On Probabilistic Convergence Rates of Symmetric Stochastic Bernstein Polynomials
Abstract
1. Introduction
2. Preliminaries
2.1. Concentration Inequalities for Order Statistics
2.2. Extension and Modulus of Continuity
3. Exponential Decay Rate of the -Probabilistic Convergence
3.1. -Probabilistic Convergence
3.2. -Probabilistic Convergence
4. Exponential Decay of Pointwise Convergence in Probability
5. Numerical Experiments
5.1. Simulations of Uniform Distribution Functions
5.2. Simulations of Normal Distribution Functions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, D.; Johnson, P.; Knoll, F.; Lui, Y. Artificial intelligence for MR image reconstruction: An overview for clinicians. J. Magn. Reson. Imaging 2021, 53, 1015–1028. [Google Scholar] [CrossRef] [PubMed]
- Al-Quayed, F.; Ahmad, Z.; Humayun, M. A situation based predictive approach for cybersecurity intrusion detection and prevention using machine learning and deep learning algorithms in wireless sensor networks of industry 4.0. IEEE Access 2024, 12, 34800–34819. [Google Scholar] [CrossRef]
- El, Y.; Ellabib, A. A fuzzy particle swarm optimization method with application to shape design problem. RAIRO-Oper. Res. 2023, 57, 2819–2832. [Google Scholar]
- Lorentz, G. Bernstein Polynomials; American Mathematical Society: Providence, RI, USA, 2012. [Google Scholar]
- Cheney, E.W.; Light, W. A Course in Approximation Theory; American Mathematical Society: Providence, RI, USA, 2009; Volume 101. [Google Scholar]
- Ditzian, Z.; Totik, V. Moduli of Smoothness; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 9. [Google Scholar]
- Chung, K. Elementary Probability Theory with Stochastic Processes; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Paltanea, R. Approximation Theory Using Positive Linear Operators; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Wu, Z.; Sun, X.; Ma, L. Sampling scattered data with Bernstein polynomials: Stochastic and deterministic error estimates. Adv. Comput. Math. 2013, 38, 187–205. [Google Scholar] [CrossRef]
- David, H.; Nagaraja, H. Order Statistics; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Sun, X.; Wu, Z. Chebyshev type inequality for stochastic Bernstein polynomials. Proc. Am. Math. Soc. 2019, 147, 671–679. [Google Scholar] [CrossRef]
- Sun, X.; Wu, Z.; Zhou, X. On probabilistic convergence rates of stochastic Bernstein polynomials. Math. Comput. 2021, 90, 813–830. [Google Scholar] [CrossRef]
- Sun, X.; Zhou, X. Stochastic Quasi-Interpolation with Bernstein Polynomials. Mediterr. J. Math. 2022, 19, 240. [Google Scholar] [CrossRef]
- Adell, J.; Cárdenas-Morales, D. Stochastic Bernstein polynomials: Uniform convergence in probability with rates. Adv. Comput. Math. 2020, 46, 16. [Google Scholar] [CrossRef]
- Adell, J.; Cárdenas-Morales, D. Random linear operators arising from piecewise linear interpolation on the unit interval. Mediterr. J. Math. 2022, 19, 223. [Google Scholar] [CrossRef]
- Adell, J.; Cárdenas-Morales, D.; López-Moreno, A. On the rates of pointwise convergence for Bernstein polynomials. Results Math. 2025, 80, 1–10. [Google Scholar] [CrossRef]
- Gao, W.; Sun, X.; Wu, Z.; Zhou, X. Multivariate Monte Carlo approximation based on scattered data. SIAM J. Sci. Comput 2020, 42, A2262–A2280. [Google Scholar] [CrossRef]
- Gao, W.; Fasshauer, G.; Sun, X.; Zhou, X. Optimality and regularization properties of quasi-interpolation: Deterministic and stochastic approaches. SIAM J. Numer. Anal. 2020, 58, 2059–2078. [Google Scholar] [CrossRef]
- Gal, S.; Niculescu, C. Approximation of random functions by stochastic Bernstein polynomials in capacity spaces. Carpathian J. Math. 2021, 37, 185–194. [Google Scholar] [CrossRef]
- Bouzebda, S. Uniform in number of neighbor consistency and weak convergence of k-nearest neighbor single index conditional processes and k-nearest neighbor single index conditional u-processes involving functional mixing data. Symmetry 2024, 16, 1576. [Google Scholar] [CrossRef]
- Cucker, F.; Smale, S. On the mathematical foundations of learning. Bull. Am. Math. Soc. 2002, 39, 1–49. [Google Scholar] [CrossRef]
- Cucker, F.; Zhou, D. Learning Theory: An Approximation Theory Viewpoint; Cambridge University Press: Cambridge, UK, 2007; Volume 24. [Google Scholar]
- Gao, Q.; Sun, X.; Zhang, S. Optimal stochastic Bernstein polynomials in Ditzian-Totik type modulus of smoothness. J. Comput. Appl. Math. 2022, 404, 113888. [Google Scholar] [CrossRef]
- Casella, G.; Berger, R. Statistical Inference; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Farin, G. Handbook of Computer Aided Geometric Design; Elsevier: Amsterdam, The Netherlands, 2002; Volume 2, pp. 577–580. [Google Scholar]
- Prautzsch, H.; Boehm, W.; Paluszny, M. Bézier and B-Spline Techniques; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
n | 50 | 100 | 400 | 1000 | 3000 | 5000 | 7000 | |
---|---|---|---|---|---|---|---|---|
BP | 0.0468 | 0.0320 | 0.0149 | 0.0086 | 0.0041 | 0.0028 | 0.0021 | |
SBP | 0.3880 | 0.1918 | 0.0868 | 0.0604 | 0.0384 | 0.0240 | 0.0239 | |
SSBP | 0.0891 | 0.0556 | 0.0358 | 0.0140 | 0.0043 | 0.0042 | 0.0021 |
n | 50 | 100 | 400 | 1000 | 3000 | 5000 | 7000 | |
---|---|---|---|---|---|---|---|---|
BP | 0.2860 | 0.1659 | 0.0469 | 0.0193 | 0.0065 | 0.0039 | 0.0021 | |
SBP | 2.4255 | 1.8618 | 1.0705 | 1.0248 | 0.2801 | 0.2673 | 0.0239 | |
SSBP | 0.7121 | 0.4584 | 0.1828 | 0.0561 | 0.0221 | 0.0212 | 0.0187 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Gao, Q.; Zhu, C. On Probabilistic Convergence Rates of Symmetric Stochastic Bernstein Polynomials. Mathematics 2025, 13, 3281. https://doi.org/10.3390/math13203281
Zhang S, Gao Q, Zhu C. On Probabilistic Convergence Rates of Symmetric Stochastic Bernstein Polynomials. Mathematics. 2025; 13(20):3281. https://doi.org/10.3390/math13203281
Chicago/Turabian StyleZhang, Shenggang, Qinjiao Gao, and Chungang Zhu. 2025. "On Probabilistic Convergence Rates of Symmetric Stochastic Bernstein Polynomials" Mathematics 13, no. 20: 3281. https://doi.org/10.3390/math13203281
APA StyleZhang, S., Gao, Q., & Zhu, C. (2025). On Probabilistic Convergence Rates of Symmetric Stochastic Bernstein Polynomials. Mathematics, 13(20), 3281. https://doi.org/10.3390/math13203281