Estimation of Litter Yield and Decomposition Rate in Dahurian Larch Forests of the Greater Khingan Mountains
Abstract
1. Introduction
2. Study Methods
2.1. Overview of Study Site
2.2. Data Sources
2.3. Olson’s Single-Exponential Equation
2.4. Model Construction
2.5. Statistical Parameter r
2.5.1. Calculation of Parameter r
2.5.2. Prediction of Parameter r
2.6. Verification of Accuracy
3. Results and Analysis
3.1. Parameter r Calculation Results
3.2. Parameter r Prediction Results
3.3. Survey Site Litter Yield and Decomposition Rate Estimation
3.4. Results of Accuracy Verification
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xue, J.H. Forest Ecology; China Forestry Publishing House: Beijing, China, 2006; pp. 200–201. [Google Scholar]
- Shang, Y.C. General Ecology; Peking University Press: Beijing, China, 2010; pp. 59–73. [Google Scholar]
- Zhang, X.P.; Wang, R.P.; Zhu, B. Litter fall production in relation to environm to environmental factors in northeast china’s forests. J. Plant Ecol. 2008, 32, 1031–1040. [Google Scholar]
- Ma, Z.Z.; Zhang, Q.Z.; Wang, C.K. Long-term dynamics in litter production and environmental drivers. Acta Ecol. Sin. 2023, 43, 7307–7316. [Google Scholar]
- Zemskov, P.I.; Bogatyrev, L.G. Applying the Litter–Bag Technique for Studying Plant Litter Decomposition Processes in Natural and Urbanized Biogeocenoses. Eurasian Soil Sci. 2025, 58, 14. [Google Scholar] [CrossRef]
- Liu, Q. Characteristics and hotspots of forest litter decomposition research: A bibliometric analysis. Land Degrad. Dev. 2024, 35, 2684–2699. [Google Scholar] [CrossRef]
- Chen, J.H.; Gao, M.; Chen, G.C. Difference in the production and elemental composition of litter in Kandelia obovata mangrove forests due to site elevation. J. Sea Res. 2024, 200, 102508. [Google Scholar] [CrossRef]
- Vinod, C.J.; Sundriyal, R.C. Seasonal and long-term changes in litterfall production and litter decomposition in the dominant forest communities of Western Himalaya. Ecol. Front. 2024, 44, 664–672. [Google Scholar] [CrossRef]
- Zhou, L.L.; Shalom, A.D.; Wu, P.F. Litterfall production and nutrient return in different-aged Chinese fir (Cunninghamia lanceolata) plantations in South China. J. For. Res. 2015, 26, 79–89. [Google Scholar] [CrossRef]
- Satoshi, N.; Suzuki, M.I.; Ishihara. Nation-wide litter fall data from 21 forests of the Monitoring Sites 1000 Project in Japan. Ecol. Res. 2012, 27, 989–990. Available online: http://db.cger.nies.go.jp/JaLTER/ER_DataPapers/archives/2012/ERDP-2012-04 (accessed on 2 April 2025).
- Singh, K.P.; Singh, P.K. Litterfall, litter decomposition and nutrient release patterns in four native tree species raised on coal mine spoil at Singrauli, India. Biol. Fertil. Soils 1999, 29, 371–378. [Google Scholar] [CrossRef]
- Bonan, G.B.; Hartman, M.D. Evaluating litter decomposition in earth system models with long-term litterbag experiments: An example using the Community Land Model version 4 (CLM4). Glob. Change Biol. 2013, 19, 957–974. [Google Scholar] [CrossRef]
- Shailendra, B.; Uttam, B.; Bhagwat, P.P. An Overview of Leaf Litter Decomposition and Nutrient Dynamics of Multipurpose Tree Species. AJAEES 2023, 41, 68–74. Available online: https://journalajaees.com/index.php/AJAEES/article/view/2305 (accessed on 2 April 2025).
- Latterini, F.; Dyderski, M.K.; Horodecki, P. The effects of forest operations and silvicultural treatments on litter decompositionrate: A meta-analysis. Curr. For. Rep. 2023, 9, 276–290. [Google Scholar] [CrossRef]
- Liu, S.; Bu, M.L.; Li, Y. Regulation of initial soil environmental factors on litter decomposition rate affects the estimation accuracy of litter mass loss in a subtropical forest. Plant Soil. 2022, 485, 395–410. Available online: https://link.springer.com/article/10.1007/s11104-022-05838-y (accessed on 3 April 2025). [CrossRef]
- Berg, B.; Mikael, L. Long-Term Effects of Climate and Litter Chemistry on Rates and Stable Fractions of Decomposing Scots Pine and Norway Spruce Needle Litter-A Synthesis. Forests 2022, 13, 125. [Google Scholar] [CrossRef]
- Björn, B. Litter decomposition and organic matter turnover in northern forest soils. For. Ecol. Manag. 2000, 133, 13–22. [Google Scholar] [CrossRef]
- Liu, Z.W. Research method of litter decay rate in forest ecosystems. AES 2002, 22, 954–956. [Google Scholar] [CrossRef]
- National Forestry and Grassland Administration. Technical Specifications for Forest Fuel Standard Plot Survey; FXPC/LC F-01; Office of the Leading Group of the First National Natural Hazard Comprehensive Risk Survey of the State Council: Beijing, China, 2021.
- Aber, J.D.; Mcclaugherty, C.A. Predicting long-term patterns of mass loss nitrogen dynamics and soil organic matter formation from initial fine litter chemistry in temperature forest ecosystems. Can. J. Bot. 1990, 68, 2201–2208. [Google Scholar] [CrossRef]
- Moorhead, D.L.; Reynolds, J.F. A general model of litter decomposition in the northern Chihuahuan Desert. Ecol. Model. 1991, 59, 197–219. [Google Scholar] [CrossRef]
- Liu, Z.W.; Gao, W.J.; Pan, K.W. Discussion on the study methods and models of litter decomposition. AES 2006, 26, 1993–2000. [Google Scholar] [CrossRef]
- Hu, H.R.; Bei, R.T.; Wang, Y.X. Forest Soil Science; China Forestry Publishing House: Beijing, China, 2019; pp. 48–52. [Google Scholar]
- Bryanin, S.; Kondratova, A.; Abramova, E. Litter Decomposition and Nutrient Dynamics in Fire-Affected Larch Forests in the Russian Far East. Forests 2020, 11, 882. [Google Scholar] [CrossRef]
- Zhang, F.; Feng, Y.H.; Song, S.S. Temperature sensitivity of plant litter decomposition rate in China’s forests. Ecosphere 2021, 12, e03541. [Google Scholar] [CrossRef]
- Wu, J.J.; Su, B.L.; Li, X.Z. Latitudinal responses of litter decomposition to solar radiation. J. Appl. Ecol. 2024, 35, 2511–2517. [Google Scholar]
- Rosalie, F.; Louis, D.; Evelyne, T. Interannual variability and seasonality of litterfall in three temperate and boreal forest ecosystems of eastern Canada: A synthesis of long-term monitoring. For. Ecol. Manag. 2024, 568, 122069. [Google Scholar] [CrossRef]
- Chen, B.; Jiang, L.; Liu, J.F. What control home-field advantage of foliar litter decomposition along an elevational gradient in subtropical forests. Plant Soil. 2025, 512, 1493–1508. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, T.; Lou, H. Models ignoring spatial heterogeneities of forest age will significantly overestimate the climate effects on litterfall in China. Sci. Total Environ. 2019, 661, 492–503. [Google Scholar] [CrossRef] [PubMed]
- Joly, F.X.; Milcu, A. Tree species diversity affects decomposition through modified micro-environmental conditions across European forests. TNP 2017, 214, 1281–1293. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.X.; Zhou, X.G. Coniferous-Broadleaf Mixture Increases Soil Microbial Biomass and Functions Accompanied by Improved Stand Biomass and Litter Production in Subtropical China. Forests 2019, 10, 879. [Google Scholar] [CrossRef]
- Yang, W.Q.; Wang, K.Y. Advances in forest soil enzymology. Sci. Silvae Sin. 2004, 40, 152–159. Available online: http://www.linyekexue.net/CN/10.11707/j.1001-7488.20040227 (accessed on 5 April 2025).
- Zhang, D.L.; Mao, Z.J.; Zhang, L. Advances of enzyme activities in the process of litter decomposition. Sci. Silvae Sin. 2006, 42, 105–109. [Google Scholar] [CrossRef]
Plot No. | Altitude (km) | Aspect | Crown Density | Stand Density (Trees/ha) | Mean Tree Height (m) | Mean Diameter at Breast Height (cm) |
---|---|---|---|---|---|---|
1 | 0.401 | North | 0.6 | 2445 | 8.32 | 9.7 |
2 | 0.594 | Northwest | 0.6 | 2400 | 11.22 | 8.7 |
3 | 0.702 | Northeast | 0.3 | 615 | 10.05 | 13.9 |
4 | 0.731 | West | 0.5 | 870 | 14.17 | 16.7 |
5 | 0.609 | South | 0.4 | 600 | 15.97 | 17.5 |
6 | 0.680 | South | 0.7 | 3135 | 10.23 | 7.9 |
7 | 0.366 | South | 0.7 | 2565 | 12.20 | 11.1 |
8 | 0.573 | Southeast | 0.6 | 1410 | 12.88 | 11.8 |
9 | 0.547 | Southwest | 0.5 | 1530 | 11.83 | 10.3 |
10 | 0.586 | Southeast | 0.7 | 1710 | 13.57 | 11.0 |
11 | 0.522 | Absent | 0.6 | 1785 | 11.50 | 8.8 |
12 | 0.774 | East | 0.6 | 2595 | 9.78 | 9.0 |
Sample Size | Minimum | Maximum | Mean | Standard Deviation | |
---|---|---|---|---|---|
Litter upper layer load (t/ha) | 200 | 0.76 | 16.60 | 6.95 | 2.80 |
Total litter load (t/ha) | 200 | 3.04 | 80.23 | 29.28 | 13.29 |
Litter lower layer load (t/ha) | 200 | 2.28 | 67.11 | 22.33 | 11.78 |
Thick branch load (t/ha) | 200 | 0.00 | 7.75 | 0.90 | 1.42 |
Altitude (km) | 200 | 0.21 | 0.94 | 0.51 | 0.15 |
r value | 200 | 0.53 | 0.90 | 0.74 | 0.09 |
. | B | SE | β | t | p-Value | VIF |
---|---|---|---|---|---|---|
(Constant) | 0.519 | 0.014 | 36.427 | <0.001 | ||
Litter lower layer load (t/ha) | 0.006 | <0.001 | 0.749 | 17.796 | <0.001 | 1.064 |
Altitude (km) | 0.224 | 0.024 | 0.381 | 9.289 | <0.001 | 1.006 |
Thick branch load (t/ha) | −0.016 | 0.003 | −0.266 | −6.307 | <0.001 | 1.070 |
R2 | 0.673 | |||||
F | 134.599 | |||||
p | <0.001 |
Plot No. | Altitude (km) | Litter Lower Layer Load (t/ha) | Litter Upper Layer Load (t/ha) | Thick Branch Load (t/ha) | Total Load (t/ha) | r | Yield (t/ha/year) | Decomposition Rate | Litter Upper Layer Turnover (Years) |
---|---|---|---|---|---|---|---|---|---|
1 | 0.401 | 18.70 | 11.15 | 2.28 | 29.85 | 0.68 | 2.54 | 0.08 | 4.27 |
2 | 0.594 | 9.75 | 6.63 | 0.00 | 16.39 | 0.71 | 2.66 | 0.16 | 1.93 |
3 | 0.702 | 24.98 | 6.35 | 0.00 | 31.34 | 0.83 | 1.10 | 0.04 | 5.36 |
4 | 0.731 | 7.68 | 5.37 | 0.00 | 13.06 | 0.73 | 2.52 | 0.19 | 1.48 |
5 | 0.609 | 4.50 | 4.54 | 0.00 | 9.04 | 0.68 | 2.44 | 0.27 | 1.21 |
6 | 0.680 | 44.59 | 10.09 | 3.60 | 54.68 | 0.88 | 4.08 | 0.07 | 1.63 |
7 | 0.366 | 36.25 | 13.16 | 0.79 | 49.42 | 0.81 | 4.43 | 0.09 | 2.30 |
8 | 0.573 | 10.31 | 7.89 | 0.00 | 18.20 | 0.71 | 3.67 | 0.20 | 1.53 |
9 | 0.547 | 26.73 | 10.09 | 0.58 | 36.82 | 0.79 | 3.09 | 0.08 | 2.65 |
10 | 0.586 | 5.36 | 4.45 | 0.00 | 9.81 | 0.68 | 1.96 | 0.20 | 1.72 |
11 | 0.522 | 49.93 | 5.27 | 0.00 | 55.21 | 0.94 | 1.83 | 0.03 | 1.97 |
12 | 0.774 | 34.06 | 8.06 | 0.00 | 42.12 | 0.90 | 4.14 | 0.10 | 1.05 |
Mean | 0.590 | 22.74 | 7.76 | 0.60 | 30.49 | 0.78 | 2.87 | 0.13 | 2.26 |
t | Degree of Freedom | p | Mean Difference | Lower Bound of the Confidence Interval | Upper Bound of the Confidence Interval | |
---|---|---|---|---|---|---|
Litter yield error | 1.752 | 11 | 0.108 | 0.212 | −0.054 | 0.479 |
Decomposition rate error | 1.542 | 11 | 0.151 | 0.006 | −0.003 | 0.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Z.; Sun, L.; Sun, J.; Hu, H. Estimation of Litter Yield and Decomposition Rate in Dahurian Larch Forests of the Greater Khingan Mountains. Forests 2025, 16, 1516. https://doi.org/10.3390/f16101516
Cai Z, Sun L, Sun J, Hu H. Estimation of Litter Yield and Decomposition Rate in Dahurian Larch Forests of the Greater Khingan Mountains. Forests. 2025; 16(10):1516. https://doi.org/10.3390/f16101516
Chicago/Turabian StyleCai, Zhiyong, Long Sun, Jiabao Sun, and Haiqing Hu. 2025. "Estimation of Litter Yield and Decomposition Rate in Dahurian Larch Forests of the Greater Khingan Mountains" Forests 16, no. 10: 1516. https://doi.org/10.3390/f16101516
APA StyleCai, Z., Sun, L., Sun, J., & Hu, H. (2025). Estimation of Litter Yield and Decomposition Rate in Dahurian Larch Forests of the Greater Khingan Mountains. Forests, 16(10), 1516. https://doi.org/10.3390/f16101516