Dynamical and Computational Analysis of Fractional Korteweg–de Vries-Burgers and Sawada–Kotera Equations in Terms of Caputo Fractional Derivative
Abstract
1. Introduction
2. Preliminaries
3. Laplace-Yang Duality
4. Methodology of HPTM
5. Methodology of YTDM
6. Convergence Analysis
- for some
- for some
7. Error Estimation
8. Application
8.1. Case I
8.2. Case II
- Results and Discussion
9. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liouville, J. Mémoire sur quelques questions de géométrie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces questions. J. L’École Polytech. 1832, 13, 1–69. [Google Scholar]
- Riemann, G.F.B. Versuch einer allgemeinen Auffassung der Integration und Differentiation. In Gesammelte Mathematische Werke; Weber, H., Dedekind, R., Eds.; Teubner: Leipzig, Germany, 1896; pp. 331–344. [Google Scholar]
- Caputo, M. Elasticitá e Dissipazione; Zanichelli: Bologna, Italy, 1969. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley-Interscience: New York, NY, USA, 1993; pp. 1–366. [Google Scholar]
- Podlubny, I. Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. In Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1998; pp. 1–366. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. (Eds.) Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; pp. 1–523. [Google Scholar]
- Baleanu, D.; Güvenç, Z.B.; Tenreiro Machado, J.A. (Eds.) New Trends in Nanotechnology and Fractional Calculus Applications; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; London, UK; New York, NY, USA, 2010; pp. 1–546. [Google Scholar]
- Bulut, H.; Sulaiman, T.A.; Baskonus, H.M.; Rezazadeh, H.; Eslami, M.; Mirzazadeh, M. Optical solitons and other solutions to the conformable space–time fractional Fokas–Lenells equation. Optik 2018, 172, 20–27. [Google Scholar] [CrossRef]
- Veeresha, P.; Prakasha, D.G.; Baskonus, H.M. Solving smoking epidemic model of fractional order using a modified homotopy analysis transform method. Math. Sci. 2019, 13, 115–128. [Google Scholar] [CrossRef]
- Baleanu, D.; Wu, G.-C.; Zeng, S.-D. Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations. Chaos Solitons Fractals 2017, 102, 99–105. [Google Scholar] [CrossRef]
- Alshammari, N.A.; Alharthi, N.S.; Saeed, A.M.; Khan, A.; Ganie, A.H. Numerical solutions of a fractional order SEIR epidemic model of measles under Caputo fractional derivative. PLoS ONE 2025, 20, e0321089. [Google Scholar] [CrossRef]
- AlBaidani, M.M. Analytical Insight into Some Fractional Nonlinear Dynamical Systems Involving the Caputo Fractional Derivative Operator. Fractal Fract. 2025, 9, 320. [Google Scholar] [CrossRef]
- Ganie, A.H.; Khan, A.; Alharthi, N.S.; Tolasa, F.T.; Jeelani, M.B. Comparative Analysis of Time-Fractional Coupled System of Shallow-Water Equations Including Caputos Fractional Derivative. J. Math. 2024, 2024, 2440359. [Google Scholar] [CrossRef]
- Fadhal, E.; Ganie, A.H.; Alharthi, N.S.; Khan, A.; Fathima, D.; Elamin, A.E.A. On the analysis and deeper properties of the fractional complex physical models pertaining to nonsingular kernels. Sci. Rep. 2024, 14, 22182. [Google Scholar] [CrossRef]
- Povstenko, Y. Linear Fractional Diffusion—Wave Equation for Scientists and Engineers; Birkhäuser: Cham, Switzerland, 2015; pp. 1–453. [Google Scholar]
- Mohammed, P.O.; Machado, J.A.T.; Guirao, J.L.G.; Agarwal, R.P. Adomian decomposition and fractional power series solution of a class of nonlinear fractional differential equations. Mathematics 2021, 9, 1070. [Google Scholar] [CrossRef]
- Sweilam, N.H.; Abou Hasan, M.M.; Baleanu, D. New studies for general fractional financial models of awareness and trial advertising decisions. Chaos Solitons Fractals 2017, 104, 772–784. [Google Scholar] [CrossRef]
- Liu, D.Y.; Gibaru, O.; Perruquetti, W.; Laleg-Kirati, T.M. Fractional order differentiation by integration and error analysis in noisy environment. IEEE Trans. Autom. Control 2015, 60, 2945–2960. [Google Scholar] [CrossRef]
- Esen, A.; Sulaiman, T.A.; Bulut, H.; Baskonus, H.M. Optical solitons to the space-time fractional (1+1)-dimensional coupled nonlinear Schrödinger equation. Optik 2018, 167, 150–156. [Google Scholar] [CrossRef]
- Caponetto, R.; Dongola, G.; Fortuna, L.; Gallo, A. New results on the synthesis of FO-PID controllers. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 997–1007. [Google Scholar] [CrossRef]
- Veeresha, P.; Prakasha, D.G.; Baskonus, H.M. Novel simulations to the time-fractional Fishers equation. Math. Sci. 2019, 13, 33–42. [Google Scholar] [CrossRef]
- Momani, S.; Odibat, Z. Analytical solution of a time-fractional Navier–Stokes equation by Adomian decomposition method. Appl. Math. Comput. 2006, 177, 488–494. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Gusu, D.M.; Mohammed, P.O.; Wedajo, G.; Nonlaopon, K.; Hamed, Y.S. Solutions of general fractional-order differential equations by using the spectral Tau method. Fractal Fract. 2021, 6, 7. [Google Scholar] [CrossRef]
- Ganie, A.H.; Mofarreh, F.; Khan, A. On new computations of the time-fractional nonlinear KdV–Burgers equation with exponential memory. Phys. Scr. 2024, 99, 045217. [Google Scholar] [CrossRef]
- Arshad, M.; Khan, S.; Sohail, M.; Khan, H.; Tchier, F.; Haidary, M.K.; Nadeem, M. The solution comparison of fractional heat transfer and porous media equations using analytical techniques. Comput. Math. Math. Phys. 2024, 64, 1614–1630. [Google Scholar] [CrossRef]
- Johnson, R.S. A non-linear equation incorporating damping and dispersion. J. Fluid Mech. 1970, 42, 49–60. [Google Scholar] [CrossRef]
- Van Wijngaarden, L. On the motion of gas bubbles in a perfect fluid. Annu. Rev. Fluid Mech. 1972, 4, 369–373. [Google Scholar]
- Hu, P.N. Collisional theory of shock and nonlinear waves in a plasma. Phys. Fluids 1972, 15, 854–864. [Google Scholar] [CrossRef]
- Johnson, R.S. Shallow water waves on a viscous fluid—The undular bore. Phys. Fluids 1972, 15, 1693–1699. [Google Scholar] [CrossRef]
- Gao, G. A theory of interaction between dissipation and dispersion of turbulence. Sci. Sin. Ser. Math. Phys. Tech. Sci. 1985, 28, 616–627. [Google Scholar]
- Liu, S.; Liu, S. KdV–Burgers equation modelling of turbulence. Sci. China Ser. A Math. 1992, 5, 576–586. [Google Scholar]
- Zheng, B.; Wen, C. Exact solutions for fractional partial differential equations by a new fractional sub-equation method. Adv. Differ. Equ. 2013, 2013, 199. [Google Scholar] [CrossRef]
- Naher, H.; Abdullah, F.A.; Mohyud-Din, S.T. Extended generalized Riccati equation mapping method for the fifth-order Sawada–Kotera equation. AIP Adv. 2013, 3, 052104. [Google Scholar] [CrossRef]
- Dinarvand, S.; Khosravi, S.; Doosthoseini, A.; Rashidi, M.M. The homotopy analysis method for solving the Sawada–Kotera and Laxs fifth-order KdV equations. Adv. Theor. Appl. Mech. 2008, 1, 327–335. [Google Scholar]
- Wazwaz, A.-M. Partial Differential Equations and Solitary Waves Theory; Springer Science & Business Media: Berlin, Germany, 2010. [Google Scholar]
- Adomian, G. Nonlinear Stochastic Operator Equations; Academic Press: San Diego, CA, USA, 2014. [Google Scholar]
- Cherruault, Y. Convergence of Adomian’s method. Kybernetes 1989, 18, 31–38. [Google Scholar] [CrossRef]
- Adomian, G. Solution of coupled nonlinear partial differential equations by decomposition. Comput. Math. Appl. 1996, 31, 117–120. [Google Scholar] [CrossRef]
- He, J.H. Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 1999, 178, 257–262. [Google Scholar] [CrossRef]
- He, J.H. A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Int. J. Non-Linear Mech. 2000, 35, 37–43. [Google Scholar] [CrossRef]
- He, J.H. Homotopy perturbation method: A new nonlinear analytical technique. Appl. Math. Comput. 2003, 135, 73–79. [Google Scholar] [CrossRef]
- Desai, K.R. Solution of Burger’s equation and coupled Burger’s equations by Homotopy perturbation method. Int. J. Eng. Res. Appl. 2012, 2, 2033–2040. [Google Scholar]
- Elzaki, T.M. The new integral transform Elzaki transform. Glob. J. Pure Appl. Math. 2011, 7, 57–64. [Google Scholar]
- Alshikh, A.A.; Mahgob, M.M.A. A comparative study between Laplace transform and two new integrals “Elzaki” transform and “Aboodh” transform. Pure Appl. Math. J. 2016, 5, 145–150. [Google Scholar] [CrossRef]
- Schiff, J.L. The Laplace Transform: Theory and Applications; Springer Science & Business Media: New York, NY, USA, 1999. [Google Scholar]
- Ganie, A.H. An efficient analytical approaches to investigate nonlinear two-dimensional time-fractional Rosenau–Hyman equations within the Yang transform. AIP Adv. 2024, 14, 095220. [Google Scholar] [CrossRef]
- Ghorbani, A. Beyond Adomian polynomials: He polynomials. Chaos Solitons Fractals 2009, 39, 1486–1492. [Google Scholar] [CrossRef]
- Adomian, G. A review of the decomposition method in applied mathematics. J. Math. Anal. Appl. 1988, 135, 501–544. [Google Scholar] [CrossRef]
- Bekela, A.S.; Deresse, A.T. A hybrid Yang transform Adomian decomposition method for solving time-fractional nonlinear partial differential equation. BMC Res. Notes 2024, 17, 226. [Google Scholar] [CrossRef]
- Cooper, G.J. Error bounds for numerical solutions of ordinary differential equations. Numer. Math. 1971, 18, 162–170. [Google Scholar] [CrossRef]
- Warne, P.G.; Warne, D.A.P.; Sochacki, J.S.; Parker, G.E.; Carothers, D.C. Explicit a-priori error bounds and adaptive error control for approximation of nonlinear initial value differential systems. Comput. Math. Appl. 2006, 52, 1695–1710. [Google Scholar] [CrossRef]
- Yüzbaşı, Ş. A numerical approach for solving a class of the nonlinear Lane–Emden type equations arising in astrophysics. Math. Methods Appl. Sci. 2011, 34, 2218–2230. [Google Scholar] [CrossRef]
0.0 | −0.0049999999 | −0.0050000000 | −0.0050000000 | −0.0050000000 | −0.0050000000 | |
0.2 | −0.0049995010 | −0.0049995008 | −0.0049995006 | −0.0049995005 | −0.0049995005 | |
0.01 | 0.4 | −0.0049980026 | −0.0049980021 | −0.0049980018 | −0.0049980015 | −0.0049980015 |
0.6 | −0.0049955058 | −0.0049955051 | −0.0049955046 | −0.0049955041 | −0.0049955041 | |
0.8 | −0.0049920127 | −0.0049920118 | −0.0049920110 | −0.0049920105 | −0.0049920105 | |
1.0 | −0.0049875260 | −0.0049875249 | −0.0049875240 | −0.0049875232 | −0.0049875232 | |
0.0 | −0.0049999999 | −0.0049999999 | −0.0049999999 | −0.0050000000 | −0.0050000000 | |
0.2 | −0.0049995027 | −0.0049995022 | −0.0049995018 | −0.0049995015 | −0.0049995015 | |
0.03 | 0.4 | −0.0049980058 | −0.0049980049 | −0.0049980041 | −0.0049980035 | −0.0049980035 |
0.6 | −0.0049955107 | −0.0049955093 | −0.0049955081 | −0.0049955071 | −0.0049955071 | |
0.8 | −0.0049920192 | −0.0049920173 | −0.0049920158 | −0.0049920145 | −0.0049920145 | |
1 | −0.0049875341 | −0.0049875318 | −0.0049875298 | −0.0049875282 | −0.0049875282 | |
0.0 | −0.0049999999 | −0.0049999999 | −0.0049999999 | −0.0049999999 | −0.0049999999 | |
0.2 | −0.0049995041 | −0.0049995035 | −0.0049995029 | −0.0049995025 | −0.0049995025 | |
0.05 | 0.4 | −0.0049980088 | −0.0049980075 | −0.0049980064 | −0.0049980055 | −0.0049980055 |
0.6 | −0.0049955151 | −0.0049955132 | −0.0049955115 | −0.0049955101 | −0.0049955101 | |
0.8 | −0.0049920250 | −0.0049920225 | −0.0049920203 | −0.0049920185 | −0.0049920185 | |
1 | −0.0049875414 | −0.0049875382 | −0.0049875355 | −0.0049875332 | −0.0049875332 |
Exact | Solution | Error | Error | Error | |
---|---|---|---|---|---|
0.25 | −0.0049992250 | −0.0049992250 | 1.0000000000 | 1.24945 | 1.25899 |
0.50 | −0.0049968887 | −0.0049968887 | 2.0000000000 | 2.49558 | 2.97366 |
0.75 | −0.0049929940 | −0.0049929940 | 1.0000000000 | 3.73509 | 1.15346 |
1.0 | −0.0049875457 | −0.0049875457 | 1.0000000000 | 4.96471 | 1.26266 |
0.0 | 0.0199979987 | 0.0199979990 | 0.0199979993 | 0.0199979994 | 0.0200000000 | |
0.2 | 0.0199980014 | 0.0199980011 | 0.0199980009 | 0.0199980007 | 0.0199920022 | |
0.01 | 0.4 | 0.0199820148 | 0.0199820139 | 0.0199820132 | 0.0199820127 | 0.0199680343 |
0.6 | 0.0199500899 | 0.0199500884 | 0.0199500873 | 0.0199500864 | 0.0199281728 | |
0.8 | 0.0199023286 | 0.0199023265 | 0.0199023249 | 0.0199023237 | 0.0198725446 | |
1.0 | 0.0198388828 | 0.0198388801 | 0.0198388781 | 0.0198388765 | 0.0198013264 | |
0.0 | 0.0199979966 | 0.0199979973 | 0.0199979978 | 0.0199979982 | 0.0200000000 | |
0.2 | 0.0199980035 | 0.0199980029 | 0.0199980024 | 0.0199980020 | 0.0199920025 | |
0.03 | 0.4 | 0.0199820210 | 0.0199820192 | 0.0199820177 | 0.0199820165 | 0.0199680348 |
0.6 | 0.0199501003 | 0.0199500973 | 0.0199500948 | 0.0199500927 | 0.0199281736 | |
0.8 | 0.0199023431 | 0.0199023389 | 0.0199023354 | 0.0199023326 | 0.0198725456 | |
1 | 0.0198389013 | 0.0198388960 | 0.0198388915 | 0.0198388878 | 0.0198013277 | |
0.0 | 0.0199979948 | 0.0199979956 | 0.0199979963 | 0.0199979969 | 0.0200000000 | |
0.2 | 0.0199980054 | 0.0199980046 | 0.0199980039 | 0.0199980033 | 0.0199920027 | |
0.05 | 0.4 | 0.0199820266 | 0.0199820242 | 0.0199820221 | 0.0199820203 | 0.0199680353 |
0.6 | 0.0199501096 | 0.0199501055 | 0.0199501021 | 0.0199500991 | 0.0199281743 | |
0.8 | 0.0199023561 | 0.0199023504 | 0.0199023456 | 0.0199023415 | 0.0198725467 | |
1 | 0.0198389180 | 0.0198389107 | 0.0198389045 | 0.0198388992 | 0.0198013289 |
Exact | Solution | Error | Error | Error | |
---|---|---|---|---|---|
0.1 | 0.0199980007 | 0.0200000000 | 1.99922000 | 1.99922 | 1.4687 |
0.2 | 0.0199980014 | 0.0199999999 | 1.99857000 | 1.99857 | 2.93741 |
0.3 | 0.0199980020 | 0.0199999999 | 1.99790000 | 1.9979 | 4.40611 |
0.4 | 0.0199980026 | 0.0199999999 | 1.99723000 | 1.99723 | 5.87481 |
0.5 | 0.0199980033 | 0.0199999998 | 1.99654000 | 1.99654 | 7.34351 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharthi, N.S. Dynamical and Computational Analysis of Fractional Korteweg–de Vries-Burgers and Sawada–Kotera Equations in Terms of Caputo Fractional Derivative. Fractal Fract. 2025, 9, 411. https://doi.org/10.3390/fractalfract9070411
Alharthi NS. Dynamical and Computational Analysis of Fractional Korteweg–de Vries-Burgers and Sawada–Kotera Equations in Terms of Caputo Fractional Derivative. Fractal and Fractional. 2025; 9(7):411. https://doi.org/10.3390/fractalfract9070411
Chicago/Turabian StyleAlharthi, N. S. 2025. "Dynamical and Computational Analysis of Fractional Korteweg–de Vries-Burgers and Sawada–Kotera Equations in Terms of Caputo Fractional Derivative" Fractal and Fractional 9, no. 7: 411. https://doi.org/10.3390/fractalfract9070411
APA StyleAlharthi, N. S. (2025). Dynamical and Computational Analysis of Fractional Korteweg–de Vries-Burgers and Sawada–Kotera Equations in Terms of Caputo Fractional Derivative. Fractal and Fractional, 9(7), 411. https://doi.org/10.3390/fractalfract9070411