Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (680)

Search Parameters:
Keywords = exponential decay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 33532 KB  
Article
Multi-Statistical Pragmatic Framework to Study UV Exposure Effects via VIS Reflectance in Automotive Polymer Components
by Jose Amilcar Rizzo-Sierra, Luis Alvaro Montoya-Santiyanes, Cesar Isaza, Karina Anaya, Cristian Felipe Ramirez-Gutierrez and Jonny Paul Zavala de Paz
Polymers 2025, 17(21), 2849; https://doi.org/10.3390/polym17212849 (registering DOI) - 25 Oct 2025
Abstract
This study evaluates the cosmetic degradation of polyethylene (PE) and polypropylene (PP) automotive components under four exposure scenarios—no exposure, outdoor exposure with and without glass shielding, and accelerated UV chamber weathering (ASTM G154)—through the evolution of visible (VIS) reflectance. Thirty-two samples (16 PE, [...] Read more.
This study evaluates the cosmetic degradation of polyethylene (PE) and polypropylene (PP) automotive components under four exposure scenarios—no exposure, outdoor exposure with and without glass shielding, and accelerated UV chamber weathering (ASTM G154)—through the evolution of visible (VIS) reflectance. Thirty-two samples (16 PE, 16 PP) were monitored over five time points; surface reflectance was recorded at 21 wavelengths and summarized into seven VIS bands, and hardness (Shore D) was measured pre/post-exposure. Repeated-measures univariate and multivariate analyses consistently revealed significant effects of Condition, Time, and their interaction on reflectance, with initial-reflectance adjustment improving inference stability across bands. PE exhibited more gradual and coherent reflectance decay, whereas PP showed greater band-to-band variability—most notably under UV chamber exposure. Additionally, hardness decreased in most exposed groups, aligning with optical changes. To place spectral trajectories in a kinetic context, a family of exponential models with small-sample information criterion selection was fitted, yielding η(t)—a dimensionless degradation efficiency summarizing spectral change. The contribution of this work is a multi-statistical framework—combining VIS-band-aware summaries with covariate-adjusted univariate/multivariate testing—that supports comparisons across materials and exposure conditions, underscoring the practical value of UV chamber protocols as surrogates for outdoor weathering. In sum, the study demonstrates the effectiveness of multivariate and covariate-adjusted models in quantifying optical degradation of polyolefins, offering pragmatic guidance for assessing mid- to long-term performance in automotive applications. Full article
(This article belongs to the Special Issue State-of-the-Art Polymer Science and Technology in Mexico)
13 pages, 2862 KB  
Article
Prescribed-Performance-Based Sliding Mode Control for Piezoelectric Actuator Systems
by Shengjun Wen, Shixin Zhang and Jun Yu
Actuators 2025, 14(11), 516; https://doi.org/10.3390/act14110516 (registering DOI) - 25 Oct 2025
Abstract
A prescribed-performance-based sliding mode control method with feed-forward inverse compensation is proposed in this study to improve the micropositioning accuracy and convergence speed of a piezoelectric actuator (PEA). Firstly, the piezo-actuated micropositioning system is described by a Hammerstein structure model, and an inverse [...] Read more.
A prescribed-performance-based sliding mode control method with feed-forward inverse compensation is proposed in this study to improve the micropositioning accuracy and convergence speed of a piezoelectric actuator (PEA). Firstly, the piezo-actuated micropositioning system is described by a Hammerstein structure model, and an inverse Prandtl–Ishlinskii (PI) model was employed to compensate for its hysteresis characteristics. Then, considering modelling errors, inverse compensation errors, and external disturbances, a new prescribed performance function (PPF) with an exponential dynamic decay rate was developed to describe the constrained region of the errors. We then transformed the error into an unconstrained form by constructing a monotonic function, and the sliding variables were obtained by using the transformation error. Based on this, a sliding mode controller with a prescribed performance function (SMC-PPF) was designed to improve the control accuracy of PEAs. Furthermore, we demonstrated that the error can converge to the constrained region and the sliding variables are stable within the switching band. Finally, experiments were conducted to verify the speed and accuracy of the controller. The step-response experiment results indicated that the time taken for SMC-PPC to enter the error window was 8.1 and 2.2 ms faster than that of sliding mode control (SMC) and PID, respectively. The ability of SMC-PPF to improve accuracy was verified using four different reference inputs. These results showed that, for these different inputs, the root mean square error of the SMC-PPF was reduced by over 39.6% and 52.5%, compared with the SMC and PID, respectively. Full article
(This article belongs to the Section Actuator Materials)
21 pages, 669 KB  
Article
An Elevation-Aware Large-Scale Channel Model for UAV Air-to-Ground Links
by Naier Xia, Yang Liu and Yu Yu
Mathematics 2025, 13(21), 3377; https://doi.org/10.3390/math13213377 - 23 Oct 2025
Viewed by 34
Abstract
This paper addresses the issue of existing research that fails adequately capture the spatiotemporal nonstationarity caused by the building of occlusion and flight dynamics in air-to-ground channels from unmanned aerial vehicles (UAVs) in urban scenarios. This study focuses on the angular-altitude correlations of [...] Read more.
This paper addresses the issue of existing research that fails adequately capture the spatiotemporal nonstationarity caused by the building of occlusion and flight dynamics in air-to-ground channels from unmanned aerial vehicles (UAVs) in urban scenarios. This study focuses on the angular-altitude correlations of three key metrics: path loss (PL), shadow fading, and the Ricean K-factor. A dynamic path-loss model incorporating the look-down angle is proposed, an exponential decay model for the shadow-fading standard deviation is constructed, and a model for the angle-dependent variation of the Ricean K-factor is established based on line-of-sight probability. Simulations were conducted in two urban-geometry scenarios using WinProp to evaluate the combined effects of flight altitude and elevation angle. The results indicate that path loss decreases and subsequently stabilizes with increasing elevation angle, the shadow-fading standard deviation decreases significantly, and the Ricean K-factor increases with angle and saturates at high angles, in agreement with theoretical predictions. These models are more adaptable to UAV mobility scenarios than traditional fixed exponential models and provide a useful basis for UAV link planning and system optimization in urban environments. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

26 pages, 2220 KB  
Article
Lindbladian Decoherence in Quantum Universal Gates: An Insight Analysis for Digital Noise and Thermalisation
by José Carlos Rebón and Francisco Delgado
Entropy 2025, 27(11), 1089; https://doi.org/10.3390/e27111089 - 22 Oct 2025
Viewed by 96
Abstract
Quantum computing is an emergent field promising the improvement of processing speed in key algorithms by reducing their exponential scaling to polynomial, thus enabling solutions to problems that exceed classical computational capabilities. Gate-based quantum computing is the most common approach but still faces [...] Read more.
Quantum computing is an emergent field promising the improvement of processing speed in key algorithms by reducing their exponential scaling to polynomial, thus enabling solutions to problems that exceed classical computational capabilities. Gate-based quantum computing is the most common approach but still faces high levels of noise and decoherence. Gates play the role of probability mixers codifying information settled in quantum systems. However, they are deviated from their programmed behaviour due to those decoherent effects as a hidden source modifies the desired probability flux. Their quantification of such unavoidable behaviours becomes crucial for quantum error correction or mitigation. This work presents an approach to decoherence in quantum circuits using the Lindblad master equation to model the impact of noise and thermalisation underlying the ideal programmed behaviour expected for processing gates. The Lindblad approach then provides a comprehensive tool to model both probability fluxes being present in the process, thus regarding the gate and the environment. It analyses the deviation of resulting noisy states from the ideal unitary evolution of some gates considered as universal, setting some operating regimes. Thermalisation considers a radiation bath where gates are immersed as a feasible model of decoherence. Numerical simulations track the information loss as a function of the decay rate magnitude. It also exhibits the minimal impact on decoherence coming from particular quantum states being processed, but a higher impact on the number of qubits being processed by the gate. The methodology provides a unified framework to characterise the processing probability transport in quantum gates, including noise or thermalisation effects. Full article
(This article belongs to the Special Issue Probability Theory and Quantum Information)
Show Figures

Figure 1

17 pages, 5211 KB  
Article
Luminescent Wearables for Low-Light Visibility of Children
by Daniela Sofronova and Radostina A. Angelova
Textiles 2025, 5(4), 51; https://doi.org/10.3390/textiles5040051 - 20 Oct 2025
Viewed by 115
Abstract
This study explores the development of luminescent wearables using machine embroidery with phosphorescent threads to enhance the visibility and safety of children in low-light environments, addressing the need for improved child protection in urban settings. Five embroidery designs incorporating sports, animal, celestial, and [...] Read more.
This study explores the development of luminescent wearables using machine embroidery with phosphorescent threads to enhance the visibility and safety of children in low-light environments, addressing the need for improved child protection in urban settings. Five embroidery designs incorporating sports, animal, celestial, and typographic motifs were created using Digitizer MBV 2.0 software and produced on a Janome MB4 embroidery machine with phosphorescent threads on black woven fabric for optimal contrast. The luminous performance was evaluated through photographic documentation and lux meter measurements in a controlled light-tight chamber, assessing light emission intensity and decay over time after UV activation. Results demonstrate that designs with higher stitch counts and densities exhibit stronger initial illuminance and longer persistence, with exponential decay curves highlighting rapid initial intensity loss. Variations in design size and stitch density showed linear correlations with illuminance. The study demonstrates the feasibility of luminescent embroidery as a scalable and child-friendly approach to enhancing low-light visibility and safety, combining functionality with aesthetic appeal. Full article
Show Figures

Figure 1

15 pages, 586 KB  
Article
On Probabilistic Convergence Rates of Symmetric Stochastic Bernstein Polynomials
by Shenggang Zhang, Qinjiao Gao and Chungang Zhu
Mathematics 2025, 13(20), 3281; https://doi.org/10.3390/math13203281 - 14 Oct 2025
Viewed by 177
Abstract
This paper analyzes the exponential convergence properties of Symmetric Stochastic Bernstein Polynomials (SSBPs), a novel approximation framework that combines the deterministic precision of classical Bernstein polynomials (BPs) with the adaptive node flexibility of Stochastic Bernstein Polynomials (SBPs). Through innovative applications of order statistics [...] Read more.
This paper analyzes the exponential convergence properties of Symmetric Stochastic Bernstein Polynomials (SSBPs), a novel approximation framework that combines the deterministic precision of classical Bernstein polynomials (BPs) with the adaptive node flexibility of Stochastic Bernstein Polynomials (SBPs). Through innovative applications of order statistics concentration inequalities and modulus of smoothness analysis, we derive the first probabilistic convergence rates for SSBPs across all Lp (1p) norms and in pointwise approximation. Numerical experiments demonstrate dual advantages: (1) SSBPs achieve comparable L errors to BPs in approximating fundamental stochastic functions (uniform distribution and normal density), while significantly outperforming SBPs; (2) empirical convergence curves validate exponential decay of approximation errors. These results position SSBPs as a principal solution for stochastic approximation problems requiring both mathematical rigor and computational adaptability. Full article
(This article belongs to the Special Issue Nonlinear Functional Analysis: Theory, Methods, and Applications)
Show Figures

Figure 1

20 pages, 3922 KB  
Article
Both Benzannulation and Heteroatom-Controlled Photophysical Properties in Donor–π–Acceptor Ionic Dyes: A Combined Experimental and Theoretical Study
by Przemysław Krawczyk and Beata Jędrzejewska
Materials 2025, 18(20), 4676; https://doi.org/10.3390/ma18204676 - 12 Oct 2025
Viewed by 384
Abstract
Donor–π–acceptor (D–π–A) dyes have garnered significant attention due to their unique optical properties and potential applications in various fields, including optoelectronics, chemical sensing and bioimaging. This study presents the design, synthesis, and comprehensive photophysical investigation of a series of ionic dyes incorporating five- [...] Read more.
Donor–π–acceptor (D–π–A) dyes have garnered significant attention due to their unique optical properties and potential applications in various fields, including optoelectronics, chemical sensing and bioimaging. This study presents the design, synthesis, and comprehensive photophysical investigation of a series of ionic dyes incorporating five- and six-membered heterocyclic rings as electron-donating and electron-withdrawing units, respectively. The influence of the dye structure, i.e., (a) the systematically varied heteroatom (NMe, S and O) in donor moiety, (b) benzannulation of the acceptor part and (c) position of the donor vs. acceptor, on the photophysical properties was evaluated by steady-state and time-resolved spectroscopy across solvents of varying polarity. To probe solvatochromic behavior, the Reichardt parameters and the Catalán four-parameter scale, including polarizability (SP), dipolarity (SdP), acidity (SA) and basicity (SB) parameters, were applied. Emission dynamics were further analyzed through time-resolved fluorescence spectroscopy employing multi-exponential decay models to accurately describe fluorescence lifetimes. Time-dependent density functional theory (TDDFT) calculations supported the experimental findings by elucidating electronic structures, charge-transfer character, and dipole moments in the ground and excited states. The experimental results show the introduction of O or S instead of NMe causes substantial hypsochromic shifts in the absorption and emission bands. Benzannulation enhances the photoinduced charge transfer and causes red-shifted absorption spectra to be obtained without deteriorating the emission properties. Hence, by introducing an appropriate modification, it is possible to design materials with tunable photophysical properties for practical applications, e.g., in opto-electronics or sensing. Full article
Show Figures

Figure 1

17 pages, 2364 KB  
Article
Exploring Electromagnetic Density of States Near Plasmonic Material Interfaces
by Rodolfo Cortés-Martínez, Ricardo Téllez-Limón, Cesar E. Garcia-Ortiz, Benjamín R. Jaramillo-Ávila and Gabriel A. Galaviz-Mosqueda
Surfaces 2025, 8(4), 71; https://doi.org/10.3390/surfaces8040071 - 10 Oct 2025
Viewed by 315
Abstract
The electromagnetic density of states (EM-DOS) plays a crucial role in understanding light–matter interactions, especially at metal–dielectric interfaces. This study explores the impact of interface geometry, material properties, and nanostructures on EM-DOS, with a focus on surface plasmon polaritons (SPPs) and evanescent waves. [...] Read more.
The electromagnetic density of states (EM-DOS) plays a crucial role in understanding light–matter interactions, especially at metal–dielectric interfaces. This study explores the impact of interface geometry, material properties, and nanostructures on EM-DOS, with a focus on surface plasmon polaritons (SPPs) and evanescent waves. Using a combination of analytical and numerical methods, the behavior of EM-DOS is analyzed as a function of distance from metal–dielectric interfaces, showing exponential decay with penetration depth. The influence of different metals, including copper, gold, and silver, on EM-DOS is examined. Additionally, the effects of dielectric materials, such as TiO2, PMMA, and Al2O3, on the enhancement of electromagnetic field confinement are discussed. The study also investigates the effect of nanostructures, like nanohole and nanopillar arrays, on EM-DOS by calculating effective permittivity and analyzing the interaction of quantum emitters with these structures. Results show that nanopillar arrays enhance EM-DOS more effectively than nanohole arrays, especially in the visible spectrum. The findings provide insights into optimizing plasmonic devices for applications in sensing, quantum technologies, and energy conversion. Full article
Show Figures

Figure 1

21 pages, 9318 KB  
Article
Investigation on Ground Collapse Due to Exfiltration of Shallowly Buried Water-Supply Pipeline
by Fenghao Bai, Ye Lu and Xiuying Lu
Appl. Sci. 2025, 15(19), 10736; https://doi.org/10.3390/app151910736 - 5 Oct 2025
Viewed by 321
Abstract
Pipeline exfiltration from damaged water-supply systems frequently causes soil erosion and ground subsidence, which jeopardizes the safety of pedestrians and vehicles and even causes casualties. Despite the severe consequences, it is difficult for engineers to give reliable assessments of pipeline exfiltration hazards. In [...] Read more.
Pipeline exfiltration from damaged water-supply systems frequently causes soil erosion and ground subsidence, which jeopardizes the safety of pedestrians and vehicles and even causes casualties. Despite the severe consequences, it is difficult for engineers to give reliable assessments of pipeline exfiltration hazards. In this study, erosion processes were explored using model tests and coupled computational fluid dynamics–discrete element method (CFD-DEM) simulations. It was discovered that the erosion zone can be divided into two zones—the exfiltration zone and the seepage diffusion zone. When water pressure reached 2.412 × 10−2 MPa, local porosity approached 1.0, indicating there were no soil particles remaining. As pipeline pressure increased from 2.122 × 10−3 MPa to 2.412 × 10−2 MPa, ground failure transitioned from downward settlement to upward bulge, and the ground failure duration of the fractured prototype pipe was reduced by 22–28% (from 125 s to 98 s), with a standard deviation of less than 5. The established exponential decay model (v(t)=v0e(αt),R2>0.89) enabled prediction of erosion duration. Based on the erosion height curve, the erosion duration and erosion area in similar engineering environments can be estimated, providing a reference for evaluating the risk of ground collapse due to pipe exfiltration. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

16 pages, 2720 KB  
Article
Shale Oil T2 Spectrum Inversion Method Based on Autoencoder and Fourier Transform
by Jun Zhao, Shixiang Jiao, Li Bai, Bing Xie, Yan Chen, Zhenguan Wu and Shaomin Zhang
Geosciences 2025, 15(10), 387; https://doi.org/10.3390/geosciences15100387 - 4 Oct 2025
Viewed by 337
Abstract
Accurate inversion of the T2 spectrum of shale oil reservoir fluids is crucial for reservoir evaluation. However, traditional nuclear magnetic resonance inversion methods face challenges in extracting features from multi-exponential decay signals. This study proposed an inversion method that combines autoencoder (AE) [...] Read more.
Accurate inversion of the T2 spectrum of shale oil reservoir fluids is crucial for reservoir evaluation. However, traditional nuclear magnetic resonance inversion methods face challenges in extracting features from multi-exponential decay signals. This study proposed an inversion method that combines autoencoder (AE) and Fourier transform, aiming to enhance the accuracy and stability of T2 spectrum estimation for shale oil reservoirs. The autoencoder is employed to automatically extract deep features from the echo train, while the Fourier transform is used to enhance frequency domain features of multi-exponential decay information. Furthermore, this paper designs a customized weighted loss function based on a self-attention mechanism to focus the model’s learning capability on peak regions, thereby mitigating the negative impact of zero-value regions on model training. Experimental results demonstrate significant improvements in inversion accuracy, noise resistance, and computational efficiency compared to traditional inversion methods. This research provides an efficient and reliable new approach for precise evaluation of the T2 spectrum in shale oil reservoirs. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

14 pages, 915 KB  
Article
Live Cell-Based Semi-Quantitative Stratification Highlights Titre-Dependent Phenotypic Heterogeneity in MOGAD: A Single-Centre Experience
by Donato Regina, Concetta Domenica Gargano, Tommaso Guerra, Antonio Frigeri, Damiano Paolicelli, Maddalena Ruggieri and Pietro Iaffaldano
Int. J. Mol. Sci. 2025, 26(19), 9615; https://doi.org/10.3390/ijms26199615 - 1 Oct 2025
Viewed by 611
Abstract
Myelin oligodendrocyte glycoprotein antibody–associated disease (MOGAD) is an inflammatory demyelinating disorder of the central nervous system characterised by heterogeneous clinical and radiological presentations. Accurate interpretation of serum anti–myelin oligodendrocyte glycoprotein (anti-MOG) antibody titres is critical to improve diagnostic precision and prognostic assessment. This [...] Read more.
Myelin oligodendrocyte glycoprotein antibody–associated disease (MOGAD) is an inflammatory demyelinating disorder of the central nervous system characterised by heterogeneous clinical and radiological presentations. Accurate interpretation of serum anti–myelin oligodendrocyte glycoprotein (anti-MOG) antibody titres is critical to improve diagnostic precision and prognostic assessment. This single-centre retrospective study evaluated 19 patients diagnosed with MOGAD in 2023, all of whom were seropositive for anti-MOG IgG, as confirmed by live cell-based assays (CBAs) using full-length human MOG and IgG1-specific secondary antibodies. Antibody quantification combined a ratiometric semi-quantitative fluorescence index with classical endpoint dilution titres, enabling classification into low, medium, and high titre groups. Stratification revealed titre-dependent phenotypic heterogeneity: high-titre patients were older at onset and predominantly presented with optic neuritis, often bilateral, and encephalic involvement, whereas low-titre patients more frequently exhibited spinal cord syndromes, cerebellar or brainstem symptoms, and a higher prevalence of cerebrospinal fluid-restricted oligoclonal bands. Semi-quantitative fluorescence ratios correlated consistently with endpoint titres, and exponential decay analysis demonstrated slower signal loss in high-titre sera, confirming assay reliability. No significant association emerged between titre level and monophasic versus relapsing disease course. Anti-MOG antibody titres could serve not only as a diagnostic biomarker but also to capture clinically relevant immunopathological diversity, supporting a titre-stratified approach to diagnosis and early prognostication. Incorporating semi-quantitative metrics alongside clinical and imaging features may refine the diagnostic algorithm and prevent misclassification of atypical presentations. Full article
(This article belongs to the Special Issue Multiple Sclerosis: The Latest Developments in Immunology and Therapy)
Show Figures

Figure 1

16 pages, 913 KB  
Article
Mechanisms of Energy Transfer and Failure Zoning in Rock Mass Blasting: A Mohr–Coulomb Theory and Numerical Simulation Study
by Wei Zhang, Renshan Chen, Kaibo Yang and Jin Li
Appl. Sci. 2025, 15(19), 10600; https://doi.org/10.3390/app151910600 - 30 Sep 2025
Viewed by 229
Abstract
This paper explores the mechanisms of energy transfer and failure zones in rock mass blasting. By combining theoretical derivation with numerical simulation, we examine the deformation, failure features, and source parameters of rock subjected to spherical charge blasting. Using the Mohr–Coulomb yield criterion, [...] Read more.
This paper explores the mechanisms of energy transfer and failure zones in rock mass blasting. By combining theoretical derivation with numerical simulation, we examine the deformation, failure features, and source parameters of rock subjected to spherical charge blasting. Using the Mohr–Coulomb yield criterion, we classify the rock failure process into four zones: the cavity zone, fracture zone, radial fracture zone, and vibration zone. Additionally, we establish a dynamic partitioned model that considers explosion cavity expansion, compression wave propagation, and energy dissipation. Applying elastic failure conditions, we develop a calculation model for vibration parameters in each zone and use MATLAB programming to find numerical solutions for the radius of the failure zone, elastic potential energy, and the interface pressure over time. Verification with a granite underground blasting project in Qingdao shows the ratio of the spherical cavity radius to the charge radius is 1.49, and the crushing zone radius to the charge radius is 2.85. Theoretical results are consistent with the approximate method in magnitude and value, confirming the model’s reliability. The interface pressure sharply peaks and then decays exponentially. The growth of the fracture zone depends heavily on initial pressure, rock strength, and Poisson’s ratio. These findings support blasting engineering design and seismic effect assessment. Full article
(This article belongs to the Special Issue Rock Mechanics in Geotechnical and Tunnel Engineering)
Show Figures

Figure 1

7 pages, 224 KB  
Article
On Relative Stability for Strongly Mixing Sequences
by Adam Jakubowski and Zbigniew Stanisław Szewczak
Foundations 2025, 5(4), 33; https://doi.org/10.3390/foundations5040033 - 25 Sep 2025
Viewed by 228
Abstract
We consider a class of strongly mixing sequences with infinite second moment. This class contains important GARCH processes that are applied in econometrics. We show the relative stability for such processes and construct a counterexample. We apply these results and obtain a new [...] Read more.
We consider a class of strongly mixing sequences with infinite second moment. This class contains important GARCH processes that are applied in econometrics. We show the relative stability for such processes and construct a counterexample. We apply these results and obtain a new CLT without the requirement of exponential decay of mixing coefficients, and provide a counterexample to this as well. Full article
(This article belongs to the Section Mathematical Sciences)
11 pages, 5563 KB  
Article
Estimation of Litter Yield and Decomposition Rate in Dahurian Larch Forests of the Greater Khingan Mountains
by Zhiyong Cai, Long Sun, Jiabao Sun and Haiqing Hu
Forests 2025, 16(10), 1516; https://doi.org/10.3390/f16101516 - 25 Sep 2025
Viewed by 271
Abstract
The aim of this paper is to investigate forest litter yield and decomposition rate estimation methods to provide a basic theory for litter production and decomposition studies and a scientific foundation for forest management practices. The Greater Khingan Dahurian larch (Larix gmelinii [...] Read more.
The aim of this paper is to investigate forest litter yield and decomposition rate estimation methods to provide a basic theory for litter production and decomposition studies and a scientific foundation for forest management practices. The Greater Khingan Dahurian larch (Larix gmelinii) forest in China was taken as the study subject. Forest litter was defined as the cumulative product of annual litterfall. The Olson exponential decay model, which is widely recognized in ecological studies, was employed to develop a system of equations representing the dynamic equilibrium among litter production, decomposition, and accumulation. Litter yield and decomposition rate estimation models were formulated based on this system. Model parameters were analyzed using multiple linear regression techniques. The proposed estimation methods were verified through field survey data and one-sample t-tests. The relative error for litter production estimation ranged from 0.01 to 0.25, with an average of 0.13, and the t-test yielded a p-value of 0.108. The relative error of the decomposition rate estimation was 0.00–0.35, with an average of 0.12, and the corresponding t-test yielded a p-value of 0.151. A litter yield and decomposition rate model with easily obtained predictor variables was constructed in this study. The model can rapidly estimate the litter yield and decomposition rate of survey sites and has important application value for litter yield- and decomposition-related studies. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

22 pages, 14549 KB  
Article
Fractional-Order Constitutive Modeling of Shear Creep Damage in Carbonaceous Mud Shale: Experimental Verification of Acoustic Emission Ringing Count Rate Analysis
by Jinpeng Wu, Bin Hu, Jing Li, Xiangyu Zhang, Xin Dai and Kai Cui
Fractal Fract. 2025, 9(9), 610; https://doi.org/10.3390/fractalfract9090610 - 21 Sep 2025
Cited by 1 | Viewed by 357
Abstract
To reveal the influence mechanism of shear creep behavior of the weak interlayer (carbonaceous mud shale) from a microscopic perspective, acoustic emission (AE) technology was introduced to conduct shear creep tests to capture micro-fracture acoustic signals and analyze the microscopic damage evolution laws. [...] Read more.
To reveal the influence mechanism of shear creep behavior of the weak interlayer (carbonaceous mud shale) from a microscopic perspective, acoustic emission (AE) technology was introduced to conduct shear creep tests to capture micro-fracture acoustic signals and analyze the microscopic damage evolution laws. The results indicate that, as normal stress increased, shear creep strain decayed exponentially, while the steady state creep rate increased gradually. Additionally, the peak value and cumulative value of the AE ringing count rate also increased gradually. The AE b-value had a staged pattern of “fluctuation adjustment → stable increase → abrupt decline”. The sudden drop in the b-value could serve as a precursor feature of creep failure. The higher the normal stress, the earlier the sudden drop in b-value and the larger the Δb value. The damage variable was defined based on the AE ringing count rate, and a new creep damage model was constructed by combining fractional-order theory. The model can uniformly describe the creep damage law of carbonaceous mud shale under different normal stresses. The reliability of the model was verified through experimental data. The research results provide a theoretical basis for long-term stability analysis of mine slopes containing weak interlayers. Full article
Show Figures

Figure 1

Back to TopTop