approach lacks a comprehensive visual comfort framework, as it does not simultaneously address spatial glare distribution, uniform high useful daylight levels across all sensor points, and overheating prevention through regulated annual solar exposure. Nevertheless, decentralized control facilitates autonomous operation of the individual façade components, addressing all the objectives. This study integrates a biomimetic functional approach with building performance simulations by computational design to evaluate different kinetic façade configurations. Through the implementation of parametric modeling and daylight analysis, we have identified an optimal angular configuration (60° for the focal region, 50° for the non-focal region) that significantly increases building performance. The optimized design demonstrates substantial improvements, reducing excessive sunlight exposure by 45–55% and glare incidence by 65–72% compared to other dynamic solutions. The recommended steeper angles achieve superior performance, maintaining high useful daylight illuminance (UDI > 91.5%) while dramatically improving visual comfort. Sensitivity analysis indicates that even minor angular adjustments (5–10°) can induce a 10–15% variation in glare performance, emphasizing the necessity of precise control mechanisms in both focal and non-focal regions of the façade. These findings establish a framework for creating responsive building façades that balance daylight provision with occupant comfort in real-time operation. Full article
Show Figures

Figure 1

23 pages, 9466 KiB  
Article
Nature-Based Solutions: Green and Smart Façade with an Innovative Cultivation System for Sustainable Buildings and More Climate-Resilient Cities
by Paola Lassandro, Salvatore Capotorto and Valeria Mammone
Sustainability 2025, 17(10), 4580; https://doi.org/10.3390/su17104580 - 16 May 2025
Viewed by 488
Abstract
To address the challenges linked to climate change, rapidly increasing urbanization, and food security necessity, this study explores the potential of smart, low-cost innovative cultivation systems for modules on facades as nature-based solutions (NBSs) to improve building energy efficiency, urban food production, and [...] Read more.
To address the challenges linked to climate change, rapidly increasing urbanization, and food security necessity, this study explores the potential of smart, low-cost innovative cultivation systems for modules on facades as nature-based solutions (NBSs) to improve building energy efficiency, urban food production, and sustainability. Innovative cultivation systems were studied and implemented in the horizontal experimental setup, with a focus on sub-irrigation techniques with terracotta pots, ozonated water, and IoT use. The best eco-smart irrigation system was selected considering both plant growth and the water savings obtained (up to 57.14%) in comparison to the traditional method. With the implementation of this system, a vertical green module (VGM) was designed, allowing for efficient distribution and water savings. The positive effects in terms of temperature reduction and energy behavior were validated by comparing two office rooms: one without VGM and the other with VGM in a Mediterranean city. The drop in internal temperatures achieved was up to 3–4 °C during the hot days of the experimental campaign. The uptake of this low-cost and smart prototype can be useful to support the enhancement of energy-efficient, eco-sustainable, and self-sufficient buildings and urban spaces, contributing to creating more climate-resilient cities and promoting sustainable urban agriculture. Full article
Show Figures

Figure 1

42 pages, 2459 KiB  
Review
Climate-Responsive Design of Photovoltaic Façades in Hot Climates: Materials, Technologies, and Implementation Strategies
by Xiaohui Wu, Yanfeng Wang, Shile Deng and Ping Su
Buildings 2025, 15(10), 1648; https://doi.org/10.3390/buildings15101648 - 14 May 2025
Cited by 2 | Viewed by 1451
Abstract
With the intensification of global climate change, buildings in hot climate zones face increasing challenges related to high energy consumption and thermal comfort. Building integrated photovoltaic (BIPV) façades, which combine power generation and energy saving potential, require further optimization in their climate-adaptive design. [...] Read more.
With the intensification of global climate change, buildings in hot climate zones face increasing challenges related to high energy consumption and thermal comfort. Building integrated photovoltaic (BIPV) façades, which combine power generation and energy saving potential, require further optimization in their climate-adaptive design. Most existing studies primarily focus on the photoelectric conversion efficiency of PV modules, yet there is a lack of systematic analysis of the coupled effects of temperature, humidity, and solar radiation intensity on PV performance. Moreover, the current literature rarely addresses the regional material degradation patterns, integrated cooling solutions, or intelligent control systems suitable for hot and humid climates. There is also a lack of practical, climate specific design guidelines that connect theoretical technologies with real world applications. This paper systematically reviews BIPV façade design strategies following a climate zoning framework, summarizing research progress from 2019 to 2025 in the areas of material innovation, thermal management, light regulation strategies, and parametric design. A climate responsive strategy is proposed to address the distinct challenges of humid hot and dry hot climates. Finally, this study discusses the barriers and challenges of BIPV system applications in hot climates and highlights future research directions. Unlike previous reviews, this paper offers a multi-dimensional synthesis that integrates climatic classification, material suitability, passive and active cooling strategies, and intelligent optimization technologies. It further provides regionally differentiated recommendations for façade design and outlines a unified framework to guide future research and practical deployment of BIPV systems in hot climates. Full article
Show Figures

Figure 1

29 pages, 5511 KiB  
Article
Enhancing South-Facing Office Environments at 51° Latitude: Optimizing Shading, PV Performance, and Acoustics with Sloped Horizontal Fins
by Marcin Brzezicki, Joanna Jablonska, Pawel Regucki and Dominik Błoński
Sustainability 2025, 17(10), 4426; https://doi.org/10.3390/su17104426 - 13 May 2025
Viewed by 646
Abstract
This study investigates the effectiveness of sloped horizontal shading fins in enhancing visual comfort, electricity generation, and acoustic attenuation in a south-facing office room in Wrocław, Poland (51° latitude). A simulation-based approach combined Radiance daylight simulations, PV energy modeling, and graphical acoustic analysis. [...] Read more.
This study investigates the effectiveness of sloped horizontal shading fins in enhancing visual comfort, electricity generation, and acoustic attenuation in a south-facing office room in Wrocław, Poland (51° latitude). A simulation-based approach combined Radiance daylight simulations, PV energy modeling, and graphical acoustic analysis. Four fin configurations were tested to identify the optimal design. The results indicate that Variant 3, featuring two 1 m wide fins inclined at 45°, achieved the best overall performance, increasing UDI300–3000/168 from 53.1% to 95.8%, reducing DGP from 50% to 27%, and enabling an estimated annual electricity production of 4.67 MWh. Additionally, applying sound-absorbing material on the shaded side of the fins significantly reduced reflective acoustic wave bounces, significantly reducing façade-exposed noise. This multifunctional solution demonstrates a practical and scalable strategy for improving office environmental quality in temperate climates, contributing to energy efficiency, acoustic comfort, and visual well being. Full article
(This article belongs to the Special Issue Built Environment and Sustainable Energy Efficiency)
Show Figures

Figure 1

Back to TopTop