Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,224)

Search Parameters:
Keywords = exogenous inducers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1416 KiB  
Article
Humic Substances Promote the Activity of Enzymes Related to Plant Resistance
by Rakiely M. Silva, Fábio L. Olivares, Lázaro E. P. Peres, Etelvino H. Novotny and Luciano P. Canellas
Agriculture 2025, 15(15), 1688; https://doi.org/10.3390/agriculture15151688 - 5 Aug 2025
Abstract
The extensive use of pesticides has significant implications for public health and the environment. Breeding crop plants is the most effective and environmentally friendly approach to improve the plants’ resistance. However, it is time-consuming and costly, and it is sometimes difficult to achieve [...] Read more.
The extensive use of pesticides has significant implications for public health and the environment. Breeding crop plants is the most effective and environmentally friendly approach to improve the plants’ resistance. However, it is time-consuming and costly, and it is sometimes difficult to achieve satisfactory results. Plants induce defense responses to natural elicitors by interpreting multiple genes that encode proteins, including enzymes, secondary metabolites, and pathogenesis-related (PR) proteins. These responses characterize systemic acquired resistance. Humic substances trigger positive local and systemic physiological responses through a complex network of hormone-like signaling pathways and can be used to induce biotic and abiotic stress resistance. This study aimed to assess the effect of humic substances on the activity of phenylalanine ammonia-lyase (PAL), peroxidase (POX), and β-1,3-glucanase (GLU) used as a resistance marker in various plant species, including orange, coffee, sugarcane, soybeans, maize, and tomato. Seedlings were treated with a dilute aqueous suspension of humic substances (4 mM C L−1) as a foliar spray or left untreated (control). Leaf tissues were collected for enzyme assessment two days later. Humic substances significantly promoted the systemic acquired resistance marker activities compared to the control in all independent assays. Overall, all enzymes studied in this work, PAL, GLUC, and POX, showed an increase in activity by 133%, 181%, and 149%, respectively. Among the crops studied, citrus and coffee achieved the highest activity increase in all enzymes, except for POX in coffee, which showed a decrease of 29% compared to the control. GLUC exhibited the highest response to HS treatment, the enzyme most prominently involved in increasing enzymatic activity in all crops. Plants can improve their resistance to pathogens through the exogenous application of HSs as this promotes the activity of enzymes related to plant resistance. Finally, we consider the potential use of humic substances as a natural chemical priming agent to boost plant resistance in agriculture Full article
(This article belongs to the Special Issue Biocontrol Agents for Plant Pest Management)
Show Figures

Figure 1

23 pages, 2656 KiB  
Article
rRNA-specific antisense DNA and dsDNA trigger rRNA biogenesis and cause potent insecticidal effect on insect pest Coccus hesperidum L.
by Vol Oberemok, Nikita Gal’chinsky, Ilya Novikov, Alexander Sharmagiy, Ekaterina Yatskova, Ekaterina Laikova and Yuri Plugatar
Int. J. Mol. Sci. 2025, 26(15), 7530; https://doi.org/10.3390/ijms26157530 (registering DOI) - 4 Aug 2025
Abstract
Contact unmodified antisense DNA biotechnology (CUADb), developed in 2008, employs short antisense DNA oligonucleotides (oligos) as a novel approach to insect pest control. These oligonucleotide-based insecticides target pest mature rRNAs and/or pre-rRNAs and have demonstrated high insecticidal efficacy, particularly against sap-feeding insect pests, [...] Read more.
Contact unmodified antisense DNA biotechnology (CUADb), developed in 2008, employs short antisense DNA oligonucleotides (oligos) as a novel approach to insect pest control. These oligonucleotide-based insecticides target pest mature rRNAs and/or pre-rRNAs and have demonstrated high insecticidal efficacy, particularly against sap-feeding insect pests, which are key vectors of plant DNA viruses and among the most economically damaging herbivorous insects. To further explore the potential of CUADb, this study evaluated the insecticidal efficacy of short 11-mer antisense DNA oligos against Coccus hesperidum, in comparison with long 56-mer single-stranded and double-stranded DNA sequences. The short oligos exhibited higher insecticidal activity. By day 9, the highest mortality rate (97.66 ± 4.04%) was recorded in the Coccus-11 group, while the most effective long sequence was the double-stranded DNA in the dsCoccus-56 group (77.09 ± 6.24%). This study also describes the architecture of the DNA containment (DNAc) mechanism, highlighting the intricate interactions between rRNAs and various types of DNA oligos. During DNAc, the Coccus-11 treatment induced enhanced ribosome biogenesis and ATP production through a metabolic shift from carbohydrates to lipid-based energy synthesis. However, this ultimately led to a ‘kinase disaster’ due to widespread kinase downregulation resulting from insufficient ATP levels. All DNA oligos with high or moderate complementarity to target rRNA initiated hypercompensation, but subsequent substantial rRNA degradation and insect mortality occurred only when the oligo sequence perfectly matched the rRNA. Both short and long oligonucleotide insecticide treatments led to a 3.75–4.25-fold decrease in rRNA levels following hypercompensation, which was likely mediated by a DNA-guided rRNase, such as RNase H1, while crucial enzymes of RNAi (DICER1, Argonaute 2, and DROSHA) were downregulated, indicating fundamental difference in molecular mechanisms of DNAc and RNAi. Consistently, significant upregulation of RNase H1 was detected in the Coccus-11 treatment group. In contrast, treatment with random DNA oligos resulted in only a 2–3-fold rRNA decrease, consistent with the normal rRNA half-life maintained by general ribonucleases. These findings reveal a fundamental new mechanism of rRNA regulation via complementary binding between exogenous unmodified antisense DNA and cellular rRNA. From a practical perspective, this minimalist approach, applying short antisense DNA dissolved in water, offers an effective, eco-friendly and innovative solution for managing sternorrhynchans and other insect pests. The results introduce a promising new concept in crop protection: DNA-programmable insect pest control. Full article
(This article belongs to the Special Issue New Insights into Plant and Insect Interactions (Second Edition))
Show Figures

Figure 1

12 pages, 1267 KiB  
Article
Exogenous 24-Epibrassinolide Alleviated Selenium Stress in Peach Seedling
by Zhiyu Hang, Qizhe Cao, Yunyao Du, Jinrong Zhang, Lijin Lin, Mingfei Zhang and Xun Wang
Horticulturae 2025, 11(8), 909; https://doi.org/10.3390/horticulturae11080909 (registering DOI) - 4 Aug 2025
Abstract
Selenium stress can adversely affect plants by inhibiting growth, impairing oxidative stress resistance, and inducing toxicity. In this experiment, we investigated the effect of exogenous 24-epibrassinolide (24-EBL; 2.0 mg/L), a brassinosteroid (BR), on alleviating selenium stress in peach trees by analyzing its impact [...] Read more.
Selenium stress can adversely affect plants by inhibiting growth, impairing oxidative stress resistance, and inducing toxicity. In this experiment, we investigated the effect of exogenous 24-epibrassinolide (24-EBL; 2.0 mg/L), a brassinosteroid (BR), on alleviating selenium stress in peach trees by analyzing its impact on biomass, selenium accumulation, and the expression of selenium metabolism-related genes in peach seedlings. The results demonstrated that 24-EBL could effectively mitigate biomass loss in peach seedlings exposed to selenium stress. Compared to the Se treatment alone, the 24-EBL+Se treatment resulted in a significant 16.55% increase in root selenium content and a more pronounced 30.39% increase in selenium content in the aboveground parts. Regarding the subcellular distribution, the cell wall was the primary site of Se deposition, accounting for 42.3% and 49.8% in the root and aboveground parts, respectively, in the Se treatment. 24-EBL further enhanced Se distribution at this site, reaching 42.9% and 63.2% in root and aboveground parts, respectively, in the 24-EBL+Se treatment. The 24-EBL+Se treatment significantly increased the contents of different chemical forms of Se, including ethanol-soluble, water-soluble, and salt-soluble Se. The quantitative real-time PCR (qRT-PCR) results indicated that the Se treatment promoted the expression of organic Se assimilation genes (SATs, OAS-TL B, and OAS-TL C), and 24-EBL application further increased their expression. Meanwhile, the Se-only treatment up-regulated the organic Se metabolism gene CGS1. Consequently, we propose that 24-EBL alleviates Se stress in peach seedlings by enhancing Se uptake and assimilation, and by adjusting subcellular distribution and chemical forms. Full article
(This article belongs to the Special Issue Biotic and Abiotic Stress Responses of Horticultural Plants)
Show Figures

Figure 1

20 pages, 11402 KiB  
Article
Identification and Characterization of NAC Transcription Factors Involved in Pine Wilt Nematode Resistance in Pinus massoniana
by Zhengping Zhao, Jieyun Lei, Min Zhang, Jiale Li, Chungeng Pi, Jinxiu Yu, Xuewu Yan, Kun Luo and Yonggang Xia
Plants 2025, 14(15), 2399; https://doi.org/10.3390/plants14152399 - 3 Aug 2025
Viewed by 137
Abstract
Pinus massoniana Lamb. is an economically important conifer native to China. However, it is highly susceptible to the pine wood nematode (Bursaphelenchus xylophilus, PWN), the causal agent of pine wilt disease (PWD), resulting in substantial ecological and economic losses. To elucidate [...] Read more.
Pinus massoniana Lamb. is an economically important conifer native to China. However, it is highly susceptible to the pine wood nematode (Bursaphelenchus xylophilus, PWN), the causal agent of pine wilt disease (PWD), resulting in substantial ecological and economic losses. To elucidate potential molecular defense mechanisms, 50 NAC (NAM, ATAF1/2, and CUC2) transcription factors (PmNACs) were identified in the P. massoniana genome. Phylogenetic analysis divided these PmNACs into seven subfamilies, and motif analysis identified ten conserved motifs associated with stress responses. Twenty-three genes were selected for expression analysis in various tissues and under exogenous salicylic acid (SA), methyl jasmonate (MeJA), and PWN infection. Six genes (PmNAC1, PmNAC8, PmNAC9, PmNAC17, PmNAC18, and PmNAC20) were significantly up-regulated by both hormonal treatment and PWN infection, implying their involvement in JA/SA-mediated immune pathways. Functional characterization showed PmNAC8 is a nuclear-localized transcription factor with autoactivation activity. Furthermore, transient overexpression of PmNAC8 in Nicotiana benthamiana induced reactive oxygen species (ROS) accumulation and necrotic lesions. Collectively, these results elucidate NAC-mediated defense responses to PWN infection in P. massoniana and identify candidate genes for developing PWD-resistant pine varieties. Full article
Show Figures

Figure 1

13 pages, 1092 KiB  
Article
Exogenous Application of Nano-Silicon and Melatonin Ameliorates Salinity Injury in Coix Seedlings
by Beibei Qi, Junkai Liu, Ruixue Zheng, Jiada Huang and Chao Wu
Agronomy 2025, 15(8), 1862; https://doi.org/10.3390/agronomy15081862 - 31 Jul 2025
Viewed by 108
Abstract
Soil salinization is a major environmental constraint that poses a significant threat to global agricultural productivity and food security. Coix lacryma-jobi L., a minor cereal crop that is valued for its nutritional and medicinal properties, displays moderate susceptibility to salinity stress. Although exogenous [...] Read more.
Soil salinization is a major environmental constraint that poses a significant threat to global agricultural productivity and food security. Coix lacryma-jobi L., a minor cereal crop that is valued for its nutritional and medicinal properties, displays moderate susceptibility to salinity stress. Although exogenous treatments have been demonstrated to enhance plant resilience against various biotic and abiotic stresses, the potential of nano-silicon (NaSi), melatonin (MT), and their combined application in mitigating salinity-induced damage, particularly in relation to the medicinal properties of this medicinal and edible crop, remains poorly understood. This study investigated the effects of exogenous NaSi and MT application on Coix under salinity stress using two varieties with contrasting salinity tolerances. The plants were subjected to salinity stress and treated with NaSi, MT, or a combination of both. The results revealed that salinity stress significantly impaired the agronomic traits, physiological performance, and accumulation of medicinal compounds of Coix. Exogenous MT application effectively alleviated salinity-induced damage to agronomic and physiological parameters, exhibiting superior protective effects compared to NaSi treatment. Strikingly, the combined application of MT and NaSi demonstrated synergistic effects, leading to substantial improvements in growth and physiological indices. However, the medicinal components were only marginally affected by exogenous treatments under both control and salinity-stressed conditions. Further clarification of the molecular mechanisms underlying salinity stress responses and exogenous substance-induced effects is critical to achieving a comprehensive understanding of these protective mechanisms. Full article
Show Figures

Figure 1

20 pages, 4050 KiB  
Article
LDLR H3K27ac in PBMCs: An Early Warning Biomarker for Hypercholesterolemia Susceptibility in Male Newborns Treated with Prenatal Dexamethasone
by Kexin Liu, Can Ai, Dan Xu, Wen Hu, Guanghui Chen, Jinzhi Zhang, Ning Zhang, Dongfang Wu and Hui Wang
Toxics 2025, 13(8), 651; https://doi.org/10.3390/toxics13080651 - 31 Jul 2025
Viewed by 177
Abstract
Dexamethasone, widely used as an exogenous glucocorticoid in clinical and animal practice, has recently been recognized as an environmental contaminant of concern. Existing evidence documents its ability to induce persistent dyslipidemia in adult offspring. In this study, plasma cholesterol levels in male rats [...] Read more.
Dexamethasone, widely used as an exogenous glucocorticoid in clinical and animal practice, has recently been recognized as an environmental contaminant of concern. Existing evidence documents its ability to induce persistent dyslipidemia in adult offspring. In this study, plasma cholesterol levels in male rats exposed to dexamethasone prenatally (PDE) were increased. Meanwhile, developmental tracking revealed a reduction in hepatic low-density lipoprotein receptor (LDLR) promoter H3K27 acetylation (H3K27ac) and corresponding transcriptional activity across gestational-to-postnatal stages. Mechanistic investigations established glucocorticoid receptor/histone deacetylase2 (GR/HDAC2) axis-mediated epigenetic programming of LDLR through H3K27ac modulation in PDE offspring, potentiating susceptibility to hypercholesterolemia. Additionally, in peripheral blood mononuclear cells (PBMC) of PDE male adult offspring, LDLR H3K27ac level and expression were also decreased and positively correlated with those in the liver. Clinical studies further substantiated that male newborns prenatally treated with dexamethasone exhibited increased serum cholesterol levels and consistent reductions in LDLR H3K27ac levels and corresponding transcriptional activity in PBMC. This study establishes a complete evidence chain linking PDE with epigenetic programming and cholesterol metabolic dysfunction, proposing PBMC epigenetic biomarkers as a novel non-invasive monitoring tool for assessing the developmental toxicity of chemical exposures during pregnancy. This has significant implications for improving environmental health risk assessment systems. Full article
(This article belongs to the Special Issue Reproductive and Developmental Toxicity of Environmental Factors)
Show Figures

Graphical abstract

22 pages, 5254 KiB  
Article
Exploring Simulation Methods to Counter Cyber-Attacks on the Steering Systems of the Maritime Autonomous Surface Ship (MASS)
by Igor Astrov, Sanja Bauk and Pentti Kujala
J. Mar. Sci. Eng. 2025, 13(8), 1470; https://doi.org/10.3390/jmse13081470 - 31 Jul 2025
Viewed by 213
Abstract
This paper presents a simulation-based investigation into control strategies for mitigating the consequences of cyber-assault on the steering systems of the Maritime Autonomous Surface Ships (MASS). The study focuses on two simulation experiments conducted within the Simulink/MATLAB environment, utilizing the catamaran “Nymo” MASS [...] Read more.
This paper presents a simulation-based investigation into control strategies for mitigating the consequences of cyber-assault on the steering systems of the Maritime Autonomous Surface Ships (MASS). The study focuses on two simulation experiments conducted within the Simulink/MATLAB environment, utilizing the catamaran “Nymo” MASS mathematical model to represent vessel dynamics. Cyber-attacks are modeled as external disturbances affecting the rudder control signal, emulating realistic interference scenarios. To assess control resilience, two configurations are compared during a representative turning maneuver to a specified heading: (1) a Proportional–Integral–Derivative (PID) regulator augmented with a Least Mean Squares (LMS) adaptive filter, and (2) a Nonlinear Autoregressive Moving Average with Exogenous Input (NARMA-L2) neural network regulator. The PID and LMS configurations aim to enhance the disturbance rejection capabilities of the classical controller through adaptive filtering, while the NARMA-L2 approach represents a data-driven, nonlinear control alternative. Simulation results indicate that although the PID and LMS setups demonstrate improved performance over standalone PID in the presence of cyber-induced disturbances, the NARMA-L2 controller exhibits superior adaptability, accuracy, and robustness under adversarial conditions. These findings suggest that neural network-based control offers a promising pathway for developing cyber-resilient steering systems in autonomous maritime vessels. Full article
(This article belongs to the Special Issue Advanced Control Strategies for Autonomous Maritime Systems)
Show Figures

Figure 1

18 pages, 1999 KiB  
Article
Circadian Light Manipulation and Melatonin Supplementation Enhance Morphine Antinociception in a Neuropathic Pain Rat Model
by Nian-Cih Huang and Chih-Shung Wong
Int. J. Mol. Sci. 2025, 26(15), 7372; https://doi.org/10.3390/ijms26157372 - 30 Jul 2025
Viewed by 221
Abstract
Disruption of circadian rhythms by abnormal light exposure and reduced melatonin secretion has been linked to heightened pain sensitivity and opioid tolerance. This study evaluated how environmental light manipulation and exogenous melatonin supplementation influence pain perception and morphine tolerance in a rat model [...] Read more.
Disruption of circadian rhythms by abnormal light exposure and reduced melatonin secretion has been linked to heightened pain sensitivity and opioid tolerance. This study evaluated how environmental light manipulation and exogenous melatonin supplementation influence pain perception and morphine tolerance in a rat model of neuropathic pain induced by partial sciatic nerve transection (PSNT). Rats were exposed to constant darkness, constant light, or a 12 h/12 h light–dark cycle for one week before PSNT surgery. Behavioral assays and continuous intrathecal (i.t.) infusion of morphine, melatonin, or their combination were conducted over a 7-day period beginning immediately after PSNT. On Day 7, after discontinued drugs infusion, an acute intrathecal morphine challenge (15 µg, i.t.) was administered to assess tolerance expression. Constant light suppressed melatonin levels, exacerbated pain behaviors, and accelerated morphine tolerance. In contrast, circadian-aligned lighting preserved melatonin rhythms and mitigated these effects. Melatonin co-infusion attenuated morphine tolerance and enhanced morphine analgesia. Reduced pro-inflammatory cytokine expression and increase anti-inflammatory cytokine IL-10 level and suppressed astrocyte activation were also observed by melatonin co-infusion during morphine tolerance induction. These findings highlight the potential of melatonin and circadian regulation in improving opioid efficacy and reduced morphine tolerance in managing neuropathic pain. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

20 pages, 15855 KiB  
Article
Resistance Response and Regulatory Mechanisms of Ciprofloxacin-Induced Resistant Salmonella Typhimurium Based on Comprehensive Transcriptomic and Metabolomic Analysis
by Xiaohan Yang, Jinhua Chu, Lulu Huang, Muhammad Haris Raza Farhan, Mengyao Feng, Jiapeng Bai, Bangjuan Wang and Guyue Cheng
Antibiotics 2025, 14(8), 767; https://doi.org/10.3390/antibiotics14080767 - 29 Jul 2025
Viewed by 298
Abstract
Background: Salmonella infections pose a serious threat to both animal and human health worldwide. Notably, there is an increasing trend in the resistance of Salmonella to fluoroquinolones, the first-line drugs for clinical treatment. Methods: Utilizing Salmonella Typhimurium CICC 10420 as the test strain, [...] Read more.
Background: Salmonella infections pose a serious threat to both animal and human health worldwide. Notably, there is an increasing trend in the resistance of Salmonella to fluoroquinolones, the first-line drugs for clinical treatment. Methods: Utilizing Salmonella Typhimurium CICC 10420 as the test strain, ciprofloxacin was used for in vitro induction to develop the drug-resistant strain H1. Changes in the minimum inhibitory concentrations (MICs) of various antimicrobial agents were determined using the broth microdilution method. Transcriptomic and metabolomic analyses were conducted to investigate alterations in gene and metabolite expression. A combined drug susceptibility test was performed to evaluate the potential of exogenous metabolites to restore antibiotic susceptibility. Results: The MICs of strain H1 for ofloxacin and enrofloxacin increased by 128- and 256-fold, respectively, and the strain also exhibited resistance to ceftriaxone, ampicillin, and tetracycline. A single-point mutation of Glu469Asp in the GyrB was detected in strain H1. Integrated multi-omics analysis showed significant differences in gene and metabolite expression across multiple pathways, including two-component systems, ABC transporters, pentose phosphate pathway, purine metabolism, glyoxylate and dicarboxylate metabolism, amino sugar and nucleotide sugar metabolism, pantothenate and coenzyme A biosynthesis, pyrimidine metabolism, arginine and proline biosynthesis, and glutathione metabolism. Notably, the addition of exogenous glutamine, in combination with tetracycline, significantly reduced the resistance of strain H1 to tetracycline. Conclusion: Ciprofloxacin-induced Salmonella resistance involves both target site mutations and extensive reprogramming of the metabolic network. Exogenous metabolite supplementation presents a promising strategy for reversing resistance and enhancing antibiotic efficacy. Full article
(This article belongs to the Section Mechanism and Evolution of Antibiotic Resistance)
Show Figures

Figure 1

14 pages, 911 KiB  
Article
Physiological Response of Tribolium castaneum to CO2 Controlled Atmosphere Stress Under Trehalose Feeding
by Yuya Zhang, Shangrong Hu, Min Zhou, Xinyi Zhang, Liwen Guan, Yanfei Zhou, Jun Lv and Bin Tang
Insects 2025, 16(8), 768; https://doi.org/10.3390/insects16080768 - 26 Jul 2025
Viewed by 446
Abstract
This study investigated the physiological regulatory mechanisms by which exogenous trehalose intake enhances the adaptation of the global stored-grain pest T. castaneum to high-concentration carbon dioxide (CO2) stress. By supplementing exogenous trehalose under high-CO2 controlled atmosphere stress, we measured the [...] Read more.
This study investigated the physiological regulatory mechanisms by which exogenous trehalose intake enhances the adaptation of the global stored-grain pest T. castaneum to high-concentration carbon dioxide (CO2) stress. By supplementing exogenous trehalose under high-CO2 controlled atmosphere stress, we measured the activities of key detoxification enzymes (e.g., carboxylesterase and cytochrome P450) and the levels of carbohydrate substances (e.g., glycogen, glucose, and trehalose). The results demonstrated that trehalose feeding significantly alleviated CO2 induced mortality in T. castaneum and prolonged their survival time. In terms of detoxification metabolism, a trehalose-rich diet significantly reduced the activities of cytochrome P450 and carboxylesterase, while the glucose content in the beetles decreased markedly. These findings indicate that trehalose accumulation mitigates physiological damage caused by high-CO2 stress in T. castaneum. Furthermore, exogenous trehalose intake did not disrupt carbohydrate metabolic homeostasis in the beetles, as trehalase activity and the levels of various carbohydrates remained relatively stable. This study elucidates the role of trehalose metabolism in T. castaneum’s adaptation to high-CO2 environments, providing a theoretical foundation for optimizing controlled atmosphere grain storage technology and developing novel pest control strategies. Full article
Show Figures

Figure 1

16 pages, 13113 KiB  
Article
Ambient Particulate Matter Exposure Impairs Gut Barrier Integrity and Disrupts Goblet Cell Function
by Wanhao Gao, Wang Lin, Miao Tian, Shilang Fan, Sabrina Edwards, Joanne Tran, Yuanjing Li and Xiaoquan Rao
Biomedicines 2025, 13(8), 1825; https://doi.org/10.3390/biomedicines13081825 - 25 Jul 2025
Viewed by 323
Abstract
Background: As a well-known environmental hazard, ambient fine particulate matter (PM2.5, aerodynamic diameter ≤ 2.5 µm) has been positively correlated with an increased risk of digestive system diseases, including appendicitis, inflammatory bowel disease, and gastrointestinal cancer. Additionally, PM2.5 exposure [...] Read more.
Background: As a well-known environmental hazard, ambient fine particulate matter (PM2.5, aerodynamic diameter ≤ 2.5 µm) has been positively correlated with an increased risk of digestive system diseases, including appendicitis, inflammatory bowel disease, and gastrointestinal cancer. Additionally, PM2.5 exposure has been shown to alter microbiota composition and diversity in human and animal models. However, its impact on goblet cells and gut mucus barrier integrity remains unclear. Methods: To address this, 8-week-old male and female interleukin-10 knockout (IL10−/−) mice, serving as a spontaneous colitis model, were exposed to concentrated ambient PM2.5 or filtered air (FA) in a whole-body exposure system for 17 weeks. Colon tissues from the PM2.5-exposed mice and LS174T goblet cells were analyzed using H&E staining, transmission electron microscopy (TEM), and transcriptomic profiling. Results: The average PM2.5 concentration in the exposure chamber was 100.20 ± 13.79 µg/m3. PM2.5 exposure in the IL10−/− mice led to pronounced colon shortening, increased inflammatory infiltration, ragged villi brush borders, dense goblet cells with sparse enterocytes, and lipid droplet accumulation in mitochondria. Similar ultrastructure changes were exhibited in the LS174T goblet cells after PM2.5 exposure. Transcriptomic analysis revealed a predominantly upregulated gene expression spectrum, indicating an overall enhancement rather than suppression of metabolic activity after PM2.5 exposure. Integrated enrichment analyses, including GO, KEGG, and GSEA, showed enrichment in pathways related to oxidative stress, xenobiotic (exogenous compound) metabolism, and energy metabolism. METAFlux, a metabolic activity analysis, further substantiated that PM2.5 exposure induces a shift in cellular energy metabolism preference and disrupts redox homeostasis. Conclusions: The findings of exacerbated gut barrier impairment and goblet cell dysfunction following PM2.5 exposure provide new evidence of environmental factors contributing to colitis, highlighting new perspectives on its role in the pathogenesis of colitis. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

21 pages, 2330 KiB  
Article
Assessing 5-Aminolevulinic Acid as a Natural Biocide Precursor for Light-Activated Eradication of Pseudomonas spp.
by Irena Maliszewska and Anna Zdubek
Int. J. Mol. Sci. 2025, 26(15), 7153; https://doi.org/10.3390/ijms26157153 - 24 Jul 2025
Viewed by 171
Abstract
Photodynamic inactivation (aPDI) involves the interaction of three components: non-toxic photosensitizer molecules (PS), low-intensity visible light, and molecular oxygen. This interaction leads to the generation of toxic reactive oxygen species. The present work demonstrated the efficacy of light-induced antimicrobial photodynamic inactivation against Pseudomonas [...] Read more.
Photodynamic inactivation (aPDI) involves the interaction of three components: non-toxic photosensitizer molecules (PS), low-intensity visible light, and molecular oxygen. This interaction leads to the generation of toxic reactive oxygen species. The present work demonstrated the efficacy of light-induced antimicrobial photodynamic inactivation against Pseudomonas aeruginosa and Pseudomonas putida using 5-aminolevulinic acid (5-ALA) as a prodrug to produce the photosensitizer protoporphyrin IX. The photoeradication efficiency of these pathogens under blue (405 nm; 45 mW cm−2) and red (635 nm; 53 mW cm−2) light was investigated. Results showed that at least 30 min of blue light irradiation was necessary to achieve a 99.999% reduction of P. aeruginosa, whereas red light was less effective. P. putida exhibited limited susceptibility under similar conditions. To enhance aPDI efficiency, exogenous glucose was added alongside 5-ALA, which significantly increased the photodynamic efficacy—particularly against P. aeruginosa—leading to complete eradication after just 5 min of exposure. Spectroscopic analyses confirmed that glucose increased the levels of protoporphyrin IX, which correlated with enhanced photodynamic efficacy. Furthermore, multiple aPDI exposure reduced key virulence factors, including alkaline protease activity, biofilm formation, and swarming motility (in P. aeruginosa). These findings suggest that 5-ALA-mediated photodynamic inactivation offers a promising strategy to improve efficacy against resistant Gram-negative pathogens. Full article
Show Figures

Graphical abstract

15 pages, 2281 KiB  
Article
Transcriptome and Anthocyanin Profile Analysis Reveals That Exogenous Ethylene Regulates Anthocyanin Biosynthesis in Grape Berries
by Min Liu, Boyuan Fan, Le Li, Jinmei Hao, Ruteng Wei, Hua Luo, Fei Shi, Zhiyuan Ren and Jun Wang
Foods 2025, 14(14), 2551; https://doi.org/10.3390/foods14142551 - 21 Jul 2025
Viewed by 359
Abstract
Anthocyanins are important phenolic compounds in grape skins, affecting the color, oxidation resistance, and aging ability of red wine. In recent years, global warming has had a negative effect on anthocyanin biosynthesis in grape berries. Ethylene serves as a crucial phytohormone regulating the [...] Read more.
Anthocyanins are important phenolic compounds in grape skins, affecting the color, oxidation resistance, and aging ability of red wine. In recent years, global warming has had a negative effect on anthocyanin biosynthesis in grape berries. Ethylene serves as a crucial phytohormone regulating the development and ripening processes of fruit; however, the specific molecular mechanism and the regulatory network between ethylene signaling and the anthocyanin biosynthesis pathway remain incompletely understood. In this study, 400 mg/L ethephon (ETH) solution was sprayed onto the surface of grape berries at the lag phase (EL-34), and the changes in anthocyanin-related genes and metabolites were explored through transcriptomic and metabolomic analysis. The results showed that ETH treatment increased Brix and pH in mature berries. In total, 35 individual anthocyanins were detected, in which 21 individual anthocyanins were enhanced by ETH treatment. However, the anthocyanin profile was not affected by exogenous ethylene. Transcriptomics analysis showed that there were a total of 825 and 1399 differentially expressed genes (DEGs) 12 h and 24 h after treatment. Moreover, key structural genes in the anthocyanin synthesis pathway were strongly induced, including VvPAL, VvCHS, VvF3H, VvF3′5′H, VvDFR and VvUFGT. At the maturity stage (EL-38), the expression levels of these genes were still higher in EHT-treated berries than in the control. ETH treatment also influenced the expression of genes related to hormone biosynthesis and signal transduction. The ethylene biosynthesis gene (VvACO), ethylene receptor genes (VvETR2, VvERS1 and VvEIN4), ABA biosynthesis gene (VvNCED2), and ABA receptor gene (VvPYL4) were up-regulated by ETH treatment, while the auxin biosynthesis gene (VvTAA3) and seven genes of the auxin-responsive protein were inhibited by exogenous ethylene. Meanwhile, ETH treatment promoted the expression of the sugar transporter gene (VvEDL16) and two sucrose synthase genes (VvSUS2 and VvSUS6). In EHT-treated berries, 19 MYB and 23 ERF genes were expressed differently compared with the control (p < 0.05). This study provides the theoretical foundation and technical support for the regulation of anthocyanin synthesis in non-climacteric fruit. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

17 pages, 2071 KiB  
Article
Melatonin Enhances Drought Tolerance by Regulating the Genes Underlying Photosynthesis and Antioxidant Defense in Rubber Tree (Hevea brasiliensis) Seedlings
by Dejun Li, Zhihui Xia, Xuncheng Wang, Hong Yang and Yao Li
Plants 2025, 14(14), 2243; https://doi.org/10.3390/plants14142243 - 21 Jul 2025
Viewed by 366
Abstract
Melatonin (MT) can enhance plant stress tolerance by activating the internal defense system, but its application in rubber trees has been barely reported up to now. In this study, we found that the relative electrical conductivity (REC), H2O2, and [...] Read more.
Melatonin (MT) can enhance plant stress tolerance by activating the internal defense system, but its application in rubber trees has been barely reported up to now. In this study, we found that the relative electrical conductivity (REC), H2O2, and malondialdehyde (MDA) contents were significantly higher in the leaves of rubber tree seedlings under drought stress compared to the control (water treatment), whereas chlorophyll contents were obviously lower in the leaves under drought stress compared to the control. MT partly relieves the aforementioned drought-induced adverse effects by dramatically reducing chlorophyll degradation, H2O2 accumulation, MDA content, and REC. Comparative transcriptomes among the PEG (P), MT (M), and PEG + MT (PM) treatments against the control showed that 213, 896, and 944 genes were differently expressed in rubber tree seedlings treated with M, P, and PM in contrast to the control. Among the 64 differently expressed genes (DEGs) being common among the three comparisons, the expression profiles of 25 were opposite in MH compared with PH. Intriguingly, all the KEGG pathways of the DEGs mentioned above belonged to metabolism including energy metabolism, carbohydrate metabolism, amino acid metabolism, and the metabolism of cofactors and vitamins. Exogenous application of MT mainly regulated the genes associated with photosynthesis and the anti-oxidative defense system, thereby enhancing the antioxidant protection of rubber tree seedlings under drought stress. These results suggest that exogenous melatonin application can effectively enhance drought tolerance by heightening ROS scavenging to decrease H2O2 accumulation in rubber tree seedlings. Our results elucidate the molecular mechanisms of MT’s roles in drought stress, which help to employ exogenous MT to boost drought tolerance in the rubber tree. Full article
(This article belongs to the Special Issue Metabolic Analysis of Plant Development and Defense Responses)
Show Figures

Figure 1

28 pages, 3737 KiB  
Article
Profiling Plant circRNAs Provides Insights into the Expression of Plant Genes Involved in Viral Infection
by Ghyda Murad Hashim, Travis Haight, Xinyang Chen, Athanasios Zovoilis and Srividhya Venkataraman
Life 2025, 15(7), 1143; https://doi.org/10.3390/life15071143 - 20 Jul 2025
Viewed by 369
Abstract
Investigations of endogenous plant circular RNAs (circRNAs) in several plant species have revealed changes in their circular RNA profiles in response to biotic and abiotic stresses. Recently, circRNAs have emerged as critical regulators of gene expression. The destructive impacts on agriculture due to [...] Read more.
Investigations of endogenous plant circular RNAs (circRNAs) in several plant species have revealed changes in their circular RNA profiles in response to biotic and abiotic stresses. Recently, circRNAs have emerged as critical regulators of gene expression. The destructive impacts on agriculture due to plant viral infections necessitate better discernment of the involvement of plant circRNAs during viral infection. However, few such studies have been conducted hitherto. Sobemoviruses cause great economic impacts on important crops such as rice, turnip, alfalfa, and wheat. Our current study investigates the dynamics of plant circRNA profiles in the host Arabidopsis thaliana (A. thaliana) during infections with the sobemoviruses Turnip rosette virus (TRoV) and Rice yellow mottle virus (RYMV), as well as the small circular satellite RNA of the Lucerne transient streak virus (scLTSV), focusing on circRNA dysregulation in the host plants and its potential implications in triggering plant cellular defense responses. Towards this, two rounds of deep sequencing were conducted on the RNA samples obtained from infected and uninfected plants followed by the analysis of circular RNA profiles using RNA-seq and extensive bioinformatic analyses. We identified 760 circRNAs, predominantly encoded in exonic regions and enriched in the chloroplast chromosome, suggesting them as key sites for circRNA generation during viral stress. Gene ontology (GO) analysis indicated that these circRNAs are mostly associated with plant development and protein binding, potentially influencing the expression of their host genes. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed photosynthesis as the most affected pathway. Interestingly, the non-coding exogenous scLTSV specifically induced several circRNAs, some of which contain open reading frames (ORFs) capable of encoding proteins. Our biochemical assays demonstrated that transgenic expression of scLTSV in A. thaliana enhanced resistance to TRoV, suggesting a novel strategy for improving plant viral resistance. Our results highlight the complexity of circRNA dynamics in plant–virus interactions and offer novel insights into potential circRNA-based strategies for enhancing plant disease resistance by modulating the differential expression of circRNAs. Full article
(This article belongs to the Special Issue Investigations of Circular RNAs in Plants)
Show Figures

Figure 1

Back to TopTop