Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,258)

Search Parameters:
Keywords = exposure mixtures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2970 KB  
Article
Long-Read Isoform Sequencing Reveals Aroclor1260-Induced Isoform Usage in Mouse Livers
by Belinda J. Petri, Kellianne M. Piell, Banrida Wahlang, Julia H. Chariker, Eric C. Rouchka, Matthew C. Cave and Carolyn M. Klinge
Genes 2026, 17(2), 126; https://doi.org/10.3390/genes17020126 (registering DOI) - 25 Jan 2026
Abstract
Background/Objectives: Long-term exposure to polychlorinated biphenyls (PCBs), including the mixture of PCBs in Aroclor1260 (Ar1260), results in metabolic dysfunction-associated steatotic liver disease (MASLD) in mice and humans. While the effects of PCBs on gene expression are well-documented using short-read RNA sequencing, the [...] Read more.
Background/Objectives: Long-term exposure to polychlorinated biphenyls (PCBs), including the mixture of PCBs in Aroclor1260 (Ar1260), results in metabolic dysfunction-associated steatotic liver disease (MASLD) in mice and humans. While the effects of PCBs on gene expression are well-documented using short-read RNA sequencing, the regulatory roles of alternative splicing (AS) and differential transcript usage (DTU) are uncharacterized. AS has been implicated in MASLD. Previously, we reported that chronic (34 wks.) exposure of normal, low-fat-diet (LFD)-fed male mice to Ar1260 resulted in 12 hepatic RNA modifications. Proteomic analysis of these same liver samples identified Ar1260 exposure-associated changes in selenoproteins: GPX4 and SELENBP2 were increased and SELENOS and SELENOF were reduced. Methods: Here we used long-read isoform sequencing (IsoSeq) to identify DTU in four genes in the Ar1260-exposed livers: Adpgk, Blvra, Mup2, and Ndufaf6. Results: Network analysis of the corresponding proteins revealed a strong association with pathways relevant to MASLD including lipid metabolism, glycolysis, and oxidative stress. Conclusions: These findings suggest that PCB exposure alters the transcript isoform landscape of key metabolic genes involved in MASLD. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

16 pages, 1861 KB  
Article
Pycnogenol® Mitigates Oxidative Stress and Improves Skin Defenses Against Environmental Pollutants: An Ex-Vivo Human Skin Explant Study
by Avaltroni Fabrice, Burki Carolina, Weichmann Franziska, Percoco Giuseppe, Peno-Mazzarino Laurent and Lati Elian
Cosmetics 2026, 13(1), 26; https://doi.org/10.3390/cosmetics13010026 - 23 Jan 2026
Abstract
Oxidative stress is a major factor in skin aging and various skin pathologies. Environmental pollutants exacerbate this stress by generating reactive oxygen species (ROS), disrupting the skin’s redox balance. Pycnogenol®, a French maritime pine bark, extract is standardized to contain 70 [...] Read more.
Oxidative stress is a major factor in skin aging and various skin pathologies. Environmental pollutants exacerbate this stress by generating reactive oxygen species (ROS), disrupting the skin’s redox balance. Pycnogenol®, a French maritime pine bark, extract is standardized to contain 70 ± 5% procyanidins and known to mitigate oxidative damage and inflammation. This study aims to evaluate the potential antipollution and antioxidant effects of Pycnogenol® on skin. Ex vivo human skin explants were treated with varying concentrations of Pycnogenol® (0.5%, 1%, and 2%) and then exposed to a mixture of pollutants. The expression of stress markers Nrf2 (Nuclear Factor Erythroid 2-Related Factor 2) and AHR (Aryl Hydrocarbon Receptor) were evaluated using immunostaining. Lipid peroxidation levels were measured by quantifying malondialdehyde (MDA) concentrations. The extract significantly decreased Nrf2 expression by 40% (p = 0.003) and 23% (p = 0.048) with a dose of 2% and 1%, respectively. After pollutant exposure, Pycnogenol® (0.5%, 1%, and 2%) reduced Nrf2 over-expression in a dose–response manner by 29% (p = 0.03), 58% (p = 0.004) and 64% (p = 0.002) respectively. Pycnogenol® at 0.5%, 1%, and 2% significantly reduced AHR over-expression by 61% (p < 0.0001), 76% (p < 0.0001) and 85% (p < 0.0001), respectively. Pycnogenol® (1%, and 2%) decreased MDA levels following pollutant exposure by 17% (p = 0.06) and 25% (p = 0.01) respectively. In a dose-dependent manner, Pycnogenol® exhibited a strong protective effect against pollution, significantly reducing pollutant-induced basal oxidative stress (MDA) and over-expression of Nrf2 and AHR, key factors in oxidative stress and detoxification. Pycnogenol® also increased AHR expression in the absence of pollutants, which may reflect an adaptive cellular response. Full article
(This article belongs to the Section Cosmetic Dermatology)
28 pages, 3981 KB  
Article
Influence of Addition of Recycled Concrete Aggregate on Physico-Mechanical Properties and Microstructure of Mortar
by Gabriela Rutkowska, Barbara Francke, Filip Chyliński, Mariusz Żółtowski, Adam Baryłka and Paulina Matyjasek
Buildings 2026, 16(3), 466; https://doi.org/10.3390/buildings16030466 - 23 Jan 2026
Viewed by 37
Abstract
The progressive depletion of natural aggregate resources and the increasing emphasis on sustainable construction practices have intensified interest in incorporating recycled concrete aggregate (RCA) into cement-based materials. This study provides a comprehensive evaluation of the influence of partially replacing natural fine aggregate with [...] Read more.
The progressive depletion of natural aggregate resources and the increasing emphasis on sustainable construction practices have intensified interest in incorporating recycled concrete aggregate (RCA) into cement-based materials. This study provides a comprehensive evaluation of the influence of partially replacing natural fine aggregate with fine RCA on the physical, mechanical, and durability properties, as well as the microstructure, of cement mortars. Mortar mixtures containing 25%, 50%, 75%, and 100% RCA were tested and compared with a reference mix MC. The experimental program included measurements of bulk density, compressive and flexural strength, water absorption, and freeze–thaw resistance. Additionally, microstructural observations were performed to assess the effect of RCA on the internal structure of matured mortars. The results demonstrated that the intrinsic characteristics of RCA—particularly its higher water absorption and lower density—significantly affected the pore structure and mechanical behavior of the cement mortars. Mortars with RCA exhibited enhanced early-age compressive and flexural strength, especially at substitution levels of 50–100%, attributed to the activation of residual cement paste adhering to the recycled particles. However, increased porosity and water absorption in RCA-based mixes led to a higher sensitivity to freeze–thaw cycles compared with the reference mix. Overall, the findings indicate that incorporating fine RCA up to 50% enables the production of mortars with performance comparable to conventional mixtures under non-freezing conditions, while, under freeze–thaw exposure, comparable performance is achieved at replacement levels up to 25%, contributing to improved resource efficiency and reduced environmental impact. This study confirms the viability of fine RCA in cement mortars, emphasizing the importance of controlling pore structure development to maintain long-term durability. Additionally, it demonstrates that the use of recycled concrete aggregates provides a sustainable alternative to natural sand in mortar production. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
14 pages, 995 KB  
Article
Antibiotics Induce Metabolic and Physiological Responses in Daphnia magna
by Katie O’Rourke, Izabela Antepowicz, Beatrice Engelmann, Ulrike Rolle-Kampczyk, Martin von Bergen and Konstantinos Grintzalis
Water 2026, 18(2), 265; https://doi.org/10.3390/w18020265 - 20 Jan 2026
Viewed by 230
Abstract
Antibiotics represent a unique and diverse group of drugs, which are known to exert deleterious effects on non-target species and contribute to the phenomenon of antimicrobial resistance. With central inclusion on the EU Surface Water Watch List, and reported known affects in multiple [...] Read more.
Antibiotics represent a unique and diverse group of drugs, which are known to exert deleterious effects on non-target species and contribute to the phenomenon of antimicrobial resistance. With central inclusion on the EU Surface Water Watch List, and reported known affects in multiple model organisms, the importance of the sufficient monitoring of antibiotics in the aquatic environment has been highlighted. Most studies report the impact of individual antibiotics following exposure for a single generation in animals. In this study, we assessed the impact of four antibiotics with different modes of action (amoxicillin, trimethoprim, erythromycin, and sulfamethoxazole) and their mixture on the sentinel species Daphnia magna over three generations, via biochemical markers and a targeted metabolomic analysis of central metabolic pathways. No mortality was observed at 50 mg/L of each selected antibiotic and their composite mixture. Thus, a working concentration of 1 mg/L was chosen to progress this study. Results indicated that enzyme activity was particularly sensitive to exposure to amoxicillin and the mixture, whereas trimethoprim and the mixture induced the most metabolic changes in glycolysis and the TCA cycle. Additionally, the quaternary mixture had a stronger impact on the first generation of daphnids, altering the activity of β-galactosidase, glutathione S-transferase, and acid and alkaline phosphatase, suggesting that Daphnia can adapt to stress caused by antibiotics. Full article
Show Figures

Figure 1

12 pages, 521 KB  
Article
Single-Particle ICP-MS Method for the Determination of TiO2 Nano- and Submicrometric Particles in Biological Tissues
by Francesca Sebastiani, Francesca Tombolini, Fabio Boccuni, Claudio Natale, Silvia Canepari and Riccardo Ferrante
Analytica 2026, 7(1), 9; https://doi.org/10.3390/analytica7010009 - 19 Jan 2026
Viewed by 76
Abstract
Titanium dioxide (TiO2) nano- and submicrometric particles’ widespread use in different sectors raised concerns about human and environmental exposure. The validation of analytical methods is essential to ensure reliability in risk assessment studies. In this study, a single-particle inductively coupled plasma [...] Read more.
Titanium dioxide (TiO2) nano- and submicrometric particles’ widespread use in different sectors raised concerns about human and environmental exposure. The validation of analytical methods is essential to ensure reliability in risk assessment studies. In this study, a single-particle inductively coupled plasma mass spectrometry (spICP-MS) method was validated for the detection, quantification, and dimensional characterization of TiO2 particles in biological tissues. Tissue samples collected after exposure to TiO2 particles underwent mild acidic digestion using a HNO3/H2O2 mixture to achieve complete matrix decomposition while preserving particle integrity. The resulting digests were analyzed by ICP-MS operated in single-particle mode to quantify and size TiO2 particles. Method validation was conducted according to ISO/IEC 17025:2017 and included linearity, repeatability, recovery, and detection limit assessments. The limit of detection for TiO2 particles was 0.04 µg/g, and 55.7 nm was the size the detection limit. Repeatability was within 0.5–11.5% for both TiO2 mass concentrations and particle size determination. The validated method was applied to tissues from inhalation-exposed subjects, showing TiO2 levels of 80 ± 20 µg TiO2/g and particle number concentrations of 5.0 × 105 ± 1.2 × 105 part. TiO2/mg. Detected TiO2 particles’ mean diameter ranged from 230 to 330 nm. The developed and validated spICP-MS method provides robust and sensitive quantification of TiO2 particles in biological matrices, supporting its use in human biomonitoring and exposure assessment studies. Full article
Show Figures

Graphical abstract

20 pages, 632 KB  
Review
Lurking in the Water: Threats from Emerging Contaminants to Coral Reef Ecosystems
by Maria Latif and Shaneel Chandra
Appl. Sci. 2026, 16(2), 976; https://doi.org/10.3390/app16020976 - 18 Jan 2026
Viewed by 338
Abstract
Coral reef ecosystems represent one of the most biodiverse and productive marine habitats, yet they are increasingly threatened by a range of anthropogenic stressors. Among these, emerging contaminants including pharmaceutical and personal care products (PPCPs) have started to feature as contaminants of concern [...] Read more.
Coral reef ecosystems represent one of the most biodiverse and productive marine habitats, yet they are increasingly threatened by a range of anthropogenic stressors. Among these, emerging contaminants including pharmaceutical and personal care products (PPCPs) have started to feature as contaminants of concern due to their persistence, bioaccumulation potential, and complex interactions within reef environments. This review synthesizes current research on the occurrence, transport pathways, and ecological impacts of emerging contaminants, specifically focusing on PPCPs on coral reef systems. Evidence indicates that compounds such as UV filters, antibiotics, and endocrine-disrupting chemicals can impair coral physiology, disrupt symbiotic relationships with zooxanthellae, and contribute to bleaching events. The review further highlights the variability in coral species’ sensitivity to these contaminants, with documented effects ranging from oxidative stress to reduced growth and reproductive capacity. Despite advances in detection and risk assessment, significant knowledge gaps remain regarding long-term exposure, mixture effects, and the influence of local environmental conditions on contaminant toxicity. By consolidating recent findings, this review underscores the urgent need for targeted research and policy action to mitigate the threat of emerging contaminants to coral reef ecosystems. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

26 pages, 3565 KB  
Article
Effect of GGBFS and Fly Ash on Elevated Temperature Resistance of Pumice-Based Geopolymers
by Mohammed Shubaili
Infrastructures 2026, 11(1), 28; https://doi.org/10.3390/infrastructures11010028 - 15 Jan 2026
Viewed by 126
Abstract
The current study investigated the effects of geopolymer composites formulated from pumice dust partially replaced by ground granulated blast furnace slag (GGBFS) and fly ash (FA) at levels of 10%, 20%, 30%, and 40% by weight. The mixtures were evaluated for flowability, compressive [...] Read more.
The current study investigated the effects of geopolymer composites formulated from pumice dust partially replaced by ground granulated blast furnace slag (GGBFS) and fly ash (FA) at levels of 10%, 20%, 30%, and 40% by weight. The mixtures were evaluated for flowability, compressive strength (7, 28, and 56 days), density, and water absorption (28 and 56 days) at ambient temperatures. Moreover, compressive strength, mass loss, density, and water absorption were evaluated after exposure of the mixtures to elevated temperatures (250 °C, 500 °C, and 750 °C) at 28 days. All specimens were initially cured at 60 °C for 24 h, followed by storage under ambient laboratory conditions until testing. The inclusion of GGBFS into the mixtures decreased flowability, and the inclusion of FA resulted in its improvement. At ambient temperature, GGBFS-based mixtures, which were high in calcium content, exhibited substantially superior compressive strength and reduced absorption relative to FA-based mixtures due to the development of dense C-A-S-H gel networks. However, the compressive strength of FA-based mixtures considerably increased when exposed to a temperature of 250 °C. Moreover, at 750 °C, the FA-based mixtures showed superior residual strength (up to 18.1 MPa), lower mass loss, and reduced absorption, indicating enhanced thermal stability due to the dominance of thermally resistant N-A-S-H gels. X-ray diffraction results further supported these trends by showing the rapid deterioration of calcium-rich phases under heat and the comparative stability of aluminosilicate structures in FA-based systems. Overall, the inclusion of up to 40% GGBFS is beneficial for early strength and densification, whereas the incorporation of up to 40% FA improves durability and mechanical retention under high-temperature conditions. Full article
Show Figures

Figure 1

25 pages, 5522 KB  
Article
Green Synthesis of ZnO Nanoparticles: Effect of Synthesis Conditions on Their Size and Photocatalytic Activity
by Veronika Yu. Kolotygina, Arkadiy Yu. Zhilyakov, Maria A. Bukharinova, Ekaterina I. Khamzina and Natalia Yu. Stozhko
ChemEngineering 2026, 10(1), 15; https://doi.org/10.3390/chemengineering10010015 - 14 Jan 2026
Viewed by 175
Abstract
Green technologies are actively being used to produce nanosized zinc oxide, which is in demand for water purification processes to remove pollutants. Despite the success of the green synthesis of ZnO nanoparticles, no scientific approach exists for selecting plant extracts to produce nanoparticles [...] Read more.
Green technologies are actively being used to produce nanosized zinc oxide, which is in demand for water purification processes to remove pollutants. Despite the success of the green synthesis of ZnO nanoparticles, no scientific approach exists for selecting plant extracts to produce nanoparticles with the desired properties. This study shows that the antioxidant activity of the plant extracts used is a key parameter influencing the properties of the resulting ZnO nanoparticles. This conclusion is based on the results of nanoparticle synthesis with the use of various plant extracts. The antioxidant activity of the extracts increases in the following order: plum–gooseberry–black currant–strawberry–sea buckthorn. The synthesized ZnO nanoparticles were characterized by UV–visible spectroscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The catalytic properties of ZnO nanoparticles were tested under the degradation of a synthetic methylene blue dye after exposure to UV light. We found that with an increase in the AOA of plant extracts, the size of the nanoparticles decreases, while their photocatalytic activity increases. The smallest (d = 13 nm), most uniform in size (polydispersity index 0.1), and most catalytically active ZnO nanoparticles with a small band gap (2.85 eV) were obtained using the sea buckthorn extract with the highest AOA, pH 10 of the reaction mixture and 0.1 M Zn(CH3COO)2∙2H2O as a precursor salt. ZnO nanoparticles synthesized in the sea buckthorn extract demonstrated the highest dye photodegradation efficiency (96.4%) compared with other nanoparticles. The established patterns demonstrate the “antioxidant activity–size–catalytic activity” triad can be considered as a practical guide for obtaining ZnO nanoparticles of a given size and with given properties for environmental remediation applications. Full article
Show Figures

Graphical abstract

11 pages, 670 KB  
Article
Polybrominated Diphenyl Ether (PBDE) Serum Concentrations in Italian Women of Reproductive Age
by Annalisa Abballe, Elena De Felip, Elena Dellatte, Nicola Iacovella, Valentina Marra, Roberto Miniero, Silvia Valentini and Anna Maria Ingelido
Toxics 2026, 14(1), 72; https://doi.org/10.3390/toxics14010072 - 13 Jan 2026
Viewed by 255
Abstract
The evaluation of human exposure to environmental contaminants is a highly relevant topic for carrying out appropriate risk assessments and management. For this reason, although exposure assessment studies are continuously increasing, it is important to increase knowledge on the subject, especially when data [...] Read more.
The evaluation of human exposure to environmental contaminants is a highly relevant topic for carrying out appropriate risk assessments and management. For this reason, although exposure assessment studies are continuously increasing, it is important to increase knowledge on the subject, especially when data gaps exist. Polybrominated diphenyl ethers (PBDEs) are a class of substances for which the available data in the literature are not abundant compared to other more studied contaminants. In particular, the data available for the Italian population are even more limited. This study aimed to characterize the exposure of women of reproductive age to PBDEs in different Italian regions. We focused on the study on women of reproductive age because they are a sensitive category, and, furthermore, the exposure of mothers allows us to estimate that of newborns. Study results showed that the most abundant congeners in terms of relative concentration were BDE-153 > BDE-47 > BDE-100 > BDE-99, with median estimates, respectively, of 0.670, 0.245, 0.110, and 0.100 ng/g lipid in serum samples. Overall, the average exposure of the study population to the selected flame retardants appears to be relatively low compared to other industrialized countries. The observed levels could be related to the decline of PBDE concentrations in Europe due to a ban in the European Union on most PBDE commercial technical mixtures from 2001 onwards. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

20 pages, 2964 KB  
Article
Correlating Scanning Electron Microscopy and Raman Microscopy to Quantify Occupational Exposure to Micro- and Nanoscale Plastics in Textile Manufacturing
by Dirk Broßell, Emilia Visileanu, Catalin Grosu, Asmus Meyer-Plath and Maike Stange
Pollutants 2026, 6(1), 6; https://doi.org/10.3390/pollutants6010006 - 13 Jan 2026
Viewed by 264
Abstract
Airborne micro- and nanoplastic particles (MNPs) are increasingly recognized as a potential occupational exposure hazard, yet substance-specific workplace data remain limited. This study quantified airborne MNP concentrations during polyester microfiber production using a correlative SEM–Raman approach that enabled chemical identification and size-resolved particle [...] Read more.
Airborne micro- and nanoplastic particles (MNPs) are increasingly recognized as a potential occupational exposure hazard, yet substance-specific workplace data remain limited. This study quantified airborne MNP concentrations during polyester microfiber production using a correlative SEM–Raman approach that enabled chemical identification and size-resolved particle characterization. The aerosol mixture at the workplace was dominated by sub-micrometer particles, with PET—handled onsite—representing the main process-related MNP type, and black tire rubber (BTR) forming a substantial background contribution. Across both sampling periods, total MNP particle number concentrations ranged between 6.2 × 105 and 1.2 × 106 particles/m3, indicating consistently high particle counts. In contrast, estimated MNP-related mass concentrations were much lower, with PM10 levels of 12–15 µg/m3 and PM2.5 levels of 1.3–1.6 µg/m3, remaining well below applicable occupational exposure limits and near or below 8 h-equivalent WHO guideline values. Comparison with earlier workplace and indoor studies suggests that previously reported concentrations were likely underestimated due to sampling strategies with low efficiency for small particles. Moreover, real-time optical measurements substantially underestimated particle number and mass in this study, reflecting their limited suitability for aerosols dominated by small or dark particles. Overall, the data show that workplace MNP exposure at the investigated site is driven primarily by very small particles present in high numbers but low mass. The findings underscore the need for substance-specific, size-resolved analytical approaches to adequately assess airborne MNP exposure and to support future development of MNP-relevant occupational health guidelines. Full article
(This article belongs to the Section Air Pollution)
Show Figures

Graphical abstract

37 pages, 1355 KB  
Review
Risk Assessment of Chemical Mixtures in Foods: A Comprehensive Methodological and Regulatory Review
by Rosana González Combarros, Mariano González-García, Gerardo David Blanco-Díaz, Kharla Segovia Bravo, José Luis Reino Moya and José Ignacio López-Sánchez
Foods 2026, 15(2), 244; https://doi.org/10.3390/foods15020244 - 9 Jan 2026
Viewed by 221
Abstract
Over the last 15 years, mixture risk assessment for food xenobiotics has evolved from conceptual discussions and simple screening tools, such as the Hazard Index (HI), towards operational, component-based and probabilistic frameworks embedded in major food-safety institutions. This review synthesizes methodological and regulatory [...] Read more.
Over the last 15 years, mixture risk assessment for food xenobiotics has evolved from conceptual discussions and simple screening tools, such as the Hazard Index (HI), towards operational, component-based and probabilistic frameworks embedded in major food-safety institutions. This review synthesizes methodological and regulatory advances in cumulative risk assessment for dietary “cocktails” of pesticides, contaminants and other xenobiotics, with a specific focus on food-relevant exposure scenarios. At the toxicological level, the field is now anchored in concentration/dose addition as the default model for similarly acting chemicals, supported by extensive experimental evidence that most environmental mixtures behave approximately dose-additively at low effect levels. Building on this paradigm, a portfolio of quantitative metrics has been developed to operationalize component-based mixture assessment: HI as a conservative screening anchor; Relative Potency Factors (RPF) and Toxic Equivalents (TEQ) to express doses within cumulative assessment groups; the Maximum Cumulative Ratio (MCR) to diagnose whether risk is dominated by one or several components; and the combined Margin of Exposure (MOET) as a point-of-departure-based integrator that avoids compounding uncertainty factors. Regulatory frameworks developed by EFSA, the U.S. EPA and FAO/WHO converge on tiered assessment schemes, biologically informed grouping of chemicals and dose addition as the default model for similarly acting substances, while differing in scope, data infrastructure and legal embedding. Implementation in food safety critically depends on robust exposure data streams. Total Diet Studies provide population-level, “as eaten” exposure estimates through harmonized food-list construction, home-style preparation and composite sampling, and are increasingly combined with conventional monitoring. In parallel, human biomonitoring quantifies internal exposure to diet-related xenobiotics such as PFAS, phthalates, bisphenols and mycotoxins, embedding mixture assessment within a dietary-exposome perspective. Across these developments, structured uncertainty analysis and decision-oriented communication have become indispensable. By integrating advances in toxicology, exposure science and regulatory practice, this review outlines a coherent, tiered and uncertainty-aware framework for assessing real-world dietary mixtures of xenobiotics, and identifies priorities for future work, including mechanistically and data-driven grouping strategies, expanded use of physiologically based pharmacokinetic modelling and refined mixture-sensitive indicators to support public-health decision-making. Full article
(This article belongs to the Special Issue Research on Food Chemical Safety)
Show Figures

Figure 1

27 pages, 1388 KB  
Article
Combined Environmental Impacts and Toxicological Interactions of Per- and Polyfluoroalkyl Substances (PFAS) and Microplastics (MPs)
by Christina M. Brenckman, Ashish D. Borgaonkar, William H. Pennock and Jay N. Meegoda
Environments 2026, 13(1), 38; https://doi.org/10.3390/environments13010038 - 8 Jan 2026
Viewed by 913
Abstract
Pervasive microplastics (MPs) and per- and polyfluoroalkyl substances (PFAS) frequently co-occur across aquatic and terrestrial environments due to shared sources, transport pathways, and persistence, yet their interaction-driven effects on environmental fate, bioavailability, and toxicity remain incompletely resolved. This review critically synthesizes current knowledge [...] Read more.
Pervasive microplastics (MPs) and per- and polyfluoroalkyl substances (PFAS) frequently co-occur across aquatic and terrestrial environments due to shared sources, transport pathways, and persistence, yet their interaction-driven effects on environmental fate, bioavailability, and toxicity remain incompletely resolved. This review critically synthesizes current knowledge on the environmental co-occurrence of MPs and PFAS, the physicochemical mechanisms governing their interactions, and the resulting ecological and toxicological consequences across aquatic, terrestrial, and biological systems. Emphasis is placed on sorption and desorption processes; environmental modifiers such as pH, salinity, dissolved organic matter (DOM), and aging; and biological responses under combined exposure scenarios. Across laboratory and field studies, MPs–PFAS co-exposure is frequently associated with altered PFAS partitioning and enhanced organismal uptake, with reported bioaccumulation increases of up to ~2.5-fold relative to PFAS-only exposures. These changes are often accompanied by amplified oxidative stress, immune dysregulation, metabolic disturbance, and reproductive impairment, particularly in aquatic invertebrates and early life stages of fish. Evidence further indicates that the magnitude and direction of combined effects depend on polymer type, particle size, surface aging, and biological context, underscoring the highly system-specific nature of MPs–PFAS interactions. By integrating findings from environmental monitoring, laboratory toxicology, and mechanistic and modeling studies, this review identifies key knowledge gaps related to nanoplastics detection, environmentally realistic exposure conditions, sorption reversibility, and mixture toxicity assessment. Collectively, these insights highlight limitations in current single-contaminant risk frameworks and underscore the importance of incorporating MPs-mediated PFAS transport and bioavailability into exposure assessment and regulatory evaluation. Full article
Show Figures

Figure 1

20 pages, 9329 KB  
Article
Age-Dependent Effects of Heavy Metals on the Hypothalamic–Pituitary–Testicular Axis-Related Hormones in Men
by Yayuan Mei, Yongfu Yan, Shenglan Ke, Weihui Su, Zhangjia Luo, Xiaobao Chen, Hui Xu, Weitao Su and Ang Li
Toxics 2026, 14(1), 55; https://doi.org/10.3390/toxics14010055 - 7 Jan 2026
Viewed by 500
Abstract
The effect of heavy metals on male hormonal regulation—particularly the hypothalamic–pituitary–testicular (HPT) axis—remains poorly characterized. We aim to investigate associations between heavy metal exposure and HPT axis-related hormones. We analyzed data, including male participants aged 3–80 years, from a nationally representative survey. Five [...] Read more.
The effect of heavy metals on male hormonal regulation—particularly the hypothalamic–pituitary–testicular (HPT) axis—remains poorly characterized. We aim to investigate associations between heavy metal exposure and HPT axis-related hormones. We analyzed data, including male participants aged 3–80 years, from a nationally representative survey. Five metals and twelve sex hormones were measured. We used multivariate linear regression and restricted cubic splines to assess associations and dose–response relationships. Mixture effects were quantified using quantile-based g computation. The modifying effects of vitamin D and folate were examined. The underlying mechanisms were explored through a narrative review and integrative bioinformatics analysis. A total of 6547 males were included. Metal exposure was predominantly associated with hormonal perturbations in adolescents and older adults. Specifically, metal mixture was associated with hormones in adolescent males [effect range: −5.10% (95% CI: −9.24, −0.76) to 18.12% (95% CI: 9.80, 27.07)] and older males [effect range: 3.17% (95% CI: 0.07, 6.37) to 10.94% (95% CI: 4.82, 17.43)]. Effect modifications were observed for vitamin D in children and adolescents, and for folate across all age groups. The PI3K-Akt signaling pathway was identified as a potential mechanism. Our findings provide novel insights into the association and potential pathway between heavy metals and male hormonal disturbance. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Graphical abstract

18 pages, 3264 KB  
Article
The Role of the LINC01376/miR-15b-3p_R-1/FGF2 Axis in A549 and H1299 Cells EMT Induced by LMW-PAHs
by Jiali Qin, Yamin Huang, Yixuan Hu, Haitao Ma, Zhengyi Zhang, Yuanjie Li, Shiyao Jiang, Chengyun Li, Kaikai Li, Junling Wang and Xiaoping Liu
Toxics 2026, 14(1), 54; https://doi.org/10.3390/toxics14010054 - 6 Jan 2026
Viewed by 338
Abstract
Low-molecular-weight polycyclic aromatic hydrocarbons (LMW-PAHs), such as the 400 μM mixture of phenanthrene and fluorene used in this study, are prevalent environmental pollutants. Induction of epithelial–mesenchymal transition (EMT) by LMW-PAHs promote cell invasion and migration and contribute to disease pathogenesis. Long non-coding RNAs [...] Read more.
Low-molecular-weight polycyclic aromatic hydrocarbons (LMW-PAHs), such as the 400 μM mixture of phenanthrene and fluorene used in this study, are prevalent environmental pollutants. Induction of epithelial–mesenchymal transition (EMT) by LMW-PAHs promote cell invasion and migration and contribute to disease pathogenesis. Long non-coding RNAs (lncRNAs) regulate gene expression by acting as competing endogenous RNAs (ceRNAs) that sequester microRNAs (miRNAs), a mechanism important for modulating EMT. Previously, regulation of the PI3K/AKT pathway and EMT in A549 cells are shown to occur through the hsa_circ_0039929/miR-15b-3p_R-1/FGF2 axis. Here, the functional role of the related LINC01376/miR-15b-3p_R-1/FGF2 axis in LMW-PAH-induced EMT was examined in A549 and H1299 cells. The miR-15b-3p_R-1 was downregulated, whereas LINC01376 and FGF2 were upregulated following LMW-PAH exposure. LINC01376 overexpression enhanced EMT, migration, and invasion. Interactions between miR-15b-3p_R-1 and FGF2, as well as direct binding of LINC01376 to miR-15b-3p_R-1, were confirmed experimentally. The results indicate that, in LMW-PAH-treated cells, LINC01376 functions as a ceRNA to sponge miR-15b-3p_R-1, thereby elevating FGF2 expression and promoting EMT, migration, and invasion. Identification of the LINC01376/miR-15b-3p_R-1/FGF2 regulatory axis highlighted as a key mechanism in LMW-PAH-driven EMT and suggests its potential as a therapeutic target in PAH-related pathologies. Full article
Show Figures

Graphical abstract

15 pages, 502 KB  
Review
Linking Pesticide Exposure to Gestational Diabetes: Current Knowledge and Future Directions
by Christina Pagkaki, Panagiotis Tsikouras and Panagiotis Halvatsiotis
Physiologia 2026, 6(1), 4; https://doi.org/10.3390/physiologia6010004 - 5 Jan 2026
Viewed by 160
Abstract
Background: Gestational diabetes mellitus (GDM) is a frequent pregnancy pathology with poor maternal and fetal outcomes and risk of type 2 diabetes in later life. Despite known risk factors, such as obesity, age, and familial history, new data suggest that environmental exposure [...] Read more.
Background: Gestational diabetes mellitus (GDM) is a frequent pregnancy pathology with poor maternal and fetal outcomes and risk of type 2 diabetes in later life. Despite known risk factors, such as obesity, age, and familial history, new data suggest that environmental exposure to agents, such as pesticides, can play a role in the etiogenesis of GDM. Objective: The epidemiologic, experimental, and mechanistic evidence between pesticide exposure and GDM risk is summarized here, and we concentrate on recent research (2000–2025). Methods: We conducted a literature search in PubMed, Embase, and the Cochrane Library for studies published from January 2000 to December 2025 using combinations of the terms “fertilizers”, “herbicides”, and “pesticides” with “diabetes mellitus” and “gestational diabetes”. After deduplication, 12 unique studies met inclusion criteria for qualitative synthesis (GDM endpoint or pregnancy glycemia with pesticide exposure). Results: Occupational and agricultural exposure to pesticides during first pregnancy was determined to be associated with a significantly increased risk of GDM through various epidemiologic studies. New studies have implicated new classes of pesticides, including pyrethroids and neonicotinoids, with higher GDM risk with first-trimester exposure. Experimental studies suggest that pesticides provide potential endocrine-disrupting chemicals that can induce insulin resistance through disruption of hormonal signaling, oxidative stress, inflammation, β-cell toxicity, and epigenetic modifications. However, significant limitations exist. Most of the evidence is observational, measurement of exposure is often indirect, and confounding factors are difficult to exclude. Notably, low dietary and residential exposure is not well studied, and dose–response relationships are undefined. Conclusions: New data indicate that pesticide exposure during early pregnancy and occupational exposure may increase the risk of GDM. Prospective cohort studies using biomonitoring, chemical mixture exposure, and geographic variation in pesticide exposure should be the focus of future research. Due to potential public health implications, preventive strategies to ensure the quality of nutrition and to reduce maternal exposure to pesticides during pregnancy are rational. Full article
Show Figures

Figure 1

Back to TopTop