Single-Particle ICP-MS Method for the Determination of TiO2 Nano- and Submicrometric Particles in Biological Tissues
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Samples
2.2. Drosophila Melanogaster Stock and Sample Treatment
2.3. spICP-MS Experimental Conditions
2.4. spICP-MS Method Validation
3. Results and Discussion
3.1. Powder Characterization
3.2. spICP-MS Validation Performances
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faucher, S.; Lespes, G. Quantification of Titanium from TiO2 Particles in Biological Tissue. J. Trace Elem. Med. Biol. 2015, 32, 40–44. [Google Scholar] [CrossRef]
- Geertsen, V.; Tabarant, M.; Spalla, O. Behavior and Determination of Titanium Dioxide Nanoparticles in Nitric Acid and River Water by ICP Spectrometry. Anal. Chem. 2014, 86, 3453–3460. [Google Scholar] [CrossRef]
- Baranowska-Wójcik, E.; Szwajgier, D.; Oleszczuk, P.; Winiarska-Mieczan, A. Effects of Titanium Dioxide Nanoparticles Exposure on Human Health—A Review. Biol. Trace Elem. Res. 2020, 193, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Magaye, R.; Castranova, V.; Zhao, J. Titanium Dioxide Nanoparticles: A Review of Current Toxicological Data. Part. Fibre Toxicol. 2013, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Gurr, J.-R.; Wang, A.S.S.; Chen, C.-H.; Jan, K.-Y. Ultrafine Titanium Dioxide Particles in the Absence of Photoactivation Can Induce Oxidative Damage to Human Bronchial Epithelial Cells. Toxicology 2005, 213, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Türkez, H.; Geyikoğlu, F. An in Vitro Blood Culture for Evaluating the Genotoxicity of Titanium Dioxide: The Responses of Antioxidant Enzymes. Toxicol. Ind. Health 2007, 23, 19–23. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, G.; Chen, C.; Yu, H.; Wang, T.; Ma, Y.; Jia, G.; Gao, Y.; Li, B.; Sun, J. Acute Toxicity and Biodistribution of Different Sized Titanium Dioxide Particles in Mice after Oral Administration. Toxicol. Lett. 2007, 168, 176–185. [Google Scholar] [CrossRef]
- Murugadoss, S.; Brassinne, F.; Sebaihi, N.; Petry, J.; Cokic, S.M.; Van Landuyt, K.L.; Godderis, L.; Mast, J.; Lison, D.; Hoet, P.H.; et al. Agglomeration of Titanium Dioxide Nanoparticles Increases Toxicological Responses in Vitro and in Vivo. Part. Fibre Toxicol. 2020, 17, 10. [Google Scholar] [CrossRef]
- Laycock, A.; Clark, N.J.; Clough, R.; Smith, R.; Handy, R.D. Determination of Metallic Nanoparticles in Biological Samples by Single Particle ICP-MS: A Systematic Review from Sample Collection to Analysis. Environ. Sci. Nano 2022, 9, 420–453. [Google Scholar] [CrossRef]
- OECD. Test No. 412: Subacute Inhalation Toxicity: 28-Day Study; OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2018. [Google Scholar] [CrossRef]
- OECD. Test No. 413: Subchronic Inhalation Toxicity: 90-Day Study; OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2018. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). Carbon Black, Titanium Dioxide, and Talc. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC Scientific Publications: Lyon, France, 2006; Volume 93. [Google Scholar]
- Gregar, F.; Baron, D.; Pluháček, T. Advances in ICP-MS-Based Nanoparticle Characterization: Techniques and Challenges in Biological Sample Analysis. J. Sep. Sci. 2025, 48, e70259. [Google Scholar] [CrossRef]
- Gajdosechova, Z.; Mester, Z. Recent Trends in Analysis of Nanoparticles in Biological Matrices. Anal. Bioanal. Chem. 2019, 411, 4277–4292. [Google Scholar] [CrossRef]
- Vidmar, J.; Hässmann, L.; Loeschner, K. Single-Particle ICP–MS as a Screening Technique for the Presence of Potential Inorganic Nanoparticles in Food. J. Agric. Food Chem. 2021, 69, 9979–9990. [Google Scholar] [CrossRef]
- Loeschner, K.; Johnson, M.E.; Montoro Bustos, A.R. Application of Single Particle ICP-MS for the Determination of Inorganic Nanoparticles in Food Additives and Food: A Short Review. Nanomaterials 2023, 13, 2547. [Google Scholar] [CrossRef] [PubMed]
- Bocca, B.; Battistini, B.; Leso, V.; Fontana, L.; Caimi, S.; Fedele, M.; Iavicoli, I. Occupational Exposure to Metal Engineered Nanoparticles: A Human Biomonitoring Pilot Study Involving Italian Nanomaterial Workers. Toxics 2023, 11, 120. [Google Scholar] [CrossRef] [PubMed]
- Flores, K.; Turley, R.S.; Valdes, C.; Ye, Y.; Cantu, J.; Hernandez-Viezcas, J.A.; Parsons, J.G.; Gardea-Torresdey, J.L. Environmental Applications and Recent Innovations in Single Particle Inductively Coupled Plasma Mass Spectrometry (SP-ICP-MS). Appl. Spectrosc. Rev. 2021, 56, 1–26. [Google Scholar] [CrossRef]
- Torregrosa, D.; Grindlay, G.; de la Guardia, M.; Gras, L.; Mora, J. Determination of Metallic Nanoparticles in Air Filters by Means Single Particle Inductively Coupled Plasma Mass Spectrometry. Talanta 2023, 252, 123818. [Google Scholar] [CrossRef]
- Clark, N.J.; Clough, R.; Boyle, D.; Handy, R.D. Development of a Suitable Detection Method for Silver Nanoparticles in Fish Tissue Using Single Particle ICP-MS. Environ. Sci. Nano 2019, 6, 3388–3400. [Google Scholar] [CrossRef]
- Montaño, M.D.; Olesik, J.W.; Barber, A.G.; Challis, K.; Ranville, J.F. Single Particle ICP-MS: Advances toward Routine Analysis of Nanomaterials. Anal. Bioanal. Chem. 2016, 408, 5053–5074. [Google Scholar] [CrossRef]
- Abdolahpur Monikh, F.; Chupani, L.; Vijver, M.G.; Vancová, M.; Peijnenburg, W.J.G.M. Analytical Approaches for Characterizing and Quantifying Engineered Nanoparticles in Biological Matrices from an (Eco)Toxicological Perspective: Old Challenges, New Methods and Techniques. Sci. Total Environ. 2019, 660, 1283–1293. [Google Scholar] [CrossRef]
- Gallocchio, F.; Biancotto, G.; Moressa, A.; Pascoli, F.; Pretto, T.; Toffan, A.; Arcangeli, G.; Montesi, F.; Peters, R.; Ricci, A. Bioaccumulation and in Vivo Formation of Titanium Dioxide Nanoparticles in Edible Mussels. Food Chem. 2020, 323, 126841. [Google Scholar] [CrossRef]
- Peters, R.J.B.; Oomen, A.G.; Van Bemmel, G.; Van Vliet, L.; Undas, A.K.; Munniks, S.; Bleys, R.L.A.W.; Tromp, P.C.; Brand, W.; Van Der Lee, M. Silicon Dioxide and Titanium Dioxide Particles Found in Human Tissues. Nanotoxicology 2020, 14, 420–432. [Google Scholar] [CrossRef]
- Ishizaka, T.; Nagano, K.; Tasaki, I.; Tao, H.; Gao, J.-Q.; Harada, K.; Hirata, K.; Saito, S.; Tsujino, H.; Higashisaka, K.; et al. Optimization and Evaluation of Pretreatment Method for Sp-ICP-MS to Reveal the Distribution of Silver Nanoparticles in the Body. Nanoscale Res. Lett. 2019, 14, 180. [Google Scholar] [CrossRef] [PubMed]
- Shaw, B.J.; Ramsden, C.S.; Turner, A.; Handy, R.D. A Simplified Method for Determining Titanium from TiO2 Nanoparticles in Fish Tissue with a Concomitant Multi-Element Analysis. Chemosphere 2013, 92, 1136–1144. [Google Scholar] [CrossRef] [PubMed]
- Kiani, A.K.; Pheby, D.; Henehan, G.; Brown, R.; Sieving, P.; Sykora, P.; Marks, R.; Falsini, B.; Capodicasa, N.; Miertus, S.; et al. Ethical Considerations Regarding Animal Experimentation. J. Prev. Med. Hyg. 2022, 63, E255. [Google Scholar] [CrossRef]
- ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. International Organization for Standardization (ISO): London, UK, 2017.
- Pace, H.E.; Rogers, N.J.; Jarolimek, C.; Coleman, V.A.; Higgins, C.P.; Ranville, J.F. Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2011, 83, 9361–9369. [Google Scholar] [CrossRef]
- Vidmar, J.; Löschner, K.; Larios, R. Analysis of TiO2 Nanoparticles in Foods and Personal Care Products by Single Particle ICP-QQQ; Agilent Technologies, Inc.: Santa Clara, CA, USA, 2019; Available online: https://www.agilent.com/cs/library/applications/application_TiO2_np_icp-qqq-8900_%205994-1633en_us_agilent.pdf (accessed on 14 July 2025).
- Silva-Soares, N.F.; Nogueira-Alves, A.; Beldade, P.; Mirth, C.K. Adaptation to New Nutritional Environments: Larval Performance, Foraging Decisions, and Adult Oviposition Choices in Drosophila Suzukii. BMC Ecol. 2017, 17, 21. [Google Scholar] [CrossRef]
- Nia, Y.; Millour, S.; Noël, L.; Krystek, P.; de Jong, W.; Guérin, T. Determination of Ti from TiO2 Nanoparticles in Biological Materials by Different ICP-MS Instruments: Method Validation and Applications. J. Nanomed. Nanotechnol. 2015, 6, 269. [Google Scholar] [CrossRef]
- Pace, H.E.; Rogers, N.J.; Jarolimek, C.; Coleman, V.A.; Gray, E.P.; Higgins, C.P.; Ranville, J.F. Single Particle Inductively Coupled Plasma-Mass Spectrometry: A Performance Evaluation and Method Comparison in the Determination of Nanoparticle Size. Environ. Sci. Technol. 2012, 46, 12272–12280. [Google Scholar] [CrossRef]
- UNI EN 12341:2023; Ambient Air—Standard Gravimetric Measurement Method for the Determination of the PM10 or PM2.5 Mass Concentration of Suspended Particulate Matter. Ente Nazionale Italiano di Unificazione (UNI): Milan, Italy, 2023.
- Salou, S.; Cirtiu, C.-M.; Larivière, D.; Fleury, N. Assessment of Strategies for the Formation of Stable Suspensions of Titanium Dioxide Nanoparticles in Aqueous Media Suitable for the Analysis of Biological Fluids. Anal. Bioanal. Chem. 2020, 412, 1469–1481. [Google Scholar] [CrossRef]
- Berne, B.J.; Pecora, R. Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics; Dover Publications: Mineola, NY, USA, 2000. [Google Scholar]
- Peters, R.J.B.; Undas, A.K.; Memelink, J.; van Bemmel, G.; Munniks, S.; Bouwmeester, H.; Nobels, P.; Schuurmans, W.; van der Lee, M.K. Development and Validation of a Method for the Detection of Titanium Dioxide Particles in Human Tissue with Single Particle ICP-MS. Curr. Trends Anal. Bioanal. Chem. 2018, 2, 74–84. [Google Scholar] [CrossRef]
- Wagner, S.; Legros, S.; Loeschner, K.; Liu, J.; Navratilova, J.; Grombe, R.; Linsinger, T.P.J.; Larsen, E.H.; Von Der Kammer, F.; Hofmann, T. First Steps towards a Generic Sample Preparation Scheme for Inorganic Engineered Nanoparticles in a Complex Matrix for Detection, Characterization, and Quantification by Asymmetric Flow-Field Flow Fractionation Coupled to Multi-Angle Light Scattering and ICP-MS. J. Anal. At. Spectrom. 2015, 30, 1286–1296. [Google Scholar] [CrossRef]
- Fischer, M.; Scholz-Böttcher, B.M. Simultaneous Trace Identification and Quantification of Common Types of Microplastics in Environmental Samples by Pyrolysis-Gas Chromatography–Mass Spectrometry. Environ. Sci. Technol. 2017, 51, 5052–5060. [Google Scholar] [CrossRef]

| Technical Name | TR92 |
|---|---|
| Crystalline Structure | Rutile |
| Chemical Composition | TiO2 |
| Common Form | Powder |
| Density | 0.80 g/mL |
| Size (Mean Diameter) | 0.28–0.30 μm |
| Surface Area | 14 m2/g |
| Instrument | ICP-QQQ 8900 Agilent |
|---|---|
| Nebulizer gas flow | 0.73 mL/min |
| Torch, id injector | 1.0 mm |
| Acquisition mode (MS/MS) | Q1: m/z 47 → Q2: m/z 63 |
| RF power (W) | 1550 |
| Sample uptake (mL/min) | 0.346 |
| Acquisition time (sec) | 60 |
| Integration time (msec) | 0.1 |
| Particle density (g/cm3) | 4.23 |
| Analyte mass fraction * | 1.67 |
| Nebulization efficiency (%) | 3.4 |
| Mass Conc. (μg/L) | Mass Conc. (µg/g) | Numb Conc. (pt/L) | Numb Conc. (pt/g) | Size(nm) | |
|---|---|---|---|---|---|
| LoD | 0.01 | 0.04 | 1.1 × 105 | 1.5 × 105 | 55.7 * |
| LoQ | 0.03 | 0.07 | 2.2 × 105 | 3.0 × 105 | |
| R2 | 0.9989 | 0.9986 | |||
| Mass Conc. (μg/L) RSD% | Size (nm) RSD% | ||||
| Std ∅ | 9.1 | 11.5 | |||
| Std 3 | 11.5 | 4.1 | |||
| Std 8 | 0.5 | 1.2 | |||
| Std 9 | 6.8 | 0.7 | |||
| Std 10 | 1.9 | 5.1 | |||
| CTRL (n = 9) | EXP (n = 9) | p-Value | |||
|---|---|---|---|---|---|
| Avg | SD | Avg | SD | *** | |
| µg/g | 6.7 | 1.3 | 80.0 | 20.0 | |
| Part./mg | ND | - | 5.0 × 105 | 1.2 × 105 | |
| Size(nm) | - | - | 310 | 17 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sebastiani, F.; Tombolini, F.; Boccuni, F.; Natale, C.; Canepari, S.; Ferrante, R. Single-Particle ICP-MS Method for the Determination of TiO2 Nano- and Submicrometric Particles in Biological Tissues. Analytica 2026, 7, 9. https://doi.org/10.3390/analytica7010009
Sebastiani F, Tombolini F, Boccuni F, Natale C, Canepari S, Ferrante R. Single-Particle ICP-MS Method for the Determination of TiO2 Nano- and Submicrometric Particles in Biological Tissues. Analytica. 2026; 7(1):9. https://doi.org/10.3390/analytica7010009
Chicago/Turabian StyleSebastiani, Francesca, Francesca Tombolini, Fabio Boccuni, Claudio Natale, Silvia Canepari, and Riccardo Ferrante. 2026. "Single-Particle ICP-MS Method for the Determination of TiO2 Nano- and Submicrometric Particles in Biological Tissues" Analytica 7, no. 1: 9. https://doi.org/10.3390/analytica7010009
APA StyleSebastiani, F., Tombolini, F., Boccuni, F., Natale, C., Canepari, S., & Ferrante, R. (2026). Single-Particle ICP-MS Method for the Determination of TiO2 Nano- and Submicrometric Particles in Biological Tissues. Analytica, 7(1), 9. https://doi.org/10.3390/analytica7010009

