Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,237)

Search Parameters:
Keywords = extracellular materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 7197 KiB  
Review
Microfluidic Platforms for Ex Vivo and In Vivo Gene Therapy
by Sungjun Kwak, Hyojeong Lee, Dongjun Yu, Tae-Joon Jeon, Sun Min Kim and Hyunil Ryu
Biosensors 2025, 15(8), 504; https://doi.org/10.3390/bios15080504 - 4 Aug 2025
Abstract
Recent studies have demonstrated the clinical potential of nucleic acid therapeutics (NATs). However, their efficient and scalable delivery remains a major challenge for both ex vivo and in vivo gene therapy. Microfluidic platforms have emerged as a powerful tool for overcoming these limitations [...] Read more.
Recent studies have demonstrated the clinical potential of nucleic acid therapeutics (NATs). However, their efficient and scalable delivery remains a major challenge for both ex vivo and in vivo gene therapy. Microfluidic platforms have emerged as a powerful tool for overcoming these limitations by enabling precise intracellular delivery and consistent therapeutic carrier fabrication. This review examines microfluidic strategies for gene delivery at the cellular level. These strategies include mechanoporation, electroporation, and sonoporation. We also discuss the synthesis of lipid nanoparticles, polymeric particles, and extracellular vesicles for systemic administration. Unlike conventional approaches, which treat ex vivo and in vivo delivery as separate processes, this review focuses on integrated microfluidic systems that unify these functions. For example, genetic materials can be delivered to cells that secrete therapeutic extracellular vesicles (EVs), or engineered cells can be encapsulated within hydrogels for implantation. These strategies exemplify the convergence of gene delivery and carrier engineering. They create a single workflow that bridges cell-level manipulation and tissue-level targeting. By synthesizing recent technological advances, this review establishes integrated microfluidic platforms as being fundamental to the development of next-generation NAT systems that are scalable, programmable, and clinically translatable. Full article
(This article belongs to the Special Issue Microfluidics for Biomedical Applications (3rd Edition))
Show Figures

Figure 1

10 pages, 1883 KiB  
Article
In Vitro Biofilm Formation Kinetics of Pseudomonas aeruginosa and Escherichia coli on Medical-Grade Polyether Ether Ketone (PEEK) and Polyamide 12 (PA12) Polymers
by Susana Carbajal-Ocaña, Kristeel Ximena Franco-Gómez, Valeria Atehortúa-Benítez, Daniela Mendoza-Lozano, Luis Vicente Prado-Cervantes, Luis J. Melgoza-Ramírez, Miguel Delgado-Rodríguez, Mariana E. Elizondo-García and Jorge Membrillo-Hernández
Hygiene 2025, 5(3), 32; https://doi.org/10.3390/hygiene5030032 - 1 Aug 2025
Viewed by 179
Abstract
Biofilms, structured communities of microorganisms encased in an extracellular matrix, are a major cause of persistent infections, particularly when formed on medical devices. This study investigated the kinetics of biofilm formation by Escherichia coli and Pseudomonas aeruginosa, two clinically significant pathogens, on [...] Read more.
Biofilms, structured communities of microorganisms encased in an extracellular matrix, are a major cause of persistent infections, particularly when formed on medical devices. This study investigated the kinetics of biofilm formation by Escherichia coli and Pseudomonas aeruginosa, two clinically significant pathogens, on two medical-grade polymers: polyether ether ketone (PEEK) and polyamide 12 (PA12). Using a modified crystal violet staining method and spectrophotometric quantification, we evaluated biofilm development over time on polymer granules and catheter segments composed of these materials. Results revealed that PEEK surfaces supported significantly more biofilm formation than PA12, with peak accumulation observed at 24 h for both pathogens. Conversely, PA12 demonstrated reduced bacterial adhesion and lower biofilm biomass, suggesting surface characteristics less conducive to microbial colonization. Additionally, the study validated a reproducible protocol for assessing biofilm formation, providing a foundation for evaluating anti-biofilm strategies. While the assays were performed under static in vitro conditions, the findings highlight the importance of material selection and early prevention strategies in the design of infection-resistant medical devices. This work contributes to the understanding of how surface properties affect microbial adhesion and underscores the critical need for innovative surface modifications or coatings to mitigate biofilm-related healthcare risks. Full article
(This article belongs to the Section Hygiene in Healthcare Facilities)
Show Figures

Figure 1

16 pages, 875 KiB  
Article
Association of Bioelectrical Impedance Analysis Parameters with Malnutrition in Patients Undergoing Maintenance Hemodialysis: A Cross-Sectional Study
by Minh D. Pham, Thang V. Dao, Anh T. X. Vu, Huong T. Q. Bui, Bon T. Nguyen, An T. T. Nguyen, Thuy T. T. Ta, Duc M. Cap, Toan D. Le, Phuc H. Phan, Ha N. Vu, Tuan D. Le, Toan Q. Pham, Thang V. Le, Thuc C. Luong, Thang B. Ta and Tuyen V. Duong
Medicina 2025, 61(8), 1396; https://doi.org/10.3390/medicina61081396 - 1 Aug 2025
Viewed by 206
Abstract
Background and Objectives: Malnutrition is one of the most common complications in patients undergoing hemodialysis (HD) and is closely linked to increased morbidity and mortality. This study aimed to investigate the nutritional status of HD patients and the clinical relevance of bioelectrical impedance [...] Read more.
Background and Objectives: Malnutrition is one of the most common complications in patients undergoing hemodialysis (HD) and is closely linked to increased morbidity and mortality. This study aimed to investigate the nutritional status of HD patients and the clinical relevance of bioelectrical impedance analysis (BIA) parameters such as the percent body fat (PBF), skeletal muscle mass index (SMI), extracellular water-to-total body water ratio (ECW/TBW), and phase angle (PhA) in assessing malnutrition in Vietnamese HD patients. Materials and Methods: This cross-sectional study was conducted among 184 patients undergoing hemodialysis in Hanoi, Vietnam. The BIA parameters were measured by the InBody S10 body composition analyzer, while malnutrition was assessed by the geriatric nutritional risk index (GNRI), with a GNRI <92 classified as a high risk of malnutrition. The independent BIA variables for predicting malnutrition and its cut-off values were explored using logistic regression models and a receiver operating characteristic (ROC) curve analysis, respectively. Results: Among the study population, 42.9% (79/184) of patients were identified as being at a high risk of malnutrition. The multivariate logistic regression analysis revealed that a higher ECW/TBW was independently associated with an increased risk of malnutrition, while the PBF, SMI, and PhA expressed significant and inverse associations with the malnutrition risk after adjusting for multiple confounders. The cut-off values for predicting the high risk of malnutrition in overall HD patients were determined to be 20.45%, 7.75 kg/m2, 5.45°, and 38.03% for the PBF, the SMI, the PhA, and the ECW/TBW ratio, respectively. Conclusions: BIA parameters, including the PBF, SMI, PhA, and ECW/TBW ratio, could serve as indicators of malnutrition in general Vietnamese patients with HD. Full article
(This article belongs to the Special Issue End-Stage Kidney Disease (ESKD))
Show Figures

Figure 1

19 pages, 1625 KiB  
Review
The Potential of Functional Hydrogels in Burns Treatment
by Nathalie S. Ringrose, Ricardo W. J. Balk, Susan Gibbs, Paul P. M. van Zuijlen and H. Ibrahim Korkmaz
Gels 2025, 11(8), 595; https://doi.org/10.3390/gels11080595 - 31 Jul 2025
Viewed by 136
Abstract
Burn injuries are complex and require effective wound management strategies. Traditional treatments, such as dermal templates, are limited by simplified extracellular matrix (ECM) composition (e.g., collagen-elastin or collagen-glycosaminoglycan), sheet-based formats, and frequent use of animal-derived materials. These limitations can reduce wound conformity, biocompatibility, [...] Read more.
Burn injuries are complex and require effective wound management strategies. Traditional treatments, such as dermal templates, are limited by simplified extracellular matrix (ECM) composition (e.g., collagen-elastin or collagen-glycosaminoglycan), sheet-based formats, and frequent use of animal-derived materials. These limitations can reduce wound conformity, biocompatibility, and integration with host tissue. Functional hydrogels are being explored as alternatives due to properties such as high water content, biodegradability, adhesiveness, antimicrobial activity, and support for angiogenesis. Unlike standard templates, hydrogels can adapt to irregular wound shapes as in burn wounds and reach deeper tissue layers, supporting moisture retention, cell migration, and controlled drug delivery. These features may improve the wound environment and support healing in burns of varying severity. This review outlines recent developments in functional hydrogel technologies and compares them to current clinical treatments for burn care. Emphasis is placed on the structural and biological features that influence performance, including material composition, bioactivity, and integration capacity. Through an exploration of key mechanisms of action and clinical applications, this review highlights the benefits and challenges associated with hydrogel technology, providing insights into its future role in burn care. Full article
(This article belongs to the Special Issue Hydrogel for Tissue Engineering and Biomedical Therapeutics)
Show Figures

Figure 1

22 pages, 1268 KiB  
Review
Natural Polymer-Based Hydrogel Platforms for Organoid and Microphysiological Systems: Mechanistic Insights and Translational Perspectives
by Yeonoh Cho, Jungmok You and Jong Hun Lee
Polymers 2025, 17(15), 2109; https://doi.org/10.3390/polym17152109 - 31 Jul 2025
Viewed by 354
Abstract
Organoids and microphysiological systems (MPSs) have emerged as physiologically relevant platforms that recapitulate key structural and functional features of human organs, tissues, and microenvironments. As one of the essential components that define the success of these systems, hydrogels play the central role of [...] Read more.
Organoids and microphysiological systems (MPSs) have emerged as physiologically relevant platforms that recapitulate key structural and functional features of human organs, tissues, and microenvironments. As one of the essential components that define the success of these systems, hydrogels play the central role of providing a three-dimensional, biomimetic scaffold that supports cell viability, spatial organization, and dynamic signaling. Natural polymer-based hydrogels, derived from materials such as collagen, gelatin, hyaluronic acid, and alginate, offer favorable properties including biocompatibility, degradability, and an extracellular matrix-like architecture. This review presents recent advances in the design and application of such hydrogels, focusing on crosslinking strategies (physical, chemical, and hybrid), the viscoelastic characteristics, and stimuli-responsive behaviors. The influence of these materials on cellular processes, such as stemness maintenance, differentiation, and morphogenesis, is critically examined. Furthermore, the applications of organoid culture and dynamic MPS platforms are discussed, highlighting their roles in morphogen delivery, barrier formation, and vascularization. Current challenges and future perspectives toward achieving standardized, scalable, and translational hydrogel systems are also addressed. Full article
Show Figures

Figure 1

12 pages, 1774 KiB  
Article
Comparison of Adhesion of Immortalized Human Iris-Derived Cells and Fibronectin on Phakic Intraocular Lenses Made of Different Polymer Base Materials
by Kei Ichikawa, Yoshiki Tanaka, Rie Horai, Yu Kato, Kazuo Ichikawa and Naoki Yamamoto
Medicina 2025, 61(8), 1384; https://doi.org/10.3390/medicina61081384 - 30 Jul 2025
Viewed by 213
Abstract
Background and Objectives: Posterior chamber phakic implantable contact lenses (Phakic-ICL) are widely used for refractive correction due to their efficacy and safety, including minimal corneal endothelial cell loss. The Collamer-based EVO+ Visian implantable contact lens (ICL), manufactured from Collamer, which is a blend [...] Read more.
Background and Objectives: Posterior chamber phakic implantable contact lenses (Phakic-ICL) are widely used for refractive correction due to their efficacy and safety, including minimal corneal endothelial cell loss. The Collamer-based EVO+ Visian implantable contact lens (ICL), manufactured from Collamer, which is a blend of collagen and hydroxyethyl methacrylate (HEMA), has demonstrated excellent long-term biocompatibility and optical clarity. Recently, hydrophilic acrylic Phakic-ICLs, such as the Implantable Phakic Contact Lens (IPCL), have been introduced. This study investigated the material differences among Phakic-ICLs and their interaction with fibronectin (FN), which has been reported to adhere to intraocular lens (IOL) surfaces following implantation. The aim was to compare Collamer, IPCL, and LENTIS lenses (used as control) in terms of FN distribution and cell adhesion using a small number of explanted Phakic-ICLs. Materials and Methods: Three lens types were analyzed: a Collamer Phakic-ICL (EVO+ Visian ICL), a hydrophilic acrylic IPCL, and a hydrophilic acrylic phakic-IOL (LENTIS). FN distribution and cell adhesion were evaluated across different regions of each lens. An in vitro FN-coating experiment was conducted to assess its effect on cell adhesion. Results: All lenses demonstrated minimal FN deposition and cellular adhesion in the central optical zone. A thin FN film was observed on the haptics of Collamer lenses, while FN adhesion was weaker or absent on IPCL and LENTIS surfaces. Following FN coating, Collamer lenses supported more uniform FN film formation; however, this did not significantly enhance cell adhesion. Conclusions: Collamer, which contains collagen, promotes FN film formation. Although FN film formation was enhanced, the low cell-adhesive properties of HEMA resulted in minimal cell adhesion even with FN presence. This characteristic may contribute to the long-term transparency and biocompatibility observed clinically. In contrast, hydrophilic acrylic materials used in IPCL and LENTIS demonstrated limited FN interaction. These material differences may influence extracellular matrix protein deposition and biocompatibility in clinical settings, warranting further investigation. Full article
(This article belongs to the Special Issue Ophthalmology: New Diagnostic and Treatment Approaches)
Show Figures

Figure 1

24 pages, 5342 KiB  
Article
Esterase and Peroxidase Are Involved in the Transformation of Chitosan Films by the Fungus Fusarium oxysporum Schltdl. IBPPM 543
by Natalia N. Pozdnyakova, Tatiana S. Babicheva, Daria S. Chernova, Irina Yu. Sungurtseva, Andrey M. Zakharevich, Sergei L. Shmakov and Anna B. Shipovskaya
J. Fungi 2025, 11(8), 565; https://doi.org/10.3390/jof11080565 - 29 Jul 2025
Viewed by 316
Abstract
The majority of studies of fungal utilization of chitosan are associated with the production of a specific enzyme, chitosanase, which catalyzes the hydrolytic cleavage of the macrochain. In our opinion, the development of approaches to obtaining materials with new functional properties based on [...] Read more.
The majority of studies of fungal utilization of chitosan are associated with the production of a specific enzyme, chitosanase, which catalyzes the hydrolytic cleavage of the macrochain. In our opinion, the development of approaches to obtaining materials with new functional properties based on non-destructive chitosan transformation by living organisms and their enzyme systems is promising. This study was conducted using a wide range of classical and modern methods of microbiology, biochemistry, and physical chemistry. The ability of the ascomycete Fusarium oxysporum Schltdl. to modify films of chitosan with average-viscosity molecular weights of 200, 450, and 530 kDa was discovered. F. oxysporum was shown to use chitosan as the sole source of carbon/energy and actively overgrew films without deformations and signs of integrity loss. Scanning electron microscopy (SEM) recorded an increase in the porosity of film substrates. An analysis of the FTIR spectra revealed the occurrence of oxidation processes and crosslinking of macrochains without breaking β-(1,4)-glycosidic bonds. After F. oxysporum growth, the resistance of the films to mechanical dispersion and the degree of ordering of the polymer structure increased, while their solubility in the acetate buffer with pH 4.4 and sorption capacity for Fe2+ and Cu2+ decreased. Elemental analysis revealed a decrease in the nitrogen content in chitosan, which may indicate its inclusion into the fungal metabolism. The film transformation was accompanied by the production of extracellular hydrolase (different from chitosanase) and peroxidase, as well as biosurfactants. The results obtained indicate a specific mechanism of aminopolysaccharide transformation by F. oxysporum. Although the biochemical mechanisms of action remain to be analyzed in detail, the results obtained create new ways of using fungi and show the potential for the use of Fusarium and/or its extracellular enzymes for the formation of chitosan-containing materials with the required range of functional properties and qualities for biotechnological applications. Full article
(This article belongs to the Special Issue Innovative Applications and Biomanufacturing of Fungi)
Show Figures

Graphical abstract

53 pages, 5030 KiB  
Review
Molecular Engineering of Recombinant Protein Hydrogels: Programmable Design and Biomedical Applications
by He Zhang, Jiangning Wang, Jiaona Wei, Xueqi Fu, Junfeng Ma and Jing Chen
Gels 2025, 11(8), 579; https://doi.org/10.3390/gels11080579 - 26 Jul 2025
Viewed by 703
Abstract
Recombinant protein hydrogels have emerged as transformative biomaterials that overcome the bioinertness and unpredictable degradation of traditional synthetic systems by leveraging genetically engineered backbones, such as elastin-like polypeptides, SF, and resilin-like polypeptides, to replicate extracellular matrix (ECM) dynamics and enable programmable functionality. Constructed [...] Read more.
Recombinant protein hydrogels have emerged as transformative biomaterials that overcome the bioinertness and unpredictable degradation of traditional synthetic systems by leveraging genetically engineered backbones, such as elastin-like polypeptides, SF, and resilin-like polypeptides, to replicate extracellular matrix (ECM) dynamics and enable programmable functionality. Constructed through a hierarchical crosslinking strategy, these hydrogels integrate reversible physical interactions with covalent crosslinking approaches, collectively endowing the system with mechanical strength, environmental responsiveness, and controlled degradation behavior. Critically, molecular engineering strategies serve as the cornerstone for functional precision: domain-directed self-assembly exploits coiled-coil or β-sheet motifs to orchestrate hierarchical organization, while modular fusion of bioactive motifs through genetic encoding or site-specific conjugation enables dynamic control over cellular interactions and therapeutic release. Such engineered designs underpin advanced applications, including immunomodulatory scaffolds for diabetic wound regeneration, tumor-microenvironment-responsive drug depots, and shear-thinning bioinks for vascularized bioprinting, by synergizing material properties with biological cues. By uniting synthetic biology with materials science, recombinant hydrogels deliver unprecedented flexibility in tuning physical and biological properties. This review synthesizes emerging crosslinking paradigms and molecular strategies, offering a framework for engineering next-generation, adaptive biomaterials poised to address complex challenges in regenerative medicine and beyond. Full article
(This article belongs to the Special Issue Recent Advances in Protein Gels)
Show Figures

Figure 1

72 pages, 6900 KiB  
Review
Multifunctional Fibers for Wound Dressings: A Review
by Ghazaleh Chizari Fard, Mazeyar Parvinzadeh Gashti, Ram K. Gupta, Seyed Ahmad Dehdast, Mohammad Shabani and Alessandro Francisco Martins
Fibers 2025, 13(8), 100; https://doi.org/10.3390/fib13080100 - 24 Jul 2025
Viewed by 312
Abstract
Wound dressings prevent complications such as infections and potentially severe outcomes, including death, if wounds are left untreated. Wound dressings have evolved from rudimentary coverings made from natural materials to sophisticated, functionalized dressings designed to enhance wound healing and support tissue repair more [...] Read more.
Wound dressings prevent complications such as infections and potentially severe outcomes, including death, if wounds are left untreated. Wound dressings have evolved from rudimentary coverings made from natural materials to sophisticated, functionalized dressings designed to enhance wound healing and support tissue repair more effectively. These materials are often referred to as scaffolds in the literature, with wound dressing scaffolds intended to interact with native skin tissue and support tissue regeneration, whereas conventional wound dressings are designed primarily to protect the wound without directly interacting with the underlying tissue. However, there is a functional overlap between these categories, and the boundary is often blurred due to the increasing multifunctionality of modern wound dressings. This review will focus on developing wound dressings (scaffolds or not) based on fibers, their properties, and applications. Advances in nanomedicine have highlighted significant improvements in wound care by applying electrospun nanofibers that mimic the natural extracellular matrix. Therefore, this review explores recent advances in wound healing physiology, highlights nanofiber-based wound dressing materials developed through electrospinning, and distinguishes conventional dressings from multifunctional wound dressing scaffolds. Full article
(This article belongs to the Special Issue Electrospinning Nanofibers)
Show Figures

Figure 1

20 pages, 2822 KiB  
Article
Nanoparticle Formulation Generated from DDGS and Its Anthraquinone Synthesis Elicitation in Rubia tinctorum Hairy Roots
by Gonzalo Galaburri, Yazmín R. Kalapuj, María Perassolo, Julián Rodríguez Talou, Patricio G. Márquez, Romina J. Glisoni, Antonia Infantes-Molina, Enrique Rodríguez-Castellón and Juan M. Lázaro-Martínez
Polymers 2025, 17(15), 2021; https://doi.org/10.3390/polym17152021 - 24 Jul 2025
Viewed by 299
Abstract
A nanoparticle formulation was generated from distiller dried grains with solubles (DDGS), and its effect on the production of anthraquinones (AQs) was evaluated on Rubia tinctorum hairy roots. The DDGS material was washed with water and ethyl acetate to remove mainly the soluble [...] Read more.
A nanoparticle formulation was generated from distiller dried grains with solubles (DDGS), and its effect on the production of anthraquinones (AQs) was evaluated on Rubia tinctorum hairy roots. The DDGS material was washed with water and ethyl acetate to remove mainly the soluble organic/inorganic molecules and reduce the fat content, respectively, followed by an alkaline treatment to remove the polysaccharides. The resulting alkaline solutions were then lyophilized and redispersed in deionized water to generate a monodispersed nanoparticulate formulation (DDGS-NP) with a hydrodynamic diameter and zeta potential of 227 ± 42 nm and −53 ± 7 mV, respectively. The formulation demonstrated good colloidal stability over time, and sterilized DDGS-NPs maintained comparable physicochemical properties. The nanoparticles were enriched in protein fractions, unsaturated fatty acids, and orthophosphate anion components from DDGS, as determined by solid-state Nuclear Magnetic Resonance (NMR), X-ray photoelectron spectroscopy (XPS), organic elemental analysis (OEA), and inductively coupled plasma optical emission spectrometry (ICP-OES) techniques. The DDGS-NPs were tested at different concentrations on Rubia tinctorum hairy roots, in comparison to or in combination with methyl jasmonate (MeJ), for their capacity to induce the production of AQs. All DDGS-NP concentrations increased the production of specific AQs to 7.7 (100 mg L−1), 7.8 (200 mg L−1), and 9.3 µmol/gFW (500 mg L−1), with an extracellular AQ accumulation of 18 µM for the highest DDGS-NP concentration, in comparison with the control hairy roots (~2 µM AQ). The plant growth was not affected at any of the tested nanoparticle concentrations. Interestingly, the combination of DDGS-NPs and MeJ resulted in the highest extracellular AQ accumulation in R. tinctorum root cultures. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

23 pages, 1012 KiB  
Review
Prospects of Gels for Food Applications from Marine Sources: Exploring Microalgae
by Antonia Terpou, Divakar Dahiya and Poonam Singh Nigam
Gels 2025, 11(8), 569; https://doi.org/10.3390/gels11080569 - 23 Jul 2025
Viewed by 412
Abstract
The growing demand for sustainable, functional ingredients in the food industry has driven interest in marine-derived biopolymers. Among marine sources, microalgae represent a promising yet underexplored reservoir of bioactive gel-forming compounds, particularly extracellular polysaccharides (EPSs), both sulfated and non-sulfated, as well as proteins [...] Read more.
The growing demand for sustainable, functional ingredients in the food industry has driven interest in marine-derived biopolymers. Among marine sources, microalgae represent a promising yet underexplored reservoir of bioactive gel-forming compounds, particularly extracellular polysaccharides (EPSs), both sulfated and non-sulfated, as well as proteins that exhibit unique gelling, emulsifying, and stabilizing properties. This study focuses on microalgal species with demonstrated potential to produce viscoelastic, shear-thinning gels, making them suitable for applications in food stabilization, texture modification, and nutraceutical delivery. Recent advances in biotechnology and cultivation methods have improved access to high-value strains, which exhibit promising physicochemical properties for the development of novel food textures, structured formulations, and sustainable food packaging materials. Furthermore, these microalgae-derived gels offer additional health benefits, such as antioxidant and prebiotic activities, aligning with current trends toward functional foods containing prebiotic materials. Key challenges in large-scale production, including low EPS productivity, high processing costs, and lack of regulatory frameworks, are critically discussed. Despite these barriers, advances in cultivation technologies and biorefinery approaches offer new avenues for commercial application. Overall, microalgal gels hold significant promise as sustainable, multifunctional ingredients for clean-label food formulations. Full article
(This article belongs to the Special Issue Recent Advances in Food Gels (2nd Edition))
Show Figures

Graphical abstract

21 pages, 2961 KiB  
Article
Impact of the Use of 2-Phospho-L Ascorbic Acid in the Production of Engineered Stromal Tissue for Regenerative Medicine
by David Brownell, Laurence Carignan, Reza Alavi, Christophe Caneparo, Maxime Labroy, Todd Galbraith, Stéphane Chabaud, François Berthod, Laure Gibot, François Bordeleau and Stéphane Bolduc
Cells 2025, 14(14), 1123; https://doi.org/10.3390/cells14141123 - 21 Jul 2025
Viewed by 469
Abstract
Tissue engineering enables autologous reconstruction of human tissues, addressing limitations in tissue availability and immune compatibility. Several tissue engineering techniques, such as self-assembly, rely on or benefit from extracellular matrix (ECM) secretion by fibroblasts to produce biomimetic scaffolds. Models have been developed for [...] Read more.
Tissue engineering enables autologous reconstruction of human tissues, addressing limitations in tissue availability and immune compatibility. Several tissue engineering techniques, such as self-assembly, rely on or benefit from extracellular matrix (ECM) secretion by fibroblasts to produce biomimetic scaffolds. Models have been developed for use in humans, such as skin and corneas. Ascorbic acid (vitamin C, AA) is essential for collagen biosynthesis. However, AA is chemically unstable in culture, with a half-life of 24 h, requiring freshly prepared AA with each change of medium. This study aims to demonstrate the functional equivalence of 2-phospho-L-ascorbate (2PAA), a stable form of AA, for tissue reconstruction. Dermal, vaginal, and bladder stroma were reconstructed by self-assembly using tissue-specific protocols. The tissues were cultured in a medium supplemented with either freshly prepared or frozen AA, or with 2PAA. Biochemical analyses were performed on the tissues to evaluate cell density and tissue composition, including collagen secretion and deposition. Histology and quantitative polarized light microscopy were used to evaluate tissue architecture, and mechanical evaluation was performed both by tensiometry and atomic force microscopy (AFM) to evaluate its macroscopic and cell-scale mechanical properties. The tissues produced by the three ascorbate conditions had similar collagen deposition, architecture, and mechanical properties in each organ-specific stroma. Mechanical characterization revealed tissue-specific differences, with tensile modulus values ranging from 1–5 MPa and AFM-derived apparent stiffness in the 1–2 kPa range, reflecting the nonlinear and scale-dependent behavior of the engineered stroma. The results demonstrate the possibility of substituting AA with 2PAA for tissue engineering. This protocol could significantly reduce the costs associated with tissue production by reducing preparation time and use of materials. This is a crucial factor for any scale-up activity. Full article
Show Figures

Figure 1

31 pages, 865 KiB  
Review
Sustainable Hydrogels for Medical Applications: Biotechnological Innovations Supporting One Health
by Silvia Romano, Sorur Yazdanpanah, Orsolina Petillo, Raffaele Conte, Fabrizia Sepe, Gianfranco Peluso and Anna Calarco
Gels 2025, 11(7), 559; https://doi.org/10.3390/gels11070559 - 21 Jul 2025
Viewed by 504
Abstract
The One Health paradigm—recognizing the interconnected health of humans, animals, and the environment—promotes the development of sustainable technologies that enhance human health while minimizing ecological impact. In this context, bio-based hydrogels have emerged as a promising class of biomaterials for advanced medical applications. [...] Read more.
The One Health paradigm—recognizing the interconnected health of humans, animals, and the environment—promotes the development of sustainable technologies that enhance human health while minimizing ecological impact. In this context, bio-based hydrogels have emerged as a promising class of biomaterials for advanced medical applications. Produced through biotechnological methods such as genetic engineering and microbial fermentation, these hydrogels are composed of renewable and biocompatible materials, including recombinant collagen, elastin, silk fibroin, bacterial cellulose, xanthan gum, and hyaluronic acid. Their high water content, structural tunability, and biodegradability make them ideal candidates for various biomedical applications such as wound healing, tissue regeneration, and the design of extracellular matrix (ECM)-mimicking scaffolds. By offering controlled mechanical properties, biocompatibility, and the potential for minimally invasive administration, sustainable hydrogels represent a strategic innovation for regenerative medicine and therapeutic interventions. This review discusses the characteristics and medical applications of these hydrogels, highlighting their role in advancing sustainable healthcare solutions within the One Health framework. Full article
(This article belongs to the Special Issue Application of Hydrogels in Medicine)
Show Figures

Figure 1

26 pages, 1247 KiB  
Review
Recent Progress in the Application of Electrospinning Technology in the Biomedical Field
by Qun Wang, Peng Ji, Tian Bu, Yating Mao, Hailun He and Naijing Ge
J. Funct. Biomater. 2025, 16(7), 266; https://doi.org/10.3390/jfb16070266 - 18 Jul 2025
Cited by 1 | Viewed by 713
Abstract
Electrospinning has emerged as a highly effective technique for fabricating micro- and nanofibers, which are characterized by high porosity, large surface area, and structural mimicry of the extracellular matrix (ECM). These properties render it particularly suitable for biomedical applications. This review provides a [...] Read more.
Electrospinning has emerged as a highly effective technique for fabricating micro- and nanofibers, which are characterized by high porosity, large surface area, and structural mimicry of the extracellular matrix (ECM). These properties render it particularly suitable for biomedical applications. This review provides a comprehensive overview of recent developments in electrospinning-based strategies across various biomedical fields, including tissue engineering, drug delivery, wound healing, enzyme immobilization, biosensing, and protective materials. The distinctive advantages of electrospun fibers—such as excellent biocompatibility, tunable architecture, and facile surface functionalization—are discussed, alongside challenges such as the toxicity of organic solvents and limitations in scalability. Emerging approaches, including environmentally benign electrospinning techniques and integration with advanced technologies such as 3D printing and microfluidics, present promising solutions for intelligent and personalized biomedical applications. Full article
Show Figures

Figure 1

22 pages, 3129 KiB  
Article
Characterizing the Impact of Fabrication Methods on Mechanically Tunable Gelatin Hydrogels for Cardiac Fibrosis Studies
by Jordyn Folh, Phan Linh Dan Tran and Renita E. Horton
Bioengineering 2025, 12(7), 759; https://doi.org/10.3390/bioengineering12070759 - 13 Jul 2025
Viewed by 434
Abstract
The mechanical properties of the extracellular matrix critically influence cell behavior in both physiological and pathophysiological states, including cardiac fibrosis. In vitro models have played a critical role in assessing biological mechanisms. In this study, we characterized mechanically tunable enzymatically crosslinked gelatin-microbial transglutaminase [...] Read more.
The mechanical properties of the extracellular matrix critically influence cell behavior in both physiological and pathophysiological states, including cardiac fibrosis. In vitro models have played a critical role in assessing biological mechanisms. In this study, we characterized mechanically tunable enzymatically crosslinked gelatin-microbial transglutaminase (mTG) hydrogels for modeling cardiovascular diseases. Gelatin hydrogels were fabricated via direct mixing or immersion crosslinking methods. Hydrogel formulations were assessed using the Piuma nanoindenter and Instron systems. This study investigates the effects of fabrication methods, UV ozone (UVO) sterilization, crosslinking methods, and incubation media on hydrogel stiffness. Further, this study examined the response of murine cardiac fibroblasts to hydrogel stiffness. The hydrogels exhibited modulus ranges relevant to both healthy and fibrotic cardiac tissues. UVO exposure led to slight decreases in hydrogel modulus, while the fabrication method had a significant impact on the modulus. Hydrogels incubated in phosphate buffered saline (PBS) were stiffer than those incubated in Medium 199 (M199), which correlated with lower pH in PBS. Fibroblasts cultured on stiffer hydrogels display enhanced smooth muscle actin (SMA) expression, suggesting sensitivity to material stiffness. These findings highlight how fabrication parameters influence the modulus of gelatin-mTG hydrogels for cardiac tissue models. Full article
Show Figures

Graphical abstract

Back to TopTop