Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (387)

Search Parameters:
Keywords = expansion bearing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3741 KiB  
Article
The Mechanical Behavior of a Shield Tunnel Reinforced with Steel Plates Under Complex Strata
by Yang Yu, Yazhen Sun and Jinchang Wang
Buildings 2025, 15(15), 2722; https://doi.org/10.3390/buildings15152722 - 1 Aug 2025
Viewed by 111
Abstract
The stability of shield tunnel segmental linings is highly sensitive to the lateral pressure coefficient, especially under weak, heterogeneous, and variable geological conditions. However, the mechanical behavior of steel plate-reinforced linings under such conditions remains insufficiently characterized. This study aims to investigate the [...] Read more.
The stability of shield tunnel segmental linings is highly sensitive to the lateral pressure coefficient, especially under weak, heterogeneous, and variable geological conditions. However, the mechanical behavior of steel plate-reinforced linings under such conditions remains insufficiently characterized. This study aims to investigate the effects of varying lateral pressures on the structural performance of reinforced tunnel linings. To achieve this, a custom-designed full-circumference loading and unloading self-balancing apparatus was developed for scaled-model testing of shield tunnels. The experimental methodology allowed for precise control of loading paths, enabling the simulation of realistic ground stress states and the assessment of internal force distribution, joint response, and load transfer mechanisms during the elastic stage of the structure. Results reveal that increased lateral pressure enhances the stiffness and bearing capacity of the reinforced lining. The presence and orientation of segment joints, as well as the bonding performance between epoxy resin and expansion bolts at the reinforcement interface, significantly influence stress redistribution in steel plate-reinforced zones. These findings not only deepen the understanding of tunnel behavior in complex geological environments but also offer practical guidance for optimizing reinforcement design and improving the durability and safety of shield tunnels. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

29 pages, 7048 KiB  
Article
Research on Synergistic Control Technology for Composite Roofs in Mining Roadways
by Lei Wang, Gang Liu, Dali Lin, Yue Song and Yongtao Zhu
Processes 2025, 13(8), 2342; https://doi.org/10.3390/pr13082342 - 23 Jul 2025
Viewed by 208
Abstract
Addressing the stability control challenges of roadways with composite roofs in the No. 34 coal seam of Donghai Mine under high-strength mining conditions, this study employed integrated methodologies including laboratory experiments, numerical modeling, and field trials. It investigated the mechanical response characteristics of [...] Read more.
Addressing the stability control challenges of roadways with composite roofs in the No. 34 coal seam of Donghai Mine under high-strength mining conditions, this study employed integrated methodologies including laboratory experiments, numerical modeling, and field trials. It investigated the mechanical response characteristics of the composite roof and developed a synergistic control system, validated through industrial application. Key findings indicate significant differences in mechanical behavior and failure mechanisms between individual rock specimens and composite rock masses. A theoretical “elastic-plastic-fractured” zoning model for the composite roof was established based on the theory of surrounding rock deterioration, elucidating the mechanical mechanism where the cohesive strength of hard rock governs the load-bearing capacity of the outer shell, while the cohesive strength of soft rock controls plastic flow. The influence of in situ stress and support resistance on the evolution of the surrounding rock zone radii was quantitatively determined. The FLAC3D strain-softening model accurately simulated the post-peak behavior of the surrounding rock. Analysis demonstrated specific inherent patterns in the magnitude, ratio, and orientation of principal stresses within the composite roof under mining influence. A high differential stress zone (σ1/σ3 = 6–7) formed within 20 m of the working face, accompanied by a deflection of the maximum principal stress direction by 53, triggering the expansion of a butterfly-shaped plastic zone. Based on these insights, we proposed and implemented a synergistic control system integrating high-pressure grouting, pre-stressed cables, and energy-absorbing bolts. Field tests demonstrated significant improvements: roof-to-floor convergence reduced by 48.4%, rib-to-rib convergence decreased by 39.3%, microseismic events declined by 61%, and the self-stabilization period of the surrounding rock shortened by 11%. Consequently, this research establishes a holistic “theoretical modeling-evolution diagnosis-synergistic control” solution chain, providing a validated theoretical foundation and engineering paradigm for composite roof support design. Full article
Show Figures

Figure 1

15 pages, 4083 KiB  
Article
Tribological and Corrosion Effects from Electrodeposited Ni-hBN over SS304 Substrate
by Suresh Velayudham, Elango Natarajan, Kalaimani Markandan, Kaviarasan Varadaraju, Santhosh Mozhuguan Sekar, Gérald Franz and Anil Chouhan
Lubricants 2025, 13(7), 318; https://doi.org/10.3390/lubricants13070318 - 21 Jul 2025
Viewed by 431
Abstract
The aim of the present study is to investigate the influence of Nickel–Hexagonal Boron Nitride (Ni-hBN) nanocomposite coatings, deposited using the pulse reverse current electrodeposition technique. This experimental study focuses on assessing the tribological and corrosion properties of the produced coatings on the [...] Read more.
The aim of the present study is to investigate the influence of Nickel–Hexagonal Boron Nitride (Ni-hBN) nanocomposite coatings, deposited using the pulse reverse current electrodeposition technique. This experimental study focuses on assessing the tribological and corrosion properties of the produced coatings on the SS304 substrate. The microhardness of the as-deposited (AD) sample and heat-treated (HT) sample were 49% and 83.8% higher compared to the control sample. The HT sample exhibited a grain size which was approximately 9.7% larger than the AD sample owing to the expansion–contraction mechanism of grains during heat treatment and sudden quenching. Surface roughness reduced after coating, where the Ni-hBN-coated sample measured a roughness of 0.43 µm compared to 0.48 µm for the bare surface. The average coefficient of friction for the AD sample was 42.4% lower than the bare surface owing to the self-lubricating properties of nano hBN. In particular, the corrosion rate of the AD sample was found to be 0.062 mm/year, which was lower than values reported in other studies. As such, findings from the present study can be particularly beneficial for applications in the automotive and aerospace industries, where enhanced wear resistance, reduced friction, and superior corrosion protection are critical for components such as engine parts, gears, bearings and shafts. Full article
Show Figures

Figure 1

19 pages, 2911 KiB  
Article
Investigation of Implantable Capsule Grouting Technology and Its Bearing Characteristics in Soft Soil Areas
by Xinran Li, Yuebao Deng, Wenxi Zheng and Rihong Zhang
J. Mar. Sci. Eng. 2025, 13(7), 1362; https://doi.org/10.3390/jmse13071362 - 17 Jul 2025
Viewed by 184
Abstract
The implantable capsule grouting pile is a novel pile foundation technology in which a capsule is affixed to the side of the implanted pile to facilitate grouting and achieve extrusion-based reinforcement. This technique is designed to improve the bearing capacity of implanted piles [...] Read more.
The implantable capsule grouting pile is a novel pile foundation technology in which a capsule is affixed to the side of the implanted pile to facilitate grouting and achieve extrusion-based reinforcement. This technique is designed to improve the bearing capacity of implanted piles in coastal areas with deep, soft soil. This study conducted model tests involving multiple grouting positions across different foundation types to refine the construction process and validate the enhancement of bearing capacity. Systematic measurements and quantitative analyses were performed to evaluate the earth pressure distribution around the pile, the resistance characteristics of the pile end, the evolution of side friction resistance, and the overall bearing performance. Special attention was given to variations in the lateral friction resistance adjustment coefficient under different working conditions. Furthermore, an actual case analysis was conducted based on typical soft soil geological conditions. The results indicated that the post-grouting process formed a dense soil ring through the expansion and extrusion of the capsule, resulting in increased soil strength around the pile due to increased lateral earth pressure. Compared to conventional piles, the grouted piles exhibited a synergistic improvement characterized by reduced pile end resistance, enhanced side friction resistance, and improved overall bearing capacity. The ultimate bearing capacity of model piles at different grouting depths across different foundation types increased by 6.8–22.3% compared with that of ordinary piles. In silty clay and clayey silt foundations, the adjustment coefficient ηs of lateral friction resistance of post-grouting piles ranged from 1.097 to 1.318 and increased with grouting depth. The findings contribute to the development of green pile foundation technology in coastal areas. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

15 pages, 2945 KiB  
Article
An Investigation of the Influence of Concrete Tubular Piles at the Pit Bottom During Excavation on Bearing Behavior
by Qingguang Yang, Shikang Hong, Quan Shen, Sen Xiao and Haofeng Zhu
Buildings 2025, 15(14), 2437; https://doi.org/10.3390/buildings15142437 - 11 Jul 2025
Viewed by 233
Abstract
The influence of foundation pit excavation on the bearing behavior of concrete tubular piles at the pit bottom remains unclear. Based on the Vesic cavity expansion theory, this paper proposes a method for calculating pile driving resistance, which takes into account the residual [...] Read more.
The influence of foundation pit excavation on the bearing behavior of concrete tubular piles at the pit bottom remains unclear. Based on the Vesic cavity expansion theory, this paper proposes a method for calculating pile driving resistance, which takes into account the residual effect of vertical pressure changes on earth pressure during excavation. Furthermore, relying on the statistical regularity between Qu/Pu (ratio of ultimate bearing capacity to ultimate cavity expansion pressure) and L/d (length-to-diameter ratio), theoretical formulas for calculating the ultimate bearing capacity of tubular piles before and after foundation pit excavation are established, with their reliability and influencing factors analyzed. This method only requires determining the L/d of the tubular piles and the theoretical value of pile driving resistance. With its simple parameter requirements, it is suitable for estimating the ultimate bearing capacity of tubular piles affected by excavation. By comparing the computed penetration resistance, earth pressure, and driving resistance of tubular piles with field measurements, the computed results show good agreement with field measurements, and the accuracy of the proposed method meets the requirements of engineering design, verifying its feasibility as an empirical method. The fitting results of the Qu/Pu ratios indicate that the deviations between the measured and computed values are 4.17% and 5.64% before and after excavation, respectively. Additionally, L/d and L/H (ratio of pile length to excavation depth) significantly affect the earth pressure, driving resistance, and vertical bearing capacity of monopoles. Smaller L/d and L/H ratios lead to greater earth pressure on the pile and more pronounced effects on driving resistance and vertical bearing capacity. The development of this method offers an approach for estimating the ultimate bearing capacity of tubular piles before and after foundation pit excavation during preliminary design, thereby holding substantial engineering significance. Full article
(This article belongs to the Special Issue Research on Structural Analysis and Design of Civil Structures)
Show Figures

Figure 1

21 pages, 3079 KiB  
Article
A Lightweight Multi-Angle Feature Fusion CNN for Bearing Fault Diagnosis
by Huanli Li, Guoqiang Wang, Nianfeng Shi, Yingying Li, Wenlu Hao and Chongwen Pang
Electronics 2025, 14(14), 2774; https://doi.org/10.3390/electronics14142774 - 10 Jul 2025
Viewed by 313
Abstract
To address the issues of high model complexity and weak noise resistance in convolutional neural networks for bearing fault diagnosis, this paper proposes a novel lightweight multi-angle feature fusion convolutional neural network (LMAFCNN). First, the original signal was preprocessed using a wide-kernel convolutional [...] Read more.
To address the issues of high model complexity and weak noise resistance in convolutional neural networks for bearing fault diagnosis, this paper proposes a novel lightweight multi-angle feature fusion convolutional neural network (LMAFCNN). First, the original signal was preprocessed using a wide-kernel convolutional layer to achieve data dimensionality reduction and feature channel expansion. Second, a lightweight multi-angle feature fusion module was designed as the core feature extraction unit. The main branch fused multidimensional features through pointwise convolution and large-kernel channel-wise expansion convolution, whereas the auxiliary branch introduced an efficient channel attention (ECA) mechanism to achieve channel-adaptive weighting. Feature enhancement was achieved through the addition of branches. Finally, global average pooling and fully connected layers were used to complete end-to-end fault diagnosis. The experimental results showed that the proposed method achieved an accuracy of 99.5% on the Paderborn University (PU) artificial damage dataset, with a computational complexity of only 14.8 million floating-point operations (MFLOPs) and 55.2 K parameters. Compared with existing mainstream methods, the proposed method significantly reduces model complexity while maintaining high accuracy, demonstrating excellent diagnostic performance and application potential. Full article
(This article belongs to the Section Industrial Electronics)
Show Figures

Figure 1

23 pages, 11832 KiB  
Article
Investigation of Flexibility Enhancement Mechanisms and Microstructural Characteristics in Emulsified Asphalt and Latex-Modified Cement
by Wen Liu, Yong Huang, Yulin He, Hanyu Wei, Ruyun Bai, Huan Li, Qiushuang Cui and Sining Li
Sustainability 2025, 17(14), 6317; https://doi.org/10.3390/su17146317 - 9 Jul 2025
Viewed by 452
Abstract
The inherent limitations of ordinary cement mortar—characterized by its high brittleness and low flexibility—result in a diminished load-bearing capacity, predisposing concrete pavements to cracking. A novel approach has been proposed to enhance material performance by incorporating emulsified asphalt and latex into ordinary cement [...] Read more.
The inherent limitations of ordinary cement mortar—characterized by its high brittleness and low flexibility—result in a diminished load-bearing capacity, predisposing concrete pavements to cracking. A novel approach has been proposed to enhance material performance by incorporating emulsified asphalt and latex into ordinary cement mortar, aiming to improve the flexibility and durability of concrete pavements effectively. To further validate the feasibility of this proposed approach, a series of comprehensive experimental investigations were conducted, with corresponding conclusions detailed herein. As outlined below, the flexibility properties of the modified cement mortar were systematically evaluated at curing durations of 3, 7, and 28 days. The ratio of flexural to compressive strength can be increased by up to 38.9% at 8% emulsified asphalt content at the age of 28 days, and by up to 50% at 8% latex content. The mechanism of emulsified asphalt and latex-modified cement mortar was systematically investigated using a suite of analytical techniques: X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TG-DTG), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Through comprehensive analyses of microscopic morphology, hydration products, and elemental distribution, the enhancement in cement mortar toughness can be attributed to two primary mechanisms. First, Ca2+ ions combine with the carbonyl groups of emulsified asphalt to form a flexible film structure during cement hydration, thereby reducing the formation of brittle hydrates. Second, active functional groups in latex form a three-dimensional network, regulating internal expansion-contraction tension in the modified mortar and extending its service life. Full article
Show Figures

Figure 1

19 pages, 3169 KiB  
Article
Investigation of the Effects of Almond Husk Ash on the Engineering Properties of Expansive Soil
by Abdulkadir Ürünveren, Baki Bağrıaçık and Esma Kahraman
Buildings 2025, 15(14), 2384; https://doi.org/10.3390/buildings15142384 - 8 Jul 2025
Viewed by 253
Abstract
In recent years, the use of waste materials for soil improvement has gained increasing importance due to sustainability concerns and the need for effective waste disposal. Almond husk ash (AHA), though considered a major environmental pollutant, is classified as a non-hazardous and noninert [...] Read more.
In recent years, the use of waste materials for soil improvement has gained increasing importance due to sustainability concerns and the need for effective waste disposal. Almond husk ash (AHA), though considered a major environmental pollutant, is classified as a non-hazardous and noninert waste. One of the primary challenges associated with such industrial wastes is their storage; therefore, environmentally safe disposal methods are essential. This study aimed to investigate the potential of AHA in improving expansive soil (ES). The findings revealed that ES can be effectively stabilized using AHA and geogrids, both individually and in combination. The optimal conditions for soil improvement were identified as follows: 25% AHA content, a zone depth of 1.5 units, and three layers of geogrids. The bearing capacity ratios showed significant improvement under various conditions: a 2.56-fold increase with AHA alone, a 2.87-fold increase with geogrids alone, and a 5.60-fold increase when both AHA and geogrids were used together. The greatest enhancement was achieved through the combined application of AHA and geogrids. AHA was thus demonstrated to be an effective, economical, and environmentally sustainable additive for the stabilization of expansive soils. Furthermore, microstructural analyses using scanning electron microscopy (SEM), X-ray fluorescence (XRF), and X-ray diffraction (XRD) supported the improvements observed in the experimental results. Full article
Show Figures

Figure 1

28 pages, 12296 KiB  
Article
Phase Stability and Structural Reorganization of Silica in Cherts Under Thermal and Mechanochemical Stress
by María de Uribe-Zorita, Pedro Álvarez-Lloret, Beatriz Ramajo, Javier F. Reynes and Celia Marcos
Materials 2025, 18(13), 3077; https://doi.org/10.3390/ma18133077 - 28 Jun 2025
Viewed by 540
Abstract
This work investigated the structural response and phase transformation dynamics of silica-bearing cherts subjected to high-temperature processing (up to 1400 °C) and prolonged mechanochemical activation. Through a combination of X-ray diffraction (XRD) with Rietveld refinement, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and [...] Read more.
This work investigated the structural response and phase transformation dynamics of silica-bearing cherts subjected to high-temperature processing (up to 1400 °C) and prolonged mechanochemical activation. Through a combination of X-ray diffraction (XRD) with Rietveld refinement, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and transmission electron microscopy (HRTEM), we trace the crystallographic pathways of quartz, moganite, tridymite, and cristobalite under controlled thermal and mechanical stress regimes. The experimental results demonstrated that phase behavior is highly dependent on intrinsic properties such as initial phase composition, impurity presence, and crystallinity. Heating at 1400 °C induced irreversible conversion of quartz, moganite, and tridymite into cristobalite. Samples enriched in cristobalite and tridymite exhibited notable increases in crystallinity, whereas quartz-dominant samples showed either stability or a decline in structural order. Rietveld analyses underscored the critical influence of microstrain and crystallite size on thermal resilience and phase persistence. Thermal profiles revealed by DSC and TGA expose overlapping processes including polymorphic transitions, minor phase dehydration, and redox-driven changes, likely associated with trace components. Mechanochemical processing resulted in partial amorphization and the emergence of phases such as opal and feldspar minerals (microcline, albite, anorthite), interpreted as the product of lattice collapse and subsequent reprecipitation. Heat treatment of chert leads to a progressive rearrangement and recrystallization of its silica phases: quartz collapses around 1000 °C before recovering, tridymite emerges as an intermediate phase, and cristobalite shows the greatest crystallite size growth and least deformation at 1400 °C. These phase changes serve as markers of high-temperature exposure, guiding the identification of heat-altered lithic artefacts, reconstructing geological and diagenetic histories, and allowing engineers to adjust the thermal expansion of ceramic materials. Mechanochemical results provide new insights into the physicochemical evolution of metastable silica systems and offer valuable implications for the design and thermal conditioning of silica-based functional materials used in high-temperature ceramics, glasses, and refractory applications. From a geoarchaeological standpoint, the mechanochemically treated material could simulate natural weathering of prehistoric chert tools, providing insights into diagenetic pathways and lithic degradation processes. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

25 pages, 5206 KiB  
Article
Compressive Behavior of Waste-Steel-Fiber-Reinforced Concrete-Filled Steel Tubes with External Steel Rib Rings
by Jianhua Gao, Xiaopeng Ren, Yongtao Gao, Youzhi Li and Mingshuai Li
Buildings 2025, 15(13), 2246; https://doi.org/10.3390/buildings15132246 - 26 Jun 2025
Viewed by 302
Abstract
In order to explore the axial compression performance of external steel rib ring restraint waste-steel-fiber-reinforced concrete-filled steel tubes (ERWCFSTs), 18 short-column axial compression tests were conducted. The effects of the number of rib rings, rib ring spacing, rib ring setting position, and waste [...] Read more.
In order to explore the axial compression performance of external steel rib ring restraint waste-steel-fiber-reinforced concrete-filled steel tubes (ERWCFSTs), 18 short-column axial compression tests were conducted. The effects of the number of rib rings, rib ring spacing, rib ring setting position, and waste steel fiber (WSF) content on the axial compression performance of the columns were analyzed. The results show that the concrete-filled steel tube (CFST) short columns with rib rings were strengthened, the specimens were mainly characterized by drum-shaped failure, and the buckling was concentrated between the rib rings. Without rib ring specimens, the steel tube is unable to resist the rapid increase in lateral expansion, leading to buckling initiation near the bottom of the specimens. The columns with rib rings exhibited a minimum increase of 32.5% and a maximum increase of 53.17% in load-bearing capacity compared to those without rib rings, with an average improvement of 37.78%. The columns achieved the best ductility when the rib ring spacing was 50 mm. When the rib ring spacing remained constant, columns with a number of rib rings no less than the height-to-diameter ratio (H/D) demonstrated more uniform stress distribution and optimal confinement effects. For a fixed number of rib rings, specimens with rib ring spacing between H/8 and H/4 showed significant improvements in both load-bearing capacity and ductility. The confinement effect was better when the rib rings were positioned in the middle of the column height rather than near the ends. The incorporation of WSF resulted in a minimum increase of 2.86% and a maximum increase of 10.49% in column load-bearing capacity, indicating limited enhancement. However, WSF improved the ductility performance of the columns by at least 10%. Combined with theoretical analysis and experimental data, a formula for calculating the bearing capacity of ERWCFSTs was established. Full article
Show Figures

Figure 1

20 pages, 4216 KiB  
Article
Stochastic Blade Pitch Angle Analysis of Controllable Pitch Propeller Based on Deep Neural Networks
by Xuanqi Zhang, Wenbin Shao, Yongshou Liu, Xin Fan and Ruiyun Shi
Modelling 2025, 6(3), 54; https://doi.org/10.3390/modelling6030054 - 25 Jun 2025
Viewed by 320
Abstract
The accuracy of the blade pitch angle (BPA) motion in controllable pitch propellers (CPPs) is considered crucial for the efficacy and reliability of marine propulsion systems. The pitch adjustment process of CPPs is highly complex and influenced by various uncertain factors. A parametric [...] Read more.
The accuracy of the blade pitch angle (BPA) motion in controllable pitch propellers (CPPs) is considered crucial for the efficacy and reliability of marine propulsion systems. The pitch adjustment process of CPPs is highly complex and influenced by various uncertain factors. A parametric kinematic model for the pitch adjustment process for CPPs was established, incorporating the geometric dimensions and material surface friction coefficients caused during workpiece production as uncertainty parameters. The aim was to establish the correspondence between these uncertainty parameters and the BPA of CPPs. A large dataset was generated by batch calling on Adams. Based on the collected dataset, five surrogate models (e.g., deep neural network (DNN), Kriging, support vector regression (SVR), random forest (RF), and polynomial chaos expansion Kriging (PCK)) were constructed to predict the BPA. Among these, the DNN approach demonstrated the highest prediction accuracy. Accordingly, the influence of uncertainties on the BPA was investigated using the DNN model, focusing on variations in the slider width, crank pin diameter, crank disc diameter, piston rod–slider friction coefficient, crank pin–slider friction coefficient, and hub bearing–crank disc friction coefficient. The high-fidelity model established in this study can replace the kinematic model of the CPP pitch adjustment process, significantly improving computational efficiency. The research findings also provide important references for the design optimization of CPPs. Full article
Show Figures

Figure 1

13 pages, 1289 KiB  
Article
Initiation of Shear Band in Gas Hydrate-Bearing Sediment Considering the Effect of Porosity Change on Stress
by Yudong Huang, Tianju Wang, Hongsheng Guo, Yan Zhang, Zhiwei Hao, Xiaobing Lu and Xuhui Zhang
Modelling 2025, 6(3), 51; https://doi.org/10.3390/modelling6030051 - 23 Jun 2025
Viewed by 339
Abstract
The initiation condition of the shear band in gas hydrate-bearing sediment (GHBS) was analyzed in this study. First, the mathematical model considering the pore diffusion and stress conservation equations was constructed. The shear stress is assumed to be related to the porosity, shear [...] Read more.
The initiation condition of the shear band in gas hydrate-bearing sediment (GHBS) was analyzed in this study. First, the mathematical model considering the pore diffusion and stress conservation equations was constructed. The shear stress is assumed to be related to the porosity, shear strain, and shear strain ratio. The expansion of pores causes sediment softening, while the shear strain causes the stiffening of the sediment. The perturbation method was used to analyze the initiation condition of the shear band under porosity softening and strain stiffening based on the presented mathematical model. A numerical simulation was also performed. The development of the strain, stress, and porosity was analyzed. It is shown that the parameters of the sediment change with the strain and porosity. When the parameters are satisfied under certain conditions, the shear band will initiate and develop. The critical condition is when the porosity-softening effects overcome the strain-stiffening effects. In some special cases, the critical condition may be related to other factors, such as when strain softening induces other kinds of initiation of the shear band. Full article
Show Figures

Figure 1

25 pages, 3407 KiB  
Review
Reconstruction of Old Pavements Based on Resonant Rubblization Technology: A Review of Technological Progress, Engineering Applications, and Intelligent Development
by Sibo Ding, Dehuan Sun, Yongtao Hu, Shuang Lu, Zedong Qiu, Shuo Zhang, Lei Wang, Shaowei Jiang, Tao Han and Yingli Gao
Buildings 2025, 15(13), 2165; https://doi.org/10.3390/buildings15132165 - 21 Jun 2025
Viewed by 362
Abstract
With the continuous expansion of highway networks and rapid advancements in the transportation industry, the need for highway maintenance and reconstruction has become increasingly urgent. Resonant rubblization technology generates an interlocking structure within the pavement layer by producing diagonal cracks at angles of [...] Read more.
With the continuous expansion of highway networks and rapid advancements in the transportation industry, the need for highway maintenance and reconstruction has become increasingly urgent. Resonant rubblization technology generates an interlocking structure within the pavement layer by producing diagonal cracks at angles of 35–40°, thereby significantly enhancing load-bearing capacity and structural stability. As a result, this technique offers substantial benefits, including a marked reduction in reflective cracking, efficient reuse of existing concrete slabs (with a utilization rate exceeding 85%), reduced construction costs (by 15–30% compared to conventional methods), and faster construction speeds—up to 7000 square yards per day. Consequently, resonant rubblization has emerged as a key method for rehabilitating aging cement concrete pavements. Building on this foundation, this paper reviews the fundamental principles of resonant rubblization technology by synthesizing global research findings and engineering case studies. It provides a comprehensive analysis of the historical development, equipment design, construction principles, and practical application outcomes of resonant rubblization, with particular attention to its effects on pavement structure, load-bearing capacity, and long-term stability. Future research should focus on developing more realistic subgrade models, improving evaluation methods for post-rubblization pavement performance, and advancing the intelligentization of resonant equipment. The ultimate goal is to enhance the quality of road maintenance and repair, ensure road safety, and promote the development of long-life, sustainable road infrastructure through the continued advancement and application of resonant rubblization technology. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

43 pages, 1769 KiB  
Review
The Role of LAIR1 as a Regulatory Receptor of Antitumor Immune Cell Responses and Tumor Cell Growth and Expansion
by Alessandro Poggi, Serena Matis, Chiara Rosa Maria Uras, Lizzia Raffaghello, Roberto Benelli and Maria Raffaella Zocchi
Biomolecules 2025, 15(6), 866; https://doi.org/10.3390/biom15060866 - 13 Jun 2025
Viewed by 860
Abstract
It is becoming evident that the therapeutic effect of reawakening the immune response is to limit tumor cell growth and expansion. The use of immune checkpoint inhibitors, like blocking antibodies against programmed cell death receptor (PD) 1 and/or cytotoxic T lymphocyte antigen (CTLA) [...] Read more.
It is becoming evident that the therapeutic effect of reawakening the immune response is to limit tumor cell growth and expansion. The use of immune checkpoint inhibitors, like blocking antibodies against programmed cell death receptor (PD) 1 and/or cytotoxic T lymphocyte antigen (CTLA) 4 alone or in combination with other drugs, has led to unexpected positive results in some tumors but not all. Several other molecules inhibiting lymphocyte antitumor effector subsets have been discovered in the last 30 years. Herein, we focus on the leukocyte-associated immunoglobulin (Ig)-like receptor 1 (LAIR1/CD305). LAIR1 represents a typical immunoregulatory molecule expressed on almost all leukocytes, unlike other regulatory receptors expressed on discrete leukocyte subsets. It bears two immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in the intracytoplasmic protein domain involved in the downregulation of signals mediated by activating receptors. LAIR1 binds to several ligands, such as collagen I and III, complement component 1Q, surfactant protein D, adiponectin, and repetitive interspersed families of polypeptides expressed by erythrocytes infected with Plasmodium malariae. This would suggest LAIR1 involvement in several cell-to-cell interactions and possibly in metabolic regulation. The presence of both cellular and soluble forms of LAIR would indicate a fine regulation of the immunoregulatory activity, as happens for the soluble/exosome-associated forms of PD1 and CTLA4 molecules. As a consequence, LAIR1 appears to play a role in some autoimmune diseases and the immune response against tumor cells. The finding of LAIR1 expression on hematological malignancies, but also on some solid tumors, could open a rationale for the targeting of this molecule to treat neoplasia, either alone or in combination with other therapeutic options. Full article
Show Figures

Figure 1

11 pages, 3733 KiB  
Article
Effect of Wet–Dry Cycles on the Shear Behavior of Compressed Wood Nails Compared to Steel Nails
by Wei Fan, Xinrui Zhu, Xinyu Hu and Hongguang Liu
Forests 2025, 16(6), 940; https://doi.org/10.3390/f16060940 - 3 Jun 2025
Viewed by 399
Abstract
The corrosion-induced strength degradation of steel nails poses a critical challenge to the structural integrity of timber connection joints, particularly in hygrothermal environments. Compressed wood nails exhibit hygroscopic expansion characteristics, demonstrating their potential as a sustainable alternative to steel nails in structural connections. [...] Read more.
The corrosion-induced strength degradation of steel nails poses a critical challenge to the structural integrity of timber connection joints, particularly in hygrothermal environments. Compressed wood nails exhibit hygroscopic expansion characteristics, demonstrating their potential as a sustainable alternative to steel nails in structural connections. However, systematic investigations on their shear performance under cyclic hygrothermal conditions remain limited. This study comparatively analyzed the shear behavior evolution of compressed wood nail and galvanized steel nail connections under wet-dry cycles. Distinct failure mechanisms were observed: wood nail connections exhibited characteristic brittle fracture patterns, whereas steel nail connections demonstrated ductile failure through pull-out deformation with nail bending. Notably, compressed wood nails displayed superior environmental stability, with significantly lower degradation rates in terms of load-bearing capacity (2.8% vs. 22.3%) and stiffness (16.3% vs. 38.0%) than their steel counterparts under identical hygrothermal exposure. These findings provide critical design references and data support for implementing wood-based fasteners in moisture-prone engineering applications. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

Back to TopTop