Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (353)

Search Parameters:
Keywords = exact wave solutions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2088 KB  
Article
Shock Waves of the Gerdjikov–Ivanov Equation Using the Adomian Decomposition Schemes
by Fadwa Althrwi, Aisha S. H. Farhat, A. A. AlQarni, H. O. Bakodah and A. A. Alshaery
Mathematics 2025, 13(16), 2686; https://doi.org/10.3390/math13162686 - 20 Aug 2025
Viewed by 153
Abstract
Analytical solutions for the complex-valued nonlinear Gerdjikov–Ivanov (GI) equation have been studied extensively using integrability-based methods. In contrast, numerical and semi-analytical exploration remains relatively underdeveloped. Thus, the present study deploys both the traditional Adomian decomposition method (ADM) and its improved version (IADM) to [...] Read more.
Analytical solutions for the complex-valued nonlinear Gerdjikov–Ivanov (GI) equation have been studied extensively using integrability-based methods. In contrast, numerical and semi-analytical exploration remains relatively underdeveloped. Thus, the present study deploys both the traditional Adomian decomposition method (ADM) and its improved version (IADM) to explore the computational relevance of the GI equation to shock waves against a benchmark exact soliton solution. The findings indicate that both methods are effective in addressing the GI equation, with the improved method demonstrating an enhancement in the stability of the convergence under specific conditions. This work offers the first systematic semi-analytic and numerical evaluation of the GI equation, introducing practical implementation guidelines. Full article
Show Figures

Figure 1

14 pages, 4996 KB  
Article
Fractional Wave Structures in a Higher-Order Nonlinear Schrödinger Equation with Cubic–Quintic Nonlinearity and β-Fractional Dispersion
by Mahmoud Soliman, Hamdy M. Ahmed, Niveen M. Badra, Islam Samir, Taha Radwan and Karim K. Ahmed
Fractal Fract. 2025, 9(8), 522; https://doi.org/10.3390/fractalfract9080522 - 11 Aug 2025
Viewed by 330
Abstract
This study employs the improved modified extended tanh method (IMETM) to derive exact analytical solutions of a higher-order nonlinear Schrödinger (HNLS) model, incorporating β-fractional derivatives in both time and space. Unlike classical methods such as the inverse scattering transform or Hirota’s bilinear [...] Read more.
This study employs the improved modified extended tanh method (IMETM) to derive exact analytical solutions of a higher-order nonlinear Schrödinger (HNLS) model, incorporating β-fractional derivatives in both time and space. Unlike classical methods such as the inverse scattering transform or Hirota’s bilinear technique, which are typically limited to integrable systems and integer-order operators, the IMETM offers enhanced flexibility for handling fractional models and higher-order nonlinearities. It enables the systematic construction of diverse solution types—including Weierstrass elliptic, exponential, Jacobi elliptic, and bright solitons—within a unified algebraic framework. The inclusion of fractional derivatives introduces richer dynamical behavior, capturing nonlocal dispersion and temporal memory effects. Visual simulations illustrate how fractional parameters α (space) and β (time) affect wave structures, revealing their impact on solution shape and stability. The proposed framework provides new insights into fractional NLS dynamics with potential applications in optical fiber communications, nonlinear optics, and related physical systems. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

16 pages, 4932 KB  
Article
Modulation Instability and Abundant Exact Solitons to the Fractional Mathematical Physics Model Through Two Distinct Methods
by Abdulaziz Khalid Alsharidi and Ahmet Bekir
Axioms 2025, 14(8), 617; https://doi.org/10.3390/axioms14080617 - 8 Aug 2025
Viewed by 202
Abstract
The paper consists of various types of wave solutions for the truncated M-fractional Bateman–Burgers equation, a significant mathematical physics equation. This model describes the nonlinear waves and solitons in different physical fields such as optical fibers, plasma physics, fluid dynamics, traffic flow, etc. [...] Read more.
The paper consists of various types of wave solutions for the truncated M-fractional Bateman–Burgers equation, a significant mathematical physics equation. This model describes the nonlinear waves and solitons in different physical fields such as optical fibers, plasma physics, fluid dynamics, traffic flow, etc. Through the application of the expa function method and the modified simplest equation method, we are able to obtain exact series of soliton solutions. The results differ from the current solutions of the Bateman–Burgers model because of the fractional derivative. The achieved results could be helpful in various engineering and scientific domains. The Mathematica software is used to assist in obtaining and verifying the exact solutions and to obtain contour plots of the solutions in two and three dimensions. To ensure that the model in question is stable, a stability analysis is also carried out using the modulation instability method. Future research on the system in question and related systems will benefit from the findings. The methods used are simple and effective. Full article
(This article belongs to the Special Issue Applied Nonlinear Dynamical Systems in Mathematical Physics)
Show Figures

Figure 1

19 pages, 1806 KB  
Article
A Novel Approach to Solving Generalised Nonlinear Dynamical Systems Within the Caputo Operator
by Mashael M. AlBaidani and Rabab Alzahrani
Fractal Fract. 2025, 9(8), 503; https://doi.org/10.3390/fractalfract9080503 - 31 Jul 2025
Viewed by 229
Abstract
In this study, we focus on solving the nonlinear time-fractional Hirota–Satsuma coupled Korteweg–de Vries (KdV) and modified Korteweg–de Vries (MKdV) equations, using the Yang transform iterative method (YTIM). This method combines the Yang transform with a new iterative scheme to construct reliable and [...] Read more.
In this study, we focus on solving the nonlinear time-fractional Hirota–Satsuma coupled Korteweg–de Vries (KdV) and modified Korteweg–de Vries (MKdV) equations, using the Yang transform iterative method (YTIM). This method combines the Yang transform with a new iterative scheme to construct reliable and efficient solutions. Readers can understand the procedures clearly, since the implementation of Yang transform directly transforms fractional derivative sections into algebraic terms in the given problems. The new iterative scheme is applied to generate series solutions for the provided problems. The fractional derivatives are considered in the Caputo sense. To validate the proposed approach, two numerical examples are analysed and compared with exact solutions, as well as with the results obtained from the fractional reduced differential transform method (FRDTM) and the q-homotopy analysis transform method (q-HATM). The comparisons, presented through both tables and graphical illustrations, confirm the enhanced accuracy and reliability of the proposed method. Moreover, the effect of varying the fractional order is explored, demonstrating convergence of the solution as the order approaches an integer value. Importantly, the time-fractional Hirota–Satsuma coupled KdV and modified Korteweg–de Vries (MKdV) equations investigated in this work are not only of theoretical and computational interest but also possess significant implications for achieving global sustainability goals. Specifically, these equations contribute to the Sustainable Development Goal (SDG) “Life Below Water” by offering advanced modelling capabilities for understanding wave propagation and ocean dynamics, thus supporting marine ecosystem research and management. It is also relevant to SDG “Climate Action” as it aids in the simulation of environmental phenomena crucial to climate change analysis and mitigation. Additionally, the development and application of innovative mathematical modelling techniques align with “Industry, Innovation, and Infrastructure” promoting advanced computational tools for use in ocean engineering, environmental monitoring, and other infrastructure-related domains. Therefore, the proposed method not only advances mathematical and numerical analysis but also fosters interdisciplinary contributions toward sustainable development. Full article
(This article belongs to the Special Issue Recent Trends in Computational Physics with Fractional Applications)
Show Figures

Figure 1

21 pages, 2926 KB  
Article
Exact Solutions and Soliton Transmission in Relativistic Wave Phenomena of Klein–Fock–Gordon Equation via Subsequent Sine-Gordon Equation Method
by Muhammad Uzair, Ali H. Tedjani, Irfan Mahmood and Ejaz Hussain
Axioms 2025, 14(8), 590; https://doi.org/10.3390/axioms14080590 - 29 Jul 2025
Viewed by 464
Abstract
This study explores the (1+1)-dimensional Klein–Fock–Gordon equation, a distinct third-order nonlinear differential equation of significant theoretical interest. The Klein–Fock–Gordon equation (KFGE) plays a pivotal role in theoretical physics, modeling high-energy particles and providing a fundamental framework for simulating relativistic wave phenomena. To find [...] Read more.
This study explores the (1+1)-dimensional Klein–Fock–Gordon equation, a distinct third-order nonlinear differential equation of significant theoretical interest. The Klein–Fock–Gordon equation (KFGE) plays a pivotal role in theoretical physics, modeling high-energy particles and providing a fundamental framework for simulating relativistic wave phenomena. To find the exact solution of the proposed model, for this purpose, we utilized two effective techniques, including the sine-Gordon equation method and a new extended direct algebraic method. The novelty of these approaches lies in the form of different solutions such as hyperbolic, trigonometric, and rational functions, and their graphical representations demonstrate the different form of solitons like kink solitons, bright solitons, dark solitons, and periodic waves. To illustrate the characteristics of these solutions, we provide two-dimensional, three-dimensional, and contour plots that visualize the magnitude of the (1+1)-dimensional Klein–Fock–Gordon equation. By selecting suitable values for physical parameters, we demonstrate the diversity of soliton structures and their behaviors. The results highlighted the effectiveness and versatility of the sine-Gordon equation method and a new extended direct algebraic method, providing analytical solutions that deepen our insight into the dynamics of nonlinear models. These results contribute to the advancement of soliton theory in nonlinear optics and mathematical physics. Full article
(This article belongs to the Special Issue Applied Nonlinear Dynamical Systems in Mathematical Physics)
Show Figures

Figure 1

13 pages, 9670 KB  
Article
Exact Solitary Wave Solutions and Sensitivity Analysis of the Fractional (3+1)D KdV–ZK Equation
by Asif Khan, Fehaid Salem Alshammari, Sadia Yasin and Beenish
Fractal Fract. 2025, 9(7), 476; https://doi.org/10.3390/fractalfract9070476 - 21 Jul 2025
Viewed by 361
Abstract
The present paper examines a novel exact solution to nonlinear fractional partial differential equations (FDEs) through the Sardar sub-equation method (SSEM) coupled with Jumarie’s Modified Riemann–Liouville derivative (JMRLD). We take the (3+1)-dimensional space–time fractional modified Korteweg-de Vries (KdV) -Zakharov-Kuznetsov (ZK) equation as a [...] Read more.
The present paper examines a novel exact solution to nonlinear fractional partial differential equations (FDEs) through the Sardar sub-equation method (SSEM) coupled with Jumarie’s Modified Riemann–Liouville derivative (JMRLD). We take the (3+1)-dimensional space–time fractional modified Korteweg-de Vries (KdV) -Zakharov-Kuznetsov (ZK) equation as a case study, which describes some intricate phenomena of wave behavior in plasma physics and fluid dynamics. With the implementation of SSEM, we yield new solitary wave solutions and explicitly examine the role of the fractional-order parameter in the dynamics of the solutions. In addition, the sensitivity analysis of the results is conducted in the Galilean transformation in order to ensure that the obtained results are valid and have physical significance. Besides expanding the toolbox of analytical methods to address high-dimensional nonlinear FDEs, the proposed method helps to better understand how fractional-order dynamics affect the nonlinear wave phenomenon. The results are compared to known methods and a discussion about their possible applications and limitations is given. The results show the effectiveness and flexibility of SSEM along with JMRLD in forming new categories of exact solutions to nonlinear fractional models. Full article
Show Figures

Figure 1

23 pages, 1107 KB  
Article
Mathematical and Physical Analysis of the Fractional Dynamical Model
by Mohammed Ahmed Alomair and Haitham Qawaqneh
Fractal Fract. 2025, 9(7), 453; https://doi.org/10.3390/fractalfract9070453 - 11 Jul 2025
Viewed by 270
Abstract
This paper consists of various kinds of wave solitons to the mathematical model known as the truncated M-fractional FitzHugh–Nagumo model. This model explains the transmission of the electromechanical pulses in nerves. Through the application of the modified extended tanh function technique and the [...] Read more.
This paper consists of various kinds of wave solitons to the mathematical model known as the truncated M-fractional FitzHugh–Nagumo model. This model explains the transmission of the electromechanical pulses in nerves. Through the application of the modified extended tanh function technique and the modified (G/G2)-expansion technique, we are able to achieve the series of exact solitons. The results differ from the current solutions because of the fractional derivative. These solutions could be helpful in the telecommunication and bioscience domains. Contour plots, in two and three dimensions, are used to describe the results. Stability analysis is used to check the stability of the obtained solutions. Moreover, the stationary solutions of the focusing equation are studied through modulation instability. Future research on the focused model in question will benefit from the findings. The techniques used are simple and effective. Full article
Show Figures

Figure 1

16 pages, 1929 KB  
Article
Dynamical Behavior of Solitary Waves for the Space-Fractional Stochastic Regularized Long Wave Equation via Two Distinct Approaches
by Muneerah Al Nuwairan, Bashayr Almutairi and Anwar Aldhafeeri
Mathematics 2025, 13(13), 2193; https://doi.org/10.3390/math13132193 - 4 Jul 2025
Viewed by 240
Abstract
This study investigates the influence of multiplicative noise—modeled by a Wiener process—and spatial-fractional derivatives on the dynamics of the space-fractional stochastic Regularized Long Wave equation. By employing a complete discriminant polynomial system, we derive novel classes of fractional stochastic solutions that capture the [...] Read more.
This study investigates the influence of multiplicative noise—modeled by a Wiener process—and spatial-fractional derivatives on the dynamics of the space-fractional stochastic Regularized Long Wave equation. By employing a complete discriminant polynomial system, we derive novel classes of fractional stochastic solutions that capture the complex interplay between stochasticity and nonlocality. Additionally, the variational principle, derived by He’s semi-inverse method, is utilized, yielding additional exact solutions that are bright solitons, bright-like solitons, kinky bright solitons, and periodic structures. Graphical analyses are presented to clarify how variations in the fractional order and noise intensity affect essential solution features, such as amplitude, width, and smoothness, offering deeper insight into the behavior of such nonlinear stochastic systems. Full article
Show Figures

Figure 1

18 pages, 1717 KB  
Article
Symmetries, Conservation Laws, and Exact Solutions of a Potential Kadomtsev–Petviashvili Equation with Power-Law Nonlinearity
by Dimpho Millicent Mothibi
Symmetry 2025, 17(7), 1053; https://doi.org/10.3390/sym17071053 - 3 Jul 2025
Viewed by 318
Abstract
This study investigates the potential Kadomtsev–Petviashvili equation incorporating a power-type nonlinearity (PKPp), a model that features prominently in various nonlinear phenomena encountered in physics and applied mathematics. A complete Noether symmetry classification of the PKPp equation is conducted, revealing four distinct scenarios based [...] Read more.
This study investigates the potential Kadomtsev–Petviashvili equation incorporating a power-type nonlinearity (PKPp), a model that features prominently in various nonlinear phenomena encountered in physics and applied mathematics. A complete Noether symmetry classification of the PKPp equation is conducted, revealing four distinct scenarios based on different values of the exponent p, namely, the general case where p1,1,2, and three special cases where p=1,p=1, and p=2. Corresponding to each case, conservation laws are derived through a second-order Lagrangian framework. Furthermore, Lie group analysis is employed to reduce the nonlinear partial differential Equation (NLPDE) to ordinary differential Equations (ODEs), thereby enabling the effective application of the Kudryashov method and direct integration techniques to construct exact solutions. In particular, exact solutions of of the considered nonlinear partial differential equation are obtained for the cases p=1 and p=2, illustrating the practical implementation of the proposed approach. The solutions obtained include solitary wave, periodic, and rational-type solutions. These results enhance the analytical understanding of the PKPp equation and contribute to the broader theory of nonlinear dispersive equations. Full article
(This article belongs to the Special Issue Symmetries in Differential Equations and Application—2nd Edition)
Show Figures

Figure 1

17 pages, 1168 KB  
Article
Analytical Solitary Wave Solutions of Fractional Tzitzéica Equation Using Expansion Approach: Theoretical Insights and Applications
by Wael W. Mohammed, Mst. Munny Khatun, Mohamed S. Algolam, Rabeb Sidaoui and M. Ali Akbar
Fractal Fract. 2025, 9(7), 438; https://doi.org/10.3390/fractalfract9070438 - 3 Jul 2025
Cited by 1 | Viewed by 353
Abstract
In this study, we investigate the fractional Tzitzéica equation, a nonlinear evolution equation known for modeling complex phenomena in various scientific domains such as solid-state physics, crystal dislocation, electromagnetic waves, chemical kinetics, quantum field theory, and nonlinear optics. Using the (G′/ [...] Read more.
In this study, we investigate the fractional Tzitzéica equation, a nonlinear evolution equation known for modeling complex phenomena in various scientific domains such as solid-state physics, crystal dislocation, electromagnetic waves, chemical kinetics, quantum field theory, and nonlinear optics. Using the (G′/G, 1/G)-expansion approach, we derive different categories of exact solutions, like hyperbolic, trigonometric, and rational functions. The beta fractional derivative is used here to generalize the classical idea of the derivative, which preserves important principles. The derived solutions with broader nonlinear wave structures are periodic waves, breathers, peakons, W-shaped solitons, and singular solitons, which enhance our understanding of nonlinear wave dynamics. In relation to these results, the findings are described by showing the solitons’ physical behaviors, their stabilities, and dispersions under fractional parameters in the form of contour plots and 2D and 3D graphs. Comparisons with earlier studies underscore the originality and consistency of the (G′/G, 1/G)-expansion approach in addressing fractional-order evolution equations. It contributes new solutions to analytical problems of fractional nonlinear integrable systems and helps understand the systems’ dynamic behavior in a wider scope of applications. Full article
Show Figures

Figure 1

23 pages, 337 KB  
Article
A Spacetime Metric for the 4 + 1 Formalism
by Martin Land
Sci 2025, 7(3), 86; https://doi.org/10.3390/sci7030086 - 1 Jul 2025
Viewed by 407
Abstract
In his foundational work on classical and quantum electrodynamics, Stueckelberg introduced an external evolution parameter, τ, in order to overcome difficulties associated with the problem of time in relativity. Stueckelberg particle trajectories are described by the evolution of spacetime events under the [...] Read more.
In his foundational work on classical and quantum electrodynamics, Stueckelberg introduced an external evolution parameter, τ, in order to overcome difficulties associated with the problem of time in relativity. Stueckelberg particle trajectories are described by the evolution of spacetime events under the monotonic advance of τ, the basis for the Feynman–Stueckelberg interpretation of particle–antiparticle interactions. An event is a solution to τ-parameterized equations of motion, which, under simple conditions, including the elimination of pair processes, can be reparameterized by the proper time of motion. The 4+1 formalism in general relativity (GR) extends this framework to provide field equations for a τ-dependent local metric γμν(x,τ) induced by these Stueckelberg trajectories, leading to τ-parameterized geodesic equations in an evolving spacetime. As in standard GR, the linearized theory for weak fields leads to a wave equation for the local metric induced by a given matter source. While previous attempts to solve the wave equation have produced a metric with the expected features, the resulting geodesic equations for a test particle lead to unreasonable trajectories. In this paper, we discuss the difficulties associated with the wave equation and set up the more general ADM-like 4+1 evolution equations, providing an initial value problem for the metric induced by a given source. As in the familiar 3+1 formalism, the metric can be found as a perturbation to an exact solution for the metric induced by a known source. Here, we propose a metric, ansatz, with certain expected properties; obtain the source that induces this metric; and use them as the initial conditions in an initial value problem for a general metric posed as a perturbation to the ansatz. We show that the ansatz metric, its associated source, and the geodesic equations for a test particle behave as required for such a model, recovering Newtonian gravitation in the nonrelativistic limit. We then pose the initial value problem to obtain more general solutions as perturbations of the ansatz. Full article
33 pages, 1215 KB  
Article
On the Extended Simple Equations Method (SEsM) for Obtaining Numerous Exact Solutions to Fractional Partial Differential Equations: A Generalized Algorithm and Several Applications
by Elena V. Nikolova
Algorithms 2025, 18(7), 402; https://doi.org/10.3390/a18070402 - 30 Jun 2025
Viewed by 272
Abstract
In this article, we present the extended simple equations method (SEsM) for finding exact solutions to systems of fractional nonlinear partial differential equations (FNPDEs). The expansions made to the original SEsM algorithm are implemented in several directions: (1) In constructing analytical solutions: exact [...] Read more.
In this article, we present the extended simple equations method (SEsM) for finding exact solutions to systems of fractional nonlinear partial differential equations (FNPDEs). The expansions made to the original SEsM algorithm are implemented in several directions: (1) In constructing analytical solutions: exact solutions to FNPDE systems are presented by simple or complex composite functions, including combinations of solutions to two or more different simple equations with distinct independent variables (corresponding to different wave velocities); (2) in selecting appropriate fractional derivatives and appropriate wave transformations: the choice of the type of fractional derivatives for each system of FNPDEs depends on the physical nature of the modeled real process. Based on this choice, the range of applicable wave transformations that are used to reduce FNPDEs to nonlinear ODEs has been expanded. It includes not only various forms of fractional traveling wave transformations but also standard traveling wave transformations. Based on these methodological enhancements, a generalized SEsM algorithm has been developed to derive exact solutions of systems of FNPDEs. This algorithm provides multiple options at each step, enabling the user to select the most appropriate variant depending on the expected wave dynamics in the modeled physical context. Two specific variants of the generalized SEsM algorithm have been applied to obtain exact solutions to two time-fractional shallow-water-like systems. For generating these exact solutions, it is assumed that each system variable in the studied models exhibits multi-wave behavior, which is expressed as a superposition of two waves propagating at different velocities. As a result, numerous novel multi-wave solutions are derived, involving combinations of hyperbolic-like, elliptic-like, and trigonometric-like functions. The obtained analytical solutions can provide valuable qualitative insights into complex wave dynamics in generalized spatio-temporal dynamical systems, with relevance to areas such as ocean current modeling, multiphase fluid dynamics and geophysical fluid modeling. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

27 pages, 2813 KB  
Article
Study of Optical Solitons and Quasi-Periodic Behaviour for the Fractional Cubic Quintic Nonlinear Pulse Propagation Model
by Lotfi Jlali, Syed T. R. Rizvi, Sana Shabbir and Aly R. Seadawy
Mathematics 2025, 13(13), 2117; https://doi.org/10.3390/math13132117 - 28 Jun 2025
Cited by 1 | Viewed by 295
Abstract
This study explores analytical soliton solutions for the cubic–quintic time-fractional nonlinear non-paraxial pulse transmission model. This versatile model finds numerous uses in fiber optic communication, nonlinear optics, and optical signal processing. The strength of the quintic and cubic nonlinear components plays a crucial [...] Read more.
This study explores analytical soliton solutions for the cubic–quintic time-fractional nonlinear non-paraxial pulse transmission model. This versatile model finds numerous uses in fiber optic communication, nonlinear optics, and optical signal processing. The strength of the quintic and cubic nonlinear components plays a crucial role in nonlinear processes, such as self-phase modulation, self-focusing, and wave combining. The fractional nonlinear Schrödinger equation (FNLSE) facilitates precise control over the dynamic properties of optical solitons. Exact and methodical solutions include those involving trigonometric functions, Jacobian elliptical functions (JEFs), and the transformation of JEFs into solitary wave (SW) solutions. This study reveals that various soliton solutions, such as periodic, rational, kink, and SW solitons, are identified using the complete discrimination polynomial methods (CDSPM). The concepts of chaos and bifurcation serve as the framework for investigating the system qualitatively. We explore various techniques for detecting chaos, including three-dimensional and two-dimensional graphs, time-series analysis, and Poincarè maps. A sensitivity analysis is performed utilizing a variety of initial conditions. Full article
Show Figures

Figure 1

22 pages, 1268 KB  
Article
Dynamical and Computational Analysis of Fractional Korteweg–de Vries-Burgers and Sawada–Kotera Equations in Terms of Caputo Fractional Derivative
by N. S. Alharthi
Fractal Fract. 2025, 9(7), 411; https://doi.org/10.3390/fractalfract9070411 - 25 Jun 2025
Viewed by 511
Abstract
This work examines the fractional Sawada–Kotera and Korteweg–de Vries (KdV)–Burgers equations, which are essential models of nonlinear wave phenomena in many scientific domains. The homotopy perturbation transform method (HPTM) and the Yang transform decomposition method (YTDM) are two sophisticated techniques employed to derive [...] Read more.
This work examines the fractional Sawada–Kotera and Korteweg–de Vries (KdV)–Burgers equations, which are essential models of nonlinear wave phenomena in many scientific domains. The homotopy perturbation transform method (HPTM) and the Yang transform decomposition method (YTDM) are two sophisticated techniques employed to derive analytical solutions. The proposed methods are novel and remarkable hybrid integral transform schemes that effectively incorporate the Adomian decomposition method, homotopy perturbation method, and Yang transform method. They efficiently yield rapidly convergent series-type solutions through an iterative process that requires fewer computations. The Caputo operator, used to express the fractional derivatives in the equations, provides a robust framework for analyzing the behavior of non-integer-order systems. To validate the accuracy and reliability of the obtained solutions, numerical simulations and graphical representations are presented. Furthermore, the results are compared with exact solutions using various tables and graphs, illustrating the effectiveness and ease of implementation of the proposed approaches for various fractional partial differential equations. The influence of the non-integer parameter on the solutions behavior is specifically examined, highlighting its function in regulating wave propagation and diffusion. In addition, a comparison with the natural transform iterative method and optimal auxiliary function method demonstrates that the proposed methods are more accurate than these alternative approaches. The results highlight the potential of YTDM and HPTM as reliable tools for solving nonlinear fractional differential equations and affirm their relevance in wave mechanics, fluid dynamics, and other fields where fractional-order models are applied. Full article
Show Figures

Figure 1

10 pages, 674 KB  
Article
Abundant Exact Traveling-Wave Solutions for Stochastic Graphene Sheets Model
by Wael W. Mohammed, Taher S. Hassan, Rabeb Sidaoui, Hijyah Alshammary and Mohamed S. Algolam
Axioms 2025, 14(6), 477; https://doi.org/10.3390/axioms14060477 - 19 Jun 2025
Viewed by 281
Abstract
Here, we consider the stochastic graphene sheets model (SGSM) forced by multiplicative noise in the Itô sense. We show that the exact solution of the SGSM may be obtained by solving some deterministic counterparts of the graphene sheets model and combining the result [...] Read more.
Here, we consider the stochastic graphene sheets model (SGSM) forced by multiplicative noise in the Itô sense. We show that the exact solution of the SGSM may be obtained by solving some deterministic counterparts of the graphene sheets model and combining the result with a solution of stochastic ordinary differential equations. By applying the extended tanh function method, we obtain the soliton solutions for the deterministic counterparts of the graphene sheets model. Because graphene sheets are important in many fields, such as electronics, photonics, and energy storage, the solutions of the stochastic graphene sheets model are beneficial for understanding several fascinating scientific phenomena. Using the MATLAB program, we exhibit several 3D graphs that illustrate the impact of multiplicative noise on the exact solutions of the SGSM. By incorporating stochastic elements into the equations that govern the evolution of graphene sheets, researchers can gain insights into how these fluctuations impact the behavior of the material over time. Full article
Show Figures

Figure 1

Back to TopTop