Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (151)

Search Parameters:
Keywords = experimental wave tank

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5716 KiB  
Article
Study on Vibration Control Systems for Spherical Water Tanks Under Earthquake Loads
by Jingshun Zuo, Jingchao Guan, Wei Zhao, Keisuke Minagawa and Xilu Zhao
Vibration 2025, 8(3), 41; https://doi.org/10.3390/vibration8030041 - 11 Jul 2025
Viewed by 256
Abstract
Ensuring the safety of large spherical water storage tanks in seismic environments is critical. Therefore, this study proposed a vibration control device applicable to general spherical water tanks. By utilizing the upper interior space of a spherical tank, a novel tuned mass damper [...] Read more.
Ensuring the safety of large spherical water storage tanks in seismic environments is critical. Therefore, this study proposed a vibration control device applicable to general spherical water tanks. By utilizing the upper interior space of a spherical tank, a novel tuned mass damper (TMD) system composed of a mass block and four elastic springs was proposed. To enable practical implementation, the vibration control mechanism and tuning principle of the proposed TMD were examined. Subsequently, an experimental setup, including the spherical water tank and the TMD, was developed. Subsequently, shaking experiments were conducted using two types of spherical tanks with different leg stiffness values under various seismic waves and excitation directions. Shaking tests using actual El Centro NS and Taft NW earthquake waves demonstrated vibration reduction effects of 34.87% and 43.38%, respectively. Additional shaking experiments were conducted under challenging conditions, where the natural frequency of the spherical tank was adjusted to align closely with the dominant frequency of the earthquake waves, yielding vibration reduction effects of 18.74% and 22.42%, respectively. To investigate the influence of the excitation direction on the vibration control performance, shaking tests were conducted at 15-degree intervals. These experiments confirmed that an average vibration reduction of more than 15% was achieved, thereby verifying the validity and practicality of the proposed TMD vibration control system for spherical water tanks. Full article
Show Figures

Figure 1

16 pages, 3012 KiB  
Review
Application of Large-Scale Rotating Platforms in the Study of Complex Oceanic Dynamic Processes
by Xiaojie Lu, Guoqing Han, Yifan Lin, Qian Cao, Zhiwei You, Jingyuan Xue, Xinyuan Zhang and Changming Dong
J. Mar. Sci. Eng. 2025, 13(6), 1187; https://doi.org/10.3390/jmse13061187 - 18 Jun 2025
Viewed by 994
Abstract
As the core components of geophysical dynamic system, oceans and atmospheres are dominated by the Coriolis force, which governs complex dynamic phenomena such as internal waves, gravity currents, vortices, and others involving multi-scale spatiotemporal coupling. Due to the limitations of in situ observations, [...] Read more.
As the core components of geophysical dynamic system, oceans and atmospheres are dominated by the Coriolis force, which governs complex dynamic phenomena such as internal waves, gravity currents, vortices, and others involving multi-scale spatiotemporal coupling. Due to the limitations of in situ observations, large-scale rotating tanks have emerged as critical experimental platforms for simulating Earth’s rotational effects. This review summarizes recent advancements in rotating tank applications for studying oceanic flow phenomena, including mesoscale eddies, internal waves, Ekman flows, Rossby waves, gravity currents, and bottom boundary layer dynamics. Advanced measurement techniques, such as particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF), have enabled quantitative analyses of internal wave breaking-induced mixing and refined investigations of vortex merging dynamics. The findings demonstrate that large-scale rotating tanks provide a controllable experimental framework for unraveling the physical essence of geophysical fluid motions. Such laboratory experimental endeavors in a rotating tank can be applied to more extensive scientific topics, in which the rotation and stratification play important roles, offering crucial support for climate model parameterization and coupled ocean–land–atmosphere mechanisms. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

20 pages, 4186 KiB  
Article
Performance Prediction of Bow-Foil Thrusters in Waves Using Unsteady Vortex Element Method
by Ioannis Papakalodoukas and Kostas Belibassakis
J. Mar. Sci. Eng. 2025, 13(6), 1152; https://doi.org/10.3390/jmse13061152 - 11 Jun 2025
Viewed by 326
Abstract
In this study, an unsteady vortex element method is applied to the analysis of a horizontal wing in order to investigate its propulsive performance when operating as a biomimetic thruster. The foil undergoes a combined heaving and pitching motion at the same frequency, [...] Read more.
In this study, an unsteady vortex element method is applied to the analysis of a horizontal wing in order to investigate its propulsive performance when operating as a biomimetic thruster. The foil undergoes a combined heaving and pitching motion at the same frequency, in a uniform inflow condition, due to its advance at a constant speed. The numerical results are presented and compared to experimental measurements for the propulsion thrust coefficient and the efficiency of the system over a range of motion parameters. The results indicate the significance of 3D effects and show that the present technique can serve for the design of this kind of propulsive system with optimized performance. In the next stage, the wing is examined in a horizontal T-foil arrangement at the bow of a ship as an efficient propulsion system, and its performance in irregular head waves, characterized by a frequency spectrum, is also studied using experiments in a towing tank. In the test cases, a 30% damping of the ship responses in waves is observed with a simultaneous decrease in the total resistance by 5%. The numerical results are compared with data obtained from tank experiments, revealing good agreement, demonstrating the applicability of the present method to the preliminary design of this system for the augmentation of ship propulsion in waves. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 2773 KiB  
Article
Experimental Study on Nonlinear Vibrations of Flexible Monopile-Foundation Offshore Wind Turbines in Regular Waves
by Songxiong Wu, Hao Zhang, Ziwen Chen, Xiaoting Liu, Long Zheng, Mengjiao Du, Rongfu Li and Donghai Li
Water 2025, 17(8), 1176; https://doi.org/10.3390/w17081176 - 15 Apr 2025
Cited by 1 | Viewed by 2424
Abstract
The offshore wind industry is increasingly moving towards larger turbines. The growth in rotor size and aerodynamic loads necessitates larger monopile foundations. This increased foundation height results in a monopile that exhibits pronounced slenderness and flexibility. Consequently, the fixed-bottom monopile becomes more susceptible [...] Read more.
The offshore wind industry is increasingly moving towards larger turbines. The growth in rotor size and aerodynamic loads necessitates larger monopile foundations. This increased foundation height results in a monopile that exhibits pronounced slenderness and flexibility. Consequently, the fixed-bottom monopile becomes more susceptible to wave loads, which can induce nonlinear vibrations in complex wave environments. Extensive physical model experiments have been conducted in a wave tank to study the nonlinear vibration characteristics of a fixed-bottom monopile under regular wave action. The experimental results demonstrate that when the wave period is close to twice the resonant period of the model, the vibration response of the monopile increases significantly. Under these conditions, a second harmonic resonance occurs, with the amplitude of the second harmonic component being more than twice that of the fundamental (wave frequency) component. Additionally, the maximum run-up around the model exhibits a W-shaped distribution in the circumferential direction, with the highest run-up observed on the incident wave side. The wave pressure at the water surface is the greatest and increases with wave height, while the pressure below the water surface gradually increases with the measurement height. Full article
(This article belongs to the Special Issue Recent Advances in Offshore Hydrodynamics)
Show Figures

Figure 1

17 pages, 13692 KiB  
Article
Numerical Simulation of the Hydrodynamic Behavior of Immersed Tunnel in Waves
by Hang Shi, Xianlin Jia, Tiaojian Xu and Wo Zhang
Water 2025, 17(7), 1094; https://doi.org/10.3390/w17071094 - 6 Apr 2025
Viewed by 428
Abstract
The hydrodynamic response of immersed tunnel in waves is important for the design of immersed tunnel. The numerical wave tank that considers the coupling of wave field and floating body motion is established based on the OpenFOAM. The overset mesh method is adopted [...] Read more.
The hydrodynamic response of immersed tunnel in waves is important for the design of immersed tunnel. The numerical wave tank that considers the coupling of wave field and floating body motion is established based on the OpenFOAM. The overset mesh method is adopted to refresh the meshes around the immersed tunnel in waves. In addition, the experimental data of floating body motion and wave force is applied to validate the numerical model. The hydrodynamic characteristics of the immersed tunnel under wave loads are numerically studied, focusing on the motion response and the force of the immersed tunnel. The results show that with the increase in wave height, the roll of the immersed tunnel increases, the amplitude of the horizontal force increases significantly, the amplitude of the vertical force remains basically unchanged, and the nonlinear enhancement of the roll motion response is observed. When the wave period is close to the natural period of the floating body, the roll angle reaches its maximum. Under irregular wave conditions, with the increase in significant wave height, the average amplitude of the immersed tunnel’s roll motion increases, which is significantly greater (about 2–3 times) than that under regular wave conditions. With the increasing average amplitude of horizontal force, the change in vertical force is not significant. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

23 pages, 7660 KiB  
Article
Research on the Acoustic Scattering Characteristics of Underwater Corner Reflector Linear Arrays
by Dawei Xiao, Jingzhuo Zhang, Zichao Chu and Yi Luo
Sensors 2025, 25(7), 2129; https://doi.org/10.3390/s25072129 - 27 Mar 2025
Viewed by 428
Abstract
This manuscript aims to optimize the acoustic scattering characteristics of underwater corner reflector linear arrays through simulation analysis and experimental validation, thereby enhancing their application efficiency in underwater acoustic countermeasures, particularly in terms of increasing acoustic echo intensity and reducing reflection blind spots. [...] Read more.
This manuscript aims to optimize the acoustic scattering characteristics of underwater corner reflector linear arrays through simulation analysis and experimental validation, thereby enhancing their application efficiency in underwater acoustic countermeasures, particularly in terms of increasing acoustic echo intensity and reducing reflection blind spots. The acoustic scattering characteristics of submerged corner reflectors were meticulously simulated using the finite element method–boundary element method coupling technique, and the simulation results were rigorously verified through tank experiments. The study focused on the impact of the number of corner reflectors and their deployment angles on acoustic echo characteristics. Simulation and experimental results revealed that increasing the number of corner reflectors significantly enhances the overall target strength, with a dual corner reflector array achieving an approximately 5 decibels higher target strength than a single corner reflector. Moreover, the interaction of scattered acoustic waves among corner reflectors in the linear array generates noticeable fluctuations in the target strength curve, with these fluctuations increasing in frequency as the number of corner reflectors rises. By judiciously adjusting the deployment angles of the corner reflectors to achieve complementarity between strong and weak reflection angles, the issue of reduced target strength near 5° and 85° can be effectively mitigated, thereby significantly reducing reflection blind spots. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

17 pages, 7388 KiB  
Article
Comparative Study on Wave Elevations Downstream of Monopile- and Jacket-Mounted Offshore Wind Turbines
by Sharath Srinivasamurthy, Shigeo Yoshida and Shotaro Watanabe
J. Mar. Sci. Eng. 2025, 13(4), 661; https://doi.org/10.3390/jmse13040661 - 26 Mar 2025
Viewed by 482
Abstract
Offshore wind turbines, especially the fixed-bottom type, have been commercialized and installed in recent years. Generally, an offshore sub-structure such as a monopile or a jacket foundation is adopted to secure offshore wind turbines. There have been concerns raised by surfers regarding the [...] Read more.
Offshore wind turbines, especially the fixed-bottom type, have been commercialized and installed in recent years. Generally, an offshore sub-structure such as a monopile or a jacket foundation is adopted to secure offshore wind turbines. There have been concerns raised by surfers regarding the reduction in wave elevations downstream due to the installation of offshore sub-structures in the sea. This study is therefore dedicated to understanding the near-field and far-field wave effects of fixed-bottom foundations. To this end, 1.6% scale models of a (i) monopile foundation and (ii) jacket foundation were crafted, and near-field wave elevations downstream of the model were measured in a water tank under regular waves. A calculation method based on linear potential theory was implemented and validated with the experimental results. The calculated far-field wave elevations downstream of the monopile and jacket foundations were then analyzed for a range of wave periods and wave profiles were plotted at various distances from the foundations. It was found that the effect of monopile foundations on wave elevation was limited except around the edges of the foundation. Further, the wave elevation reduction was minimal at less than 1% at a distance of 750 m or more and less than 0.7% at a distance of more than 2000 m from the monopile foundation. The jacket foundations had no effect on the wave elevation downstream. Full article
(This article belongs to the Special Issue Innovative Development of Offshore Wind Technology)
Show Figures

Figure 1

28 pages, 15321 KiB  
Article
An Experimental Study of a Conventional Cylindrical Oscillating Water Column Wave Energy Converter: Fixed and Floating Devices
by Wanan Sheng and George Aggidis
Energies 2025, 18(3), 500; https://doi.org/10.3390/en18030500 - 22 Jan 2025
Cited by 2 | Viewed by 879
Abstract
Oscillating water column (OWC) wave energy converters (WECs) are very popular types of wave energy converters due to their practical implementations, their versatility in deployment in different marine environments, and their high reliability in wave energy conversion. In development, different forms of OWCs [...] Read more.
Oscillating water column (OWC) wave energy converters (WECs) are very popular types of wave energy converters due to their practical implementations, their versatility in deployment in different marine environments, and their high reliability in wave energy conversion. In development, different forms of OWCs have been proposed and advanced, such as fixed OWCs (on the shoreline, on breakwaters, or bottom standing) and floating OWCs (the spar and the backward-bent duct buoy, BBDB). In reality, a special type of OWC, the cylindrical OWC, is the simplest OWC in terms of its structural design and possible analytical/numerical solutions. However, such a simple OWC has not seen any practical applications because a cylindrical OWC is inefficient in wave energy absorption when compared to other types of OWC WECs. To study the simplest cylindric OWC, an experiment was carried out in a wave tank, and the relevant results are presented in this paper, with the aims of (i) analyzing the experimental data and exploring why such an OWC is inefficient in terms of wave energy absorption; (ii) providing experimental data for those who want experimental data to validate their numerical models; and (iii) establishing a baseline model so that comparisons can be made for improvements to the simple cylindrical OWC. As an example, an innovative solution was applied to the simple OWC such that its hydrodynamics and energy extraction performance can be significantly improved (the corresponding results will be presented in a separate paper). Full article
(This article belongs to the Special Issue Wave Energy: Theory, Methods, and Applications)
Show Figures

Figure 1

22 pages, 2943 KiB  
Article
Characterization of 77 GHz Radar Backscattering from Sea Surfaces at Low Incidence Angles: Preliminary Results
by Qinghui Xu, Chen Zhao, Zezong Chen, Sitao Wu, Xiao Wang and Lingang Fan
Remote Sens. 2025, 17(1), 116; https://doi.org/10.3390/rs17010116 - 1 Jan 2025
Cited by 1 | Viewed by 1087
Abstract
Millimeter-wave (MMW) radar is capable of providing high temporal–spatial measurements of the ocean surface. Some topics, such as the characterization of the radar echo, have attracted widespread attention from researchers. However, most existing research studies focus on the backscatter of the ocean surface [...] Read more.
Millimeter-wave (MMW) radar is capable of providing high temporal–spatial measurements of the ocean surface. Some topics, such as the characterization of the radar echo, have attracted widespread attention from researchers. However, most existing research studies focus on the backscatter of the ocean surface at low microwave bands, while the sea surface backscattering mechanism in the 77 GHz frequency band remains not well interpreted. To address this issue, in this paper, the investigation of the scattering mechanism is carried out for the 77 GHz frequency band ocean surface at small incidence angles. The backscattering coefficient is first simulated by applying the quasi-specular scattering model and the corrected scattering model of geometric optics (GO4), using two different ocean wave spectrum models (the Hwang spectrum and the Kudryavtsev spectrum). Then, the dependence of the sea surface normalized radar cross section (NRCS) on incidence angles, azimuth angles, and sea states are investigated. Finally, by comparison between model simulations and the radar-measured data, the 77 GHz frequency band scattering characterization of sea surfaces at the near-nadir incidence is verified. In addition, experimental results from the wave tank are shown, and the difference in the scattering mechanism is further discussed between water surfaces and oceans. The obtained results seem promising for a better understanding of the ocean surface backscattering mechanism in the MMW frequency band. It provides a new method for fostering the usage of radar technologies for real-time ocean observations. Full article
(This article belongs to the Topic Radar Signal and Data Processing with Applications)
Show Figures

Figure 1

20 pages, 7862 KiB  
Article
Numerical and Experimental Study on the Hydrodynamic Performance of a Sloping OWC Wave Energy Converter Device Integrated into Breakwater
by Taotao Tao, Zhengzhi Deng, Mengyao Li, Pengda Cheng and Wenbo Luo
J. Mar. Sci. Eng. 2024, 12(12), 2318; https://doi.org/10.3390/jmse12122318 - 17 Dec 2024
Cited by 3 | Viewed by 1274
Abstract
This study presents numerical and experimental investigations on an oscillating water column (OWC) wave energy device integrated into a sloping breakwater. Regular waves were generated in a physical wave tank to investigate the hydrodynamic performance and extraction efficiency of the small-scale nested OWC [...] Read more.
This study presents numerical and experimental investigations on an oscillating water column (OWC) wave energy device integrated into a sloping breakwater. Regular waves were generated in a physical wave tank to investigate the hydrodynamic performance and extraction efficiency of the small-scale nested OWC device. Simultaneously, to complement various scenarios, numerical simulations were conducted using the open-source computational fluid dynamics platform OpenFOAM. The volume of fluid (VOF) method was employed to capture the complex evolution of the air–water interface, and an artificial source term (Forchheimer flow region) was introduced into the Navier–Stokes equations to replace the power take-off (PTO) system. By analyzing wave reflection properties, energy absorption efficiency, and wave run-up, the hydrodynamic characteristics of the inclined OWC device were explored. The comparison between the numerical and experimental results indicate a good consistence. A smaller front wall draft broadens the high-efficiency frequency bandwidth. For relatively long waves, increasing the air chamber width enhances energy conversion efficiency and reduces wave run-up. The optimal configuration was achieved with the following dimensionless parameters: front wall draft a/h=1/3, air chamber width d1/h=2/9, and slope i=2. Due to the sloped structure, when compared with a vertical OWC, long waves can more easily enter the chamber. This causes the efficient frequency bandwidth to shift towards the low frequency range, allowing more wave energy to be converted into pneumatic energy. As a result, wave run-up is reduced, enhancing the protective function of the breakwater. Full article
(This article belongs to the Topic Marine Renewable Energy, 2nd Edition)
Show Figures

Figure 1

26 pages, 7612 KiB  
Review
Progress in Seismic Isolation Technology Research in Soft Soil Sites: A Review
by Xinqiang Yao and Bin Wu
Buildings 2024, 14(10), 3198; https://doi.org/10.3390/buildings14103198 - 8 Oct 2024
Cited by 2 | Viewed by 2258
Abstract
Soft soil sites can amplify the peak acceleration by a factor of 1.5 to 3.5 and exhibit the filtering effect on seismic waves. This effect results in the attenuation of high frequencies, amplification of low frequencies, and extension of the predominant period of [...] Read more.
Soft soil sites can amplify the peak acceleration by a factor of 1.5 to 3.5 and exhibit the filtering effect on seismic waves. This effect results in the attenuation of high frequencies, amplification of low frequencies, and extension of the predominant period of ground motion. Consequently, soft soil sites have a more pronounced impact on isolation buildings constructed on them. The seismic isolation structure design typically involves assuming rigid foundation for calculations. However, the soil properties can significantly impact the dynamic response of the structure, affecting factors such as input ground motion, changes in vibration characteristics, radiation energy dissipation, and material damping energy dissipation. Therefore, neglecting these influences and relying solely on the rigid foundation assumption for calculations can lead to significant errors in the final seismic response analysis of the structure. Currently, there are numerous LNG storage tanks, museums, and other isolation buildings constructed on soft soil sites. Therefore, research on seismic isolation measures for soft soil sites holds significant practical importance. In light of this, this paper, firstly, provides a systematic summary of seismic isolation strategies and engineering applications for soft soil sites. Secondly, it further discusses advancements in research on the dynamic interactions of soil–isolated structures, covering analytical methods, numerical investigations, and experimental studies on soft soil sites. Lastly, the paper concludes with insights on current research progress and prospects for further studies. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 10316 KiB  
Article
Numerical Simulation and Experimental Study on Dynamic Characteristics of Gas Turbine Rotor System Subjected to Ship Hull Excitation
by Xin Zhang, Yongbao Liu, Qiang Wang, Zhikai Xing and Mo Li
Processes 2024, 12(10), 2091; https://doi.org/10.3390/pr12102091 - 26 Sep 2024
Cited by 1 | Viewed by 865
Abstract
To address the challenge of measuring the dynamic characteristic parameters of the gas turbine rotor system affected by hull excitation, a vibration transmission model integrating a ship model slice, test data, and a three-dimensional entity is proposed, based on the two-dimensional slice theory, [...] Read more.
To address the challenge of measuring the dynamic characteristic parameters of the gas turbine rotor system affected by hull excitation, a vibration transmission model integrating a ship model slice, test data, and a three-dimensional entity is proposed, based on the two-dimensional slice theory, scaled ship model, and finite element model of the turbine rotor system. The transient dynamic responses of the front and rear bearing points were calculated and analyzed. Vibration response tests with significant wave heights of 0.5 m, 1.25 m, 2.5 m, and 4 m were carried out in the towing tank of the ship model to obtain the dynamic characteristic parameters of the deck position. Techniques including wavelet denoising, Fast Fourier Transform (FFT), and signal resampling were employed to filter out and reconstruct high-frequency noise, overcoming the technical challenges of a high sampling frequency and a low computational efficiency. The experimental data and simulation results were compared and analyzed, validating the accuracy of the vibration transmission model of the turbine rotor system with data and entity integration. By comparing the vibration signal values in the X and Z directions at the front and rear bearing points after vibration transmission, it is evident that the effective values of the vibration signals at the front bearing point are 0.03% to 0.1% greater than those at the rear bearing point. This model provides a theoretical basis and reference for the design of the gas turbine rotor system. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

21 pages, 6671 KiB  
Article
Hydroelasto-Plastic Response of a Ship Model in Freak Waves: An Experimental and Numerical Investigation
by Weiqin Liu, Yining Mo, Luonan Xiong, Haodong Xu, Xuemin Song and Ye Li
J. Mar. Sci. Eng. 2024, 12(9), 1555; https://doi.org/10.3390/jmse12091555 - 5 Sep 2024
Viewed by 995
Abstract
Freak waves have caused numerous accidents resulting in the collapse of ship structures due to structural plasticity, buckling, and instability, leading to the loss of life and property. Consequently, there is a growing academic interest in understanding ship structural collapsed responses induced by [...] Read more.
Freak waves have caused numerous accidents resulting in the collapse of ship structures due to structural plasticity, buckling, and instability, leading to the loss of life and property. Consequently, there is a growing academic interest in understanding ship structural collapsed responses induced by freak waves. This paper presents both numerical and experimental investigations on the structural collapse response of a ship model caused by freak waves. The study uses the Peregrine breather solution theory based on the Nonlinear Schrödinger (NLS) equation to generate a theoretical freak wave, and the nonlinear time-domain wave elevation and velocity field are obtained. The theoretical history of wave elevation is transferred into the wave maker of the wave tank to create experimental freak waves, and the velocity field of the freak wave is defined in a Computational Fluid Dynamics (CFD) solver to generate 3D numerical freak waves. A similar hydroelasto-plastic model is designed, and a hydroelasto-plastic experiment is conducted to observe experimental freak waves and large rotational deformations. The theoretical velocity field from the Peregrine breather solution theory, based on the NLS equation, is defined in a CFD platform to generate 3D numerical freak waves. A two-way Fluid-Structure Interaction (FSI) numerical hydroelasto-plastic approach coupling of CFD with a nonlinear Finite Element Method (FEM) solver is applied. Co-simulation of wave pressures and the structural collapsed response of the ship model caused by freak waves is performed. The wave elevation of experimental and numerical freak waves and the large rotational deformation of the buckling hinge are analyzed and compared, revealing a good agreement between the experiment and calculation. The maximum simulation rotational angle is 38.9°, while the maximum experimental rotational angle is equal to 42.3° for a typical wave case H2, which means numerical model accuracy and performance are acceptable for the simulating hydroelasto-plastic problem. The findings demonstrate that the numerical approach proposed in this study can effectively solve the hydroelasto-plastic response of ship structures in freak waves, offering a valuable tool for evaluating ship strength in these conditions and guiding future ship structural design. Full article
Show Figures

Figure 1

19 pages, 9406 KiB  
Article
Underwater Acoustic Scattering from Multiple Ice Balls at the Ice–Water Interface
by Siwei Hu, Wenjian Chen, Hui Sun, Shunbo Zhou and Jingwei Yin
Remote Sens. 2024, 16(17), 3113; https://doi.org/10.3390/rs16173113 - 23 Aug 2024
Viewed by 1260
Abstract
We investigate the underwater acoustic scattering from various distributed “ice balls” floating on the water, aiming to understand acoustic scattering in the marginal ice zone (MIZ). The MIZ, including a wide range of heterogeneous ice cover, significantly impacts acoustic propagation. We use acoustic [...] Read more.
We investigate the underwater acoustic scattering from various distributed “ice balls” floating on the water, aiming to understand acoustic scattering in the marginal ice zone (MIZ). The MIZ, including a wide range of heterogeneous ice cover, significantly impacts acoustic propagation. We use acoustic modelling, simulation, and laboratory experiments to understand the acoustic scattering from various distributed ice balls. The acoustic scattering fields from a single sound source (90 kHz) in water are analyzed based on selected principal scattering waves between the surfaces of ice and water. The target strengths are calculated using the plate element method and physical acoustic methods, which are validated with water tank experimental data. The methodology is then extended to multiple ice ball cases, specifically considering a single ice ball, equally spaced ice balls of the same size, and randomly distributed ice balls of various sizes. Additionally, experimental measurements under similar conditions are conducted in a laboratory water tank. The scattering intensities at different receiving positions are simulated and compared with lab experiments. The results show good agreement between experimental and numerical results, with an absolute error of less than 3 dB. Scattering intensity is positively correlated with water surface reflection when the receiving angle is close to the mirror reflection angle of the incident wave. Our approach sets the groundwork for further research to address more complex ice–water interfaces with various ice covers in the MIZ. Full article
Show Figures

Figure 1

28 pages, 4918 KiB  
Article
Experimental Verification of 1D-Simulation Method of Water Hammer Induced in Two Series-Connected Pipes of Different Diameters: Determination of the Pressure Wave Speed
by Mariusz Lewandowski and Adam Adamkowski
Appl. Sci. 2024, 14(16), 7173; https://doi.org/10.3390/app14167173 - 15 Aug 2024
Cited by 1 | Viewed by 1418
Abstract
This paper presents the results of laboratory tests of water hammer phenomenon induced in two series-connected copper pipes with different diameters (a diameter ratio of 1:1.25) by a quick-closing valve installed at the end of the simple upstream tank–pipeline–valve system. Test results were [...] Read more.
This paper presents the results of laboratory tests of water hammer phenomenon induced in two series-connected copper pipes with different diameters (a diameter ratio of 1:1.25) by a quick-closing valve installed at the end of the simple upstream tank–pipeline–valve system. Test results were compared with calculations made with the use of various friction loss models incorporated in a one-dimensional model based on a method of characteristics. The calculation takes into consideration quasi-steady and unsteady friction models as well as a special discretization procedure of the solution domain that ensures the elimination of numerical diffusion in the numerical scheme. The main attention was paid to determining the value of the pressure wave speed in the pipes, which has a significant influence on the compliance between the calculations and the experimental results of the pressure amplitudes and wave frequencies. Two methods of determining the wave speed were proposed and evaluated based on the measurements. The results presented in this article indicate that the use of the proposed procedure instead of the classic formulas for determining the pressure wave speed gives the desired correspondence between the frequencies of the measured and calculated waves. Calculation examples made with the use of different friction models showed that application of the developed procedure for discretization of the solution domain and the method used for determining the wave speed opened the possibility of reliable verification of these models, free of numerical errors and frequency discrepancies between the computational and measured wave. Full article
Show Figures

Figure 1

Back to TopTop