Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = exciton diffusion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1560 KB  
Article
Unveiling the Role of Fluorination in Suppressing Dark Current and Enhancing Photocurrent to Enable Thick-Film Near-Infrared Organic Photodetectors
by Yongqi Bai, Seon Lee Kwak, Jong-Woon Ha and Do-Hoon Hwang
Polymers 2025, 17(19), 2663; https://doi.org/10.3390/polym17192663 - 1 Oct 2025
Viewed by 337
Abstract
Thick active layers are crucial for scalable production of organic photodetectors (OPDs). However, most OPDs with active layers thicker than 200 nm typically exhibit decreased photocurrents and responsivities due to exciton diffusion and prolonged charge transport pathways. To address these limitations, we designed [...] Read more.
Thick active layers are crucial for scalable production of organic photodetectors (OPDs). However, most OPDs with active layers thicker than 200 nm typically exhibit decreased photocurrents and responsivities due to exciton diffusion and prolonged charge transport pathways. To address these limitations, we designed and synthesized PFBDT-8ttTPD, a fluorinated polymer donor. The strategic incorporation of fluorine effectively enhanced the charge carrier mobility, enabling more efficient charge transport, even in thicker films. OPDs combining PFBDT−8ttTPD with IT−4F or Y6 non-fullerene acceptors showed a substantially lower dark current density (Jd) for active layer thicknesses of 250−450 nm. Notably, Jd in the IT-4F-based devices declined from 8.74 × 10−9 to 4.08 × 10−10 A cm−2 under a reverse bias of −2 V, resulting in a maximum specific detectivity of 3.78 × 1013 Jones. Meanwhile, Y6 integration provided near-infrared sensitivity, with the devices achieving responsivity above 0.48 A W−1 at 850 nm and detectivity over 1013 Jones up to 900 nm, supporting broadband imaging. Importantly, high-quality thick films (≥400 nm) free of pinholes or defects were fabricated, enabling scalable production without performance loss. This advancement ensures robust photodetection in thick uniform layers and marks a significant step toward the development of industrially viable OPDs. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

18 pages, 7023 KB  
Article
Physico-Chemical Properties of CdTe/Glutathione Quantum Dots Obtained by Microwave Irradiation for Use in Monoclonal Antibody and Biomarker Testing
by M. A. Ruiz-Robles, Francisco J. Solís-Pomar, Gabriela Travieso Aguilar, Maykel Márquez Mijares, Raine Garrido Arteaga, Olivia Martínez Armenteros, C. D. Gutiérrez-Lazos, Eduardo G. Pérez-Tijerina and Abel Fundora Cruz
Nanomaterials 2024, 14(8), 684; https://doi.org/10.3390/nano14080684 - 16 Apr 2024
Cited by 3 | Viewed by 2390
Abstract
In this report, we present the results on the physicochemical characterization of cadmium telluride quantum dots (QDs) stabilized with glutathione and prepared by optimizing the synthesis conditions. An excellent control of emissions and the composition of the nanocrystal surface for its potential application [...] Read more.
In this report, we present the results on the physicochemical characterization of cadmium telluride quantum dots (QDs) stabilized with glutathione and prepared by optimizing the synthesis conditions. An excellent control of emissions and the composition of the nanocrystal surface for its potential application in monoclonal antibody and biomarker testing was achieved. Two samples (QDYellow, QDOrange, corresponding to their emission colors) were analyzed by dynamic light scattering (DLS), and their hydrodynamic sizes were 6.7 nm and 19.4 nm, respectively. Optical characterization by UV-vis absorbance spectroscopy showed excitonic peaks at 517 nm and 554 nm. Photoluminescence spectroscopy indicated that the samples have a maximum intensity emission at 570 and 606 nm, respectively, within the visible range from yellow to orange. Infrared spectroscopy showed vibrational modes corresponding to the functional groups OH-C-H, C-N, C=C, C-O, C-OH, and COOH, which allows for the formation of functionalized QDs for the manufacture of biomarkers. In addition, the hydrodynamic radius, zeta potential, and approximate molecular weight were determined by dynamic light scattering (DLS), electrophoretic light scattering (ELS), and static light scattering (SLS) techniques. Size dispersion and the structure of nanoparticles was obtained by Transmission Electron Microscopy (TEM) and by X-ray diffraction. In the same way, we calculated the concentration of Cd2+ ions expressed in mg/L by using the Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-OES). In addition to the characterization of the nanoparticles, the labeling of murine myeloid cells was carried out with both samples of quantum dots, where it was demonstrated that quantum dots can diffuse into these cells and connect mostly with the cell nucleus. Full article
Show Figures

Figure 1

19 pages, 12218 KB  
Article
Excited-State Dynamics of Carbazole and tert-Butyl-Carbazole in Thin Films
by Konstantin Moritz Knötig, Domenic Gust, Kawon Oum and Thomas Lenzer
Photochem 2024, 4(2), 179-197; https://doi.org/10.3390/photochem4020011 - 9 Apr 2024
Cited by 3 | Viewed by 2024
Abstract
Thin films of carbazole (Cz) derivatives are frequently used in organic electronics, such as organic light-emitting diodes (OLEDs). Because of the proximity of the Cz units, the excited-state relaxation in such films is complicated, as intermolecular pathways, such as singlet–singlet annihilation (SSA), kinetically [...] Read more.
Thin films of carbazole (Cz) derivatives are frequently used in organic electronics, such as organic light-emitting diodes (OLEDs). Because of the proximity of the Cz units, the excited-state relaxation in such films is complicated, as intermolecular pathways, such as singlet–singlet annihilation (SSA), kinetically compete with the emission. Here, we provide an investigation of two benchmark systems employing neat carbazole and 3,6-di-tert-butylcarbazole (t-Bu-Cz) films and also their thin film blends with poly(methyl methacrylate) (PMMA). These are investigated by a combination of atomic force microscopy (AFM), femtosecond and nanosecond transient absorption spectroscopy (fs-TA and ns-TA) and time-resolved fluorescence. Excitonic J-aggregate-type features are observed in the steady-state absorption and emission spectra of the neat films. The S1 state shows a broad excited-state absorption (ESA) spanning the entire UV–Vis–NIR range. At high S1 exciton number densities of about 4 × 1018 cm−3, bimolecular diffusive S1–S1 annihilation is found to be the dominant SSA process in the neat films with a rate constant in the range of 1–2 × 10−8 cm3 s−1. SSA produces highly vibrationally excited molecules in the electronic ground state (S0*), which cool down slowly by heat transfer to the quartz substrate. The results provide relevant photophysical insight for a better microscopic understanding of carbazole relaxation in thin-film environments. Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry II)
Show Figures

Graphical abstract

17 pages, 3333 KB  
Article
Estimation of Environmental Effects and Response Time in Gas-Phase Explosives Detection Using Photoluminescence Quenching Method
by Daegwon Noh and Eunsoon Oh
Polymers 2024, 16(7), 908; https://doi.org/10.3390/polym16070908 - 26 Mar 2024
Cited by 2 | Viewed by 1497
Abstract
Detecting the presence of explosives is important to protect human lives during military conflicts and peacetime. Gas-phase detection of explosives can make use of the change of material properties, which can be sensitive to environmental conditions such as temperature and humidity. This paper [...] Read more.
Detecting the presence of explosives is important to protect human lives during military conflicts and peacetime. Gas-phase detection of explosives can make use of the change of material properties, which can be sensitive to environmental conditions such as temperature and humidity. This paper describes a remote-controlled automatic shutter method for the environmental impact assessment of photoluminescence (PL) sensors under near-open conditions. Utilizing the remote-sensing method, we obtained environmental effects without being exposed to sensing vapor molecules and explained how PL intensity was influenced by the temperature, humidity, and exposure time. We also developed a theoretical model including the effect of exciton diffusion for PL quenching, which worked well under limited molecular diffusions. Incomplete recovery of PL intensity or the degradation effect was considered as an additional factor in the model. Full article
(This article belongs to the Special Issue Advances in Polymer-Based Sensors)
Show Figures

Graphical abstract

15 pages, 14898 KB  
Article
Composition and Surface Optical Properties of GaSe:Eu Crystals before and after Heat Treatment
by Veaceslav Sprincean, Haoyi Qiu, Tim Tjardts, Oleg Lupan, Dumitru Untilă, Cenk Aktas, Rainer Adelung, Liviu Leontie, Aurelian Carlescu, Silviu Gurlui and Mihail Caraman
Materials 2024, 17(2), 405; https://doi.org/10.3390/ma17020405 - 13 Jan 2024
Cited by 1 | Viewed by 1855
Abstract
This work studies the technological preparation conditions, morphology, structural characteristics and elemental composition, and optical and photoluminescent properties of GaSe single crystals and Eu-doped β–Ga2O3 nanoformations on ε–GaSe:Eu single crystal substrate, obtained by heat treatment at 750–900 °C, [...] Read more.
This work studies the technological preparation conditions, morphology, structural characteristics and elemental composition, and optical and photoluminescent properties of GaSe single crystals and Eu-doped β–Ga2O3 nanoformations on ε–GaSe:Eu single crystal substrate, obtained by heat treatment at 750–900 °C, with a duration from 30 min to 12 h, in water vapor-enriched atmosphere, of GaSe plates doped with 0.02–3.00 at. % Eu. The defects on the (0001) surface of GaSe:Eu plates serve as nucleation centers of β–Ga2O3:Eu crystallites. For 0.02 at. % Eu doping, the fundamental absorption edge of GaSe:Eu crystals at room temperature is formed by n = 1 direct excitons, while at 3.00 at. % doping, Eu completely shields the electron–hole bonds. The band gap of nanostructured β–Ga2O3:Eu layer, determined from diffuse reflectance spectra, depends on the dopant concentration and ranges from 4.64 eV to 4.87 eV, for 3.00 and 0.05 at. % doping, respectively. At 0.02 at. % doping level, the PL spectrum of ε–GaSe:Eu single crystals consists of the n = 1 exciton band, together with the impurity band with a maximum intensity at 800 nm. Fabry–Perrot cavities with a width of 9.3 μm are formed in these single crystals, which determine the interference structure of the impurity PL band. At 1.00–3.00 at. % Eu concentrations, the PL spectra of GaSe:Eu single crystals and β–Ga2O3:Eu nanowire/nanolamellae layers are determined by electronic transitions of Eu2+ and Eu3+ ions. Full article
(This article belongs to the Special Issue Facile Synthesis and Applications of Doped Metal Oxide Nanomaterials)
Show Figures

Figure 1

11 pages, 491 KB  
Article
Temperature-Enhanced Exciton Emission from GaAs Cone–Shell Quantum Dots
by Christian Heyn, Leonardo Ranasinghe, Kristian Deneke, Ahmed Alshaikh and Robert H. Blick
Nanomaterials 2023, 13(24), 3121; https://doi.org/10.3390/nano13243121 - 12 Dec 2023
Cited by 2 | Viewed by 1617
Abstract
The temperature-dependent intensities of the exciton (X) and biexciton (XX) peaks from single GaAs cone–shell quantum dots (QDs) are studied with micro photoluminescence (PL) at varied excitation power and QD size. The QDs are fabricated by filling self-assembled nanoholes, which are drilled in [...] Read more.
The temperature-dependent intensities of the exciton (X) and biexciton (XX) peaks from single GaAs cone–shell quantum dots (QDs) are studied with micro photoluminescence (PL) at varied excitation power and QD size. The QDs are fabricated by filling self-assembled nanoholes, which are drilled in an AlGaAs barrier by local droplet etching (LDE) during molecular beam epitaxy (MBE). This method allows the fabrication of strain-free QDs with sizes precisely controlled by the amount of material deposited for hole filling. Starting from the base temperature T = 3.2 K of the cryostat, single-dot PL measurements demonstrate a strong enhancement of the exciton emission up to a factor of five with increasing T. Both the maximum exciton intensity and the temperature Tx,max of the maximum intensity depend on excitation power and dot size. At an elevated excitation power, Tx,max becomes larger than 30 K. This allows an operation using an inexpensive and compact Stirling cryocooler. Above Tx,max, the exciton intensity decreases strongly until it disappears. The experimental data are quantitatively reproduced by a model which considers the competing processes of exciton generation, annihilation, and recombination. Exciton generation in the QDs is achieved by the sum of direct excitation in the dot, plus additional bulk excitons diffusing from the barrier layers into the dot. The thermally driven bulk-exciton diffusion from the barriers causes the temperature enhancement of the exciton emission. Above Tx,max, the intensity decreases due to exciton annihilation processes. In comparison to the exciton, the biexciton intensity shows only very weak enhancement, which is attributed to more efficient annihilation processes. Full article
(This article belongs to the Special Issue Molecular Beam Epitaxy Growth of Quantum Wires and Quantum Dots)
Show Figures

Figure 1

28 pages, 2454 KB  
Review
The Scale Effects of Organometal Halide Perovskites
by Yibo Zhang, Zhenze Zhao, Zhe Liu and Aiwei Tang
Nanomaterials 2023, 13(22), 2935; https://doi.org/10.3390/nano13222935 - 13 Nov 2023
Cited by 7 | Viewed by 2850
Abstract
Organometal halide perovskites have achieved great success in solution-processed photovoltaics. The explorations quickly expanded into other optoelectronic applications, including light-emitting diodes, lasers, and photodetectors. An in-depth analysis of the special scale effects is essential to understand the working mechanisms of devices and optimize [...] Read more.
Organometal halide perovskites have achieved great success in solution-processed photovoltaics. The explorations quickly expanded into other optoelectronic applications, including light-emitting diodes, lasers, and photodetectors. An in-depth analysis of the special scale effects is essential to understand the working mechanisms of devices and optimize the materials towards an enhanced performance. Generally speaking, organometal halide perovskites can be classified in two ways. By controlling the morphological dimensionality, 2D perovskite nanoplatelets, 1D perovskite nanowires, and 0D perovskite quantum dots have been studied. Using appropriate organic and inorganic components, low-dimensional organic–inorganic metal halide hybrids with 2D, quasi-2D, 1D, and 0D structures at the molecular level have been developed and studied. This provides opportunities to investigate the scale-dependent properties. Here, we present the progress on the characteristics of scale effects in organometal halide perovskites in these two classifications, with a focus on carrier diffusion, excitonic features, and defect properties. Full article
(This article belongs to the Special Issue Advances in Nanomaterials for Optoelectronics: Second Edition)
Show Figures

Figure 1

17 pages, 3641 KB  
Article
Low-Temperature Emission Dynamics of Methylammonium Lead Bromide Hybrid Perovskite Thin Films at the Sub-Micrometer Scale
by Justine Baronnier, Benoit Mahler, Christophe Dujardin and Julien Houel
Nanomaterials 2023, 13(16), 2376; https://doi.org/10.3390/nano13162376 - 19 Aug 2023
Cited by 1 | Viewed by 9272
Abstract
We study the low-temperature (T = 4.7 K) emission dynamics of a thin film of methylammonium lead bromide (MAPbBr3), prepared via the anti-solvent method. Using intensity-dependent (over 5 decades) hyperspectral microscopy under quasi-resonant (532 nm) continuous wave excitation, we revealed spatial [...] Read more.
We study the low-temperature (T = 4.7 K) emission dynamics of a thin film of methylammonium lead bromide (MAPbBr3), prepared via the anti-solvent method. Using intensity-dependent (over 5 decades) hyperspectral microscopy under quasi-resonant (532 nm) continuous wave excitation, we revealed spatial inhomogeneities in the thin film emission. This was drastically different at the band-edge (∼550 nm, sharp peaks) than in the emission tail (∼568 nm, continuum of emission). We are able to observe regions of the film at the micrometer scale where emission is dominated by excitons, in between regions of trap emission. Varying the density of absorbed photons by the MAPbBr3 thin films, two-color fluorescence lifetime imaging microscopy unraveled the emission dynamics: a fast, resolution-limited (∼200 ps) monoexponential tangled with a stretched exponential decay. We associate the first to the relaxation of excitons and the latter to trap emission dynamics. The obtained stretching exponents can be interpreted as the result of a two-dimensional electron diffusion process: Förster resonant transfer mechanism. Furthermore, the non-vanishing fast monoexponential component even in the tail of the MAPbBr3 emission indicates the subsistence of localized excitons. Finally, we estimate the density of traps in MAPbBr3 thin films prepared using the anti-solvent method at n∼1017 cm3. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

8 pages, 1466 KB  
Article
Diffuse Reflectance Spectroscopy with Dilution: A Powerful Method for Halide Perovskites Study
by Aleksei O. Murzin, Anna Yu. Samsonova, Constantinos C. Stoumpos, Nikita I. Selivanov, Alexei V. Emeline and Yury V. Kapitonov
Molecules 2023, 28(1), 350; https://doi.org/10.3390/molecules28010350 - 1 Jan 2023
Cited by 8 | Viewed by 3230
Abstract
Halide perovskites and their low-dimensional analogs are promising semiconductor materials for solar cells, LEDs, lasers, detectors and other applications in the area of photonics. The most informative optical property of semiconductor photonics materials is the absorption spectrum enabling observation of the fundamental absorption [...] Read more.
Halide perovskites and their low-dimensional analogs are promising semiconductor materials for solar cells, LEDs, lasers, detectors and other applications in the area of photonics. The most informative optical property of semiconductor photonics materials is the absorption spectrum enabling observation of the fundamental absorption edge, exciton structure, defect-related bands, etc. Traditionally, in the study of halide perovskites, this spectrum is obtained by absorption spectroscopy of thin films or diffuse reflectance spectroscopy of powders. The first method is applicable only to compounds with the developed thin film deposition technology, and in the second case, a large absorption coefficient narrows the observations down to the sample transparency region. In this paper, we suggest the diffuse reflectance spectroscopy with dilution as a method for obtaining the full-range absorption spectrum from halide perovskite powders, and demonstrate its application to practically important cases. Full article
Show Figures

Figure 1

38 pages, 8219 KB  
Review
A Mini Review on the Development of Conjugated Polymers: Steps towards the Commercialization of Organic Solar Cells
by Ahmed G. S. Al-Azzawi, Shujahadeen B. Aziz, Elham M. A. Dannoun, Ahmed Iraqi, Muaffaq M. Nofal, Ary R. Murad and Ahang M. Hussein
Polymers 2023, 15(1), 164; https://doi.org/10.3390/polym15010164 - 29 Dec 2022
Cited by 52 | Viewed by 8571
Abstract
This review article covers the synthesis and design of conjugated polymers for carefully adjusting energy levels and energy band gap (EBG) to achieve the desired photovoltaic performance. The formation of bonds and the delocalization of electrons over conjugated chains are both explained by [...] Read more.
This review article covers the synthesis and design of conjugated polymers for carefully adjusting energy levels and energy band gap (EBG) to achieve the desired photovoltaic performance. The formation of bonds and the delocalization of electrons over conjugated chains are both explained by the molecular orbital theory (MOT). The intrinsic characteristics that classify conjugated polymers as semiconducting materials come from the EBG of organic molecules. A quinoid mesomeric structure (D-A ↔ D+ = A) forms across the major backbones of the polymer as a result of alternating donor–acceptor segments contributing to the pull–push driving force between neighboring units, resulting in a smaller optical EBG. Furthermore, one of the most crucial factors in achieving excellent performance of the polymer is improving the morphology of the active layer. In order to improve exciton diffusion, dissociation, and charge transport, the nanoscale morphology ensures nanometer phase separation between donor and acceptor components in the active layer. It was demonstrated that because of the exciton’s short lifetime, only small diffusion distances (10–20 nm) are needed for all photo-generated excitons to reach the interfacial region where they can separate into free charge carriers. There is a comprehensive explanation of the architecture of organic solar cells using single layer, bilayer, and bulk heterojunction (BHJ) devices. The short circuit current density (Jsc), open circuit voltage (Voc), and fill factor (FF) all have a significant impact on the performance of organic solar cells (OSCs). Since the BHJ concept was first proposed, significant advancement and quick configuration development of these devices have been accomplished. Due to their ability to combine great optical and electronic properties with strong thermal and chemical stability, conjugated polymers are unique semiconducting materials that are used in a wide range of applications. According to the fundamental operating theories of OSCs, unlike inorganic semiconductors such as silicon solar cells, organic photovoltaic devices are unable to produce free carrier charges (holes and electrons). To overcome the Coulombic attraction and separate the excitons into free charges in the interfacial region, organic semiconductors require an additional thermodynamic driving force. From the molecular engineering of conjugated polymers, it was discovered that the most crucial obstacles to achieving the most desirable properties are the design and synthesis of conjugated polymers toward optimal p-type materials. Along with plastic solar cells (PSCs), these materials have extended to a number of different applications such as light-emitting diodes (LEDs) and field-effect transistors (FETs). Additionally, the topics of fluorene and carbazole as donor units in conjugated polymers are covered. The Stille, Suzuki, and Sonogashira coupling reactions widely used to synthesize alternating D–A copolymers are also presented. Moreover, conjugated polymers based on anthracene that can be used in solar cells are covered. Full article
(This article belongs to the Special Issue Advanced Polymers for Solar Cells Applications)
Show Figures

Figure 1

55 pages, 10200 KB  
Review
Impact of Interfaces, and Nanostructure on the Performance of Conjugated Polymer Photocatalysts for Hydrogen Production from Water
by Ewan McQueen, Yang Bai and Reiner Sebastian Sprick
Nanomaterials 2022, 12(23), 4299; https://doi.org/10.3390/nano12234299 - 3 Dec 2022
Cited by 9 | Viewed by 4365
Abstract
The direct conversion of sunlight into hydrogen through water splitting, and by converting carbon dioxide into useful chemical building blocks and fuels, has been an active area of research since early reports in the 1970s. Most of the semiconductors that drive these photocatalytic [...] Read more.
The direct conversion of sunlight into hydrogen through water splitting, and by converting carbon dioxide into useful chemical building blocks and fuels, has been an active area of research since early reports in the 1970s. Most of the semiconductors that drive these photocatalytic processes have been inorganic semiconductors, but since the first report of carbon nitride organic semiconductors have also been considered. Conjugated materials have been relatively extensively studied as photocatalysts for solar fuels generation over the last 5 years due to the synthetic control over composition and properties. The understanding of materials’ properties, its impact on performance and underlying factors is still in its infancy. Here, we focus on the impact of interfaces, and nanostructure on fundamental processes which significantly contribute to performance in these organic photocatalysts. In particular, we focus on presenting explicit examples in understanding the interface of polymer photocatalysts with water and how it affects performance. Wetting has been shown to be a clear factor and we present strategies for increased wettability in conjugated polymer photocatalysts through modifications of the material. Furthermore, the limited exciton diffusion length in organic polymers has also been identified to affect the performance of these materials. Addressing this, we also discuss how increased internal and external surface areas increase the activity of organic polymer photocatalysts for hydrogen production from water. Full article
(This article belongs to the Special Issue Current Review in Synthesis, Interfaces, and Nanostructures)
Show Figures

Figure 1

9 pages, 1462 KB  
Article
Effects of Thermal Annealing on Optical and Microscopic Ferromagnetic Properties in InZnP:Ag Nano-Rods
by Juwon Lee, Yoon Shon, Younghae Kwon, Ji-Hoon Kyhm, Deuk Young Kim, Joon Hyun Kang, Chang-Soo Park, Kyoung Su Lee and Eun Kyu Kim
Nanomaterials 2022, 12(23), 4200; https://doi.org/10.3390/nano12234200 - 25 Nov 2022
Viewed by 1743
Abstract
InZnP:Ag nano-rods fabricated by the ion milling method were thermally annealed in the 250~350 °C temperature range and investigated the optimum thermal annealing conditions to further understand the mutual correlation between the optical properties and the microscopic magnetic properties. The formation of InZnP:Ag [...] Read more.
InZnP:Ag nano-rods fabricated by the ion milling method were thermally annealed in the 250~350 °C temperature range and investigated the optimum thermal annealing conditions to further understand the mutual correlation between the optical properties and the microscopic magnetic properties. The formation of InZnP:Ag nano-rods was determined from transmission electron microscopy (TEM), total reflectivity and Raman scattering analyses. The downward shifts of peak position for LO and TO modes in the Raman spectrum are indicative of the production of Ag ion-induced strain during the annealing process of the InZnP:Ag nano-rod samples. The appearance of two emission peaks of both (A0 X) and (e, Ag) in the PL spectrum indicated that acceptor states by Ag diffusion are visible due to the effective incorporation of Ag-creating acceptor states. The binding energy between the acceptor and the exciton measured as a function of temperature was found to be 21.2 meV for the sample annealed at 300 °C. The noticeable MFM image contrast and the clear change in the MFM phase with the scanning distance indicate the formation of the ferromagnetic spin coupling interaction on the surface of InZnP:Ag nano-rods by Ag diffusion. This study suggests that the InZnP:Ag nano-rods should be a potential candidate for the application of spintronic devices. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

13 pages, 14259 KB  
Article
Charge Photogeneration and Recombination Dynamics in PTQ10:Y6 Solar Cells
by Chuan Chen, Guanzhao Wen, Zijie Xiao, Jun Peng, Rong Hu, Zhifeng Chen, Chengyun Zhang and Wei Zhang
Photonics 2022, 9(12), 892; https://doi.org/10.3390/photonics9120892 - 23 Nov 2022
Cited by 12 | Viewed by 4552
Abstract
In this work, charge photogeneration dynamics in PTQ10:Y6 solar cells were studied by steady-state and time-resolved spectroscopies. For neat donor and acceptor films, we determined the exciton diffusion coefficients of PTQ10 and Y6 as 1.3 × 10−3 cm2·s−1 and [...] Read more.
In this work, charge photogeneration dynamics in PTQ10:Y6 solar cells were studied by steady-state and time-resolved spectroscopies. For neat donor and acceptor films, we determined the exciton diffusion coefficients of PTQ10 and Y6 as 1.3 × 10−3 cm2·s−1 and 6.8 × 10−3 cm2·s−1, respectively. Furthermore, we find the LUMO and HOMO level offsets of 0.14 eV and 0.11 eV are sufficient for the dissociation of donor and acceptor excitons, respectively. For PTQ10:Y6 blend films, we find DIO additive could increase the scales of acceptor and donor phases. The acceptor phase increased slightly from 17.2 nm to 20.0 nm, while the donor phase increased from 2.3 nm to 5.8 nm. In addition, we find bimolecular recombination is a critical form for carrier recombination and DIO additive can significantly suppress the carrier recombination rate of PTQ10:Y6 active layer in an ultrafast time scale. This work is helpful for understanding the charge photogeneration processes in non-fullerene polymer solar cells. Full article
Show Figures

Figure 1

12 pages, 3115 KB  
Article
Synthesis, Photoluminescence and Vibrational Properties of Aziridinium Lead Halide Perovskites
by Dagmara Stefańska, Maciej Ptak and Mirosław Mączka
Molecules 2022, 27(22), 7949; https://doi.org/10.3390/molecules27227949 - 17 Nov 2022
Cited by 25 | Viewed by 6082
Abstract
Three-dimensional lead halide perovskites are known for their excellent optoelectronic properties, making them suitable for photovoltaic and light-emitting applications. Here, we report for the first time the Raman spectra and photoluminescent (PL) properties of recently discovered three-dimensional aziridinium lead halide perovskites (AZPbX3 [...] Read more.
Three-dimensional lead halide perovskites are known for their excellent optoelectronic properties, making them suitable for photovoltaic and light-emitting applications. Here, we report for the first time the Raman spectra and photoluminescent (PL) properties of recently discovered three-dimensional aziridinium lead halide perovskites (AZPbX3, X = Cl, Br, I), as well as assignment of vibrational modes. We also report diffuse reflection data, which revealed an extended absorption of light of AZPbX3 compared to the MA and FA counterparts and are beneficial for solar cell application. We demonstrated that this behavior is correlated with the size of the organic cation, i.e., the energy band gap of the cubic lead halide perovskites decreases with the increasing size of the organic cation. All compounds show intense PL, which weakens on heating and shifts toward higher energies. This PL is red shifted compared to the FA and MA counterparts. An analysis of the PL data revealed the small exciton binding energy of AZPbX3 compounds (29–56 meV). Overall, the properties of AZPbX3 are very similar to those of the well-known MAPbX3 and FAPbX3 perovskites, indicating that the aziridinium analogues are also attractive materials for light-emitting and solar cell applications. Full article
(This article belongs to the Special Issue Recent Developments in Perovskite-Based Functional Materials)
Show Figures

Figure 1

10 pages, 1999 KB  
Article
Temperature Control of Yellow Photoluminescence from SiO2-Coated ZnO Nanocrystals
by Narender Kumar, Vijo Poulose, Youssef Taiser Laz, Falguni Chandra, Salma Abubakar, Abdalla S. Abdelhamid, Ahmed Alzamly and Na’il Saleh
Nanomaterials 2022, 12(19), 3368; https://doi.org/10.3390/nano12193368 - 27 Sep 2022
Cited by 1 | Viewed by 2593
Abstract
In this study, we aimed to elucidate the effects of temperature on the photoluminescence from ZnO–SiO2 nanocomposite and to describe the preparation of SiO2-coated ZnO nanocrystals using a chemical precipitation method, as confirmed by Fourier transform infrared (FTIR) and powder [...] Read more.
In this study, we aimed to elucidate the effects of temperature on the photoluminescence from ZnO–SiO2 nanocomposite and to describe the preparation of SiO2-coated ZnO nanocrystals using a chemical precipitation method, as confirmed by Fourier transform infrared (FTIR) and powder X-ray diffraction analysis (XRD) techniques. Analyses using high-resolution transmission microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS), and electrophoretic light scattering (ELS) techniques showed that the new nanocomposite has an average size of 70 nm and 90% silica. Diffuse reflectance spectroscopy (DRS), photoluminescence (PL), and photoluminescence-excitation (PLE) measurements at different temperatures revealed two emission bands at 385 and 590 nm when the nanomaterials were excited at 325 nm. The UV and yellow emission bands were attributed to the radiative recombination and surface defects. The variable-temperature, time-resolved photoluminescence (VT-TRPL) measurements in the presence of SiO2 revealed the increase in the exciton lifetime values and the interplay of the thermally induced nonradiative recombination transfer of the excited-state population of the yellow emission via deep centers (DC). The results pave the way for more applications in photocatalysis and biomedical technology. Full article
Show Figures

Figure 1

Back to TopTop