Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (423)

Search Parameters:
Keywords = evaluation of government’s environmental performance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 313 KiB  
Article
Sustainability and Profitability of Large Manufacturing Companies
by Iveta Mietule, Rasa Subaciene, Jelena Liksnina and Evalds Viskers
J. Risk Financial Manag. 2025, 18(8), 439; https://doi.org/10.3390/jrfm18080439 - 6 Aug 2025
Abstract
This study explores whether sustainability achievements—proxied through ESG (environmental, social, and governance) reporting—are associated with superior financial performance in Latvia’s manufacturing sector, where ESG maturity remains low and institutional readiness is still emerging. Building on stakeholder, legitimacy, signal, slack resources, and agency theories, [...] Read more.
This study explores whether sustainability achievements—proxied through ESG (environmental, social, and governance) reporting—are associated with superior financial performance in Latvia’s manufacturing sector, where ESG maturity remains low and institutional readiness is still emerging. Building on stakeholder, legitimacy, signal, slack resources, and agency theories, this study applies a mixed-method approach (that consists of two analytical stages) suited to the limited availability and reliability of ESG-related data in the Latvian manufacturing sector. Financial indicators from three large firms—AS MADARA COSMETICS, AS Latvijas Finieris, and AS Valmiera Glass Grupa—are compared with industry averages over the 2019–2023 period using independent sample T-tests. ESG integration is evaluated through a six-stage conceptual schema ranging from symbolic compliance to performance-driven sustainability. The results show that AS MADARA COSMETICS, which demonstrates advanced ESG integration aligned with international standards, significantly outperforms its industry in all profitability metrics. In contrast, the other two companies remain at earlier ESG maturity stages and show weaker financial performance, with sustainability disclosures limited to general statements and outdated indicators. These findings support the synergy hypothesis in contexts where sustainability is internalized and operationalized, while also highlighting structural constraints—such as resource scarcity and fragmented data—that may limit ESG-financial alignment in post-transition economies. This study offers practical guidance for firms seeking competitive advantage through strategic ESG integration and recommends policy actions to enhance ESG transparency and performance in Latvia, including performance-based reporting mandates, ESG data infrastructure, and regulatory alignment with EU directives. These insights contribute to the growing empirical literature on ESG effectiveness under constrained institutional and economic conditions. Full article
(This article belongs to the Section Business and Entrepreneurship)
23 pages, 4317 KiB  
Article
Agronomical Responses of Elite Winter Wheat (Triticum aestivum L.) Varieties in Phenotyping Experiments Under Continuous Water Withdrawal and Optimal Water Management in Greenhouses
by Dániel Nagy, Tamás Meszlényi, Krisztina Boda, Csaba Lantos and János Pauk
Plants 2025, 14(15), 2435; https://doi.org/10.3390/plants14152435 - 6 Aug 2025
Abstract
Drought stress is a major environmental constraint that significantly reduces wheat productivity worldwide. In this study, seventeen wheat genotypes were evaluated under well-watered and drought-stressed conditions across two consecutive years (2023–2024) in a controlled greenhouse experiment. Twenty morphological and agronomic traits were recorded, [...] Read more.
Drought stress is a major environmental constraint that significantly reduces wheat productivity worldwide. In this study, seventeen wheat genotypes were evaluated under well-watered and drought-stressed conditions across two consecutive years (2023–2024) in a controlled greenhouse experiment. Twenty morphological and agronomic traits were recorded, and their responses to prolonged water limitation were assessed using multivariate statistical methods, including three-way ANOVA, principal component analysis (PCA), and cluster analysis. Drought stress significantly decreased all traits except the harvest index (HI), with the most severe reductions observed in traits related to secondary spikes (e.g., grain weight reduced by 95%). The ANOVA results confirmed significant genotype × treatment (G × T) interactions for key agronomic traits, with the strongest effect observed for total grain weight (F = 7064.30, p < 0.001). A PCA reduced the 20 original variables to five principal components, explaining 87.2% of the total variance. These components reflected distinct trait groups associated with productivity, spike architecture, and development in phenology. Cluster analysis based on PCA scores grouped genotypes into three clusters with contrasting drought response profiles. A yield-based evaluation confirmed the cluster structure, distinguishing genotypes with a stable performance (average yield loss ~58%) from highly sensitive ones (~70% loss). Overall, the findings demonstrate that drought tolerance in wheat is governed by complex trait interactions. Integrating a trait-based multivariate analysis with a yield stability assessment enables the identification of genotypes with superior adaptation to water-limited environments, providing an excellent genotype background for future breeding efforts. Full article
Show Figures

Figure 1

22 pages, 1247 KiB  
Article
Evaluating and Predicting Urban Greenness for Sustainable Environmental Development
by Chun-Che Huang, Wen-Yau Liang, Tzu-Liang (Bill) Tseng and Chia-Ying Chan
Processes 2025, 13(8), 2465; https://doi.org/10.3390/pr13082465 - 4 Aug 2025
Viewed by 205
Abstract
With the rapid pace of urbanization, cities are increasingly facing severe challenges related to environmental pollution, ecological degradation, and climate change. Extreme climate events—such as heatwaves, droughts, heavy rainfall, and wildfires—have intensified public concern about sustainability, environmental protection, and low-carbon development. Ensuring environmental [...] Read more.
With the rapid pace of urbanization, cities are increasingly facing severe challenges related to environmental pollution, ecological degradation, and climate change. Extreme climate events—such as heatwaves, droughts, heavy rainfall, and wildfires—have intensified public concern about sustainability, environmental protection, and low-carbon development. Ensuring environmental preservation while maintaining residents’ quality of life has become a central focus of urban governance. In this context, evaluating green indicators and predicting urban greenness is both necessary and urgent. This study incorporates international frameworks such as the EU Green City Index, the European Green Capital Award, and the United Nations Sustainable Development Goals to assess urban sustainability. The Extreme Gradient Boosting (XGBoost) algorithm is employed to predict the green level of cities and to develop multiple optimized models. Comparative analysis with traditional models demonstrates that XGBoost achieves superior performance, with an accuracy of 0.84 and an F1-score of 0.81. Case study findings identify “Greenhouse Gas Emissions per Person” and “Per Capita Emissions from Transport” as the most critical indicators. These results provide practical guidance for policymakers, suggesting that targeted regulations based on these key factors can effectively support emission reduction and urban sustainability goals. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

26 pages, 2227 KiB  
Article
Beyond the Hype: Stakeholder Perceptions of Nanotechnology and Genetic Engineering for Sustainable Food Production
by Madison D. Horgan, Christopher L. Cummings, Jennifer Kuzma, Michael Dahlstrom, Ilaria Cimadori, Maude Cuchiara, Colin Larter, Nick Loschin and Khara D. Grieger
Sustainability 2025, 17(15), 6795; https://doi.org/10.3390/su17156795 - 25 Jul 2025
Viewed by 480
Abstract
Ensuring sustainable food systems is an urgent global priority as populations grow and environmental pressures mount. Technological innovations such as genetic engineering (GE) and nanotechnology (nano) have been promoted as promising pathways for achieving greater sustainability in agriculture and food production. Yet, the [...] Read more.
Ensuring sustainable food systems is an urgent global priority as populations grow and environmental pressures mount. Technological innovations such as genetic engineering (GE) and nanotechnology (nano) have been promoted as promising pathways for achieving greater sustainability in agriculture and food production. Yet, the sustainability of these technologies is not defined by technical performance alone; it hinges on how they are perceived by key stakeholders and how well they align with broader societal values. This study addresses the critical question of how expert stakeholders evaluate the sustainability of GE and nano-based food and agriculture (agrifood) products. Using a multi-method online platform, we engaged 42 experts across academia, government, industry, and NGOs in the United States to assess six real-world case studies—three using GE and three using nano—across ten different dimensions of sustainability. We show that nano-based products were consistently rated more favorably than their GE counterparts in terms of environmental, economic, and social sustainability, as well as across ethical and societal dimensions. Like prior studies, our results reveal that stakeholders see meaningful distinctions between nanotechnology and biotechnology, likely due to underlying value-based concerns about animal welfare, perceived naturalness, or corporate control of agrifood systems. The fruit coating and flu vaccine—both nano-enabled—received the most positive ratings, while GE mustard greens and salmon were the most polarizing. These results underscore the importance of incorporating stakeholder perspectives in technology assessment and innovation governance. These results also suggest that responsible innovation efforts in agrifood systems should prioritize communication, addressing meaningful societal needs, and the contextual understanding of societal values to build trust and legitimacy. Full article
(This article belongs to the Special Issue Food Science and Engineering for Sustainability)
Show Figures

Figure 1

39 pages, 1806 KiB  
Review
Microglia-Mediated Neuroinflammation Through Phosphatidylinositol 3-Kinase Signaling Causes Cognitive Dysfunction
by Mohammad Nazmul Hasan Maziz, Srikumar Chakravarthi, Thidar Aung, Phone Myint Htoo, Wana Hla Shwe, Sergey Gupalo, Manglesh Waran Udayah, Hardev Singh, Mohammed Shahjahan Kabir, Rajesh Thangarajan and Maheedhar Kodali
Int. J. Mol. Sci. 2025, 26(15), 7212; https://doi.org/10.3390/ijms26157212 - 25 Jul 2025
Viewed by 429
Abstract
Microglia, as the immune guardians of the central nervous system (CNS), have the ability to maintain neural homeostasis, respond to environmental changes, and remodel the synaptic landscape. However, persistent microglial activation can lead to chronic neuroinflammation, which can alter neuronal signaling pathways, resulting [...] Read more.
Microglia, as the immune guardians of the central nervous system (CNS), have the ability to maintain neural homeostasis, respond to environmental changes, and remodel the synaptic landscape. However, persistent microglial activation can lead to chronic neuroinflammation, which can alter neuronal signaling pathways, resulting in accelerated cognitive decline. Phosphoinositol 3-kinase (PI3K) has emerged as a critical driver, connecting inflammation to neurodegeneration, serving as the nexus of numerous intracellular processes that govern microglial activation. This review focuses on the relationship between PI3K signaling and microglial activation, which might lead to cognitive impairment, inflammation, or even neurodegeneration. The review delves into the components of the PI3K signaling cascade, isoforms, and receptors of PI3K, as well as the downstream effects of PI3K signaling, including its effectors such as protein kinase B (Akt) and mammalian target of rapamycin (mTOR) and the negative regulator phosphatase and tensin homolog (PTEN). Experiments have shown that the overproduction of certain cytokines, coupled with abnormal oxidative stress, is a consequence of poor PI3K regulation, resulting in excessive synapse pruning and, consequently, impacting learning and memory functions. The review also highlights the implications of autonomously activated microglia exhibiting M1/M2 polarization driven by PI3K on hippocampal, cortical, and subcortical circuits. Conclusions from behavioral studies, electrophysiology, and neuroimaging linking cognitive performance and PI3K activity were evaluated, along with new approaches to therapy using selective inhibitors or gene editing. The review concludes by highlighting important knowledge gaps, including the specific effects of different isoforms, the risks associated with long-term pathway modulation, and the limitations of translational potential, underscoring the crucial role of PI3K in mitigating cognitive impairment driven by neuroinflammation. Full article
(This article belongs to the Special Issue Therapeutics and Pathophysiology of Cognitive Dysfunction)
Show Figures

Figure 1

42 pages, 3781 KiB  
Article
Modeling Regional ESG Performance in the European Union: A Partial Least Squares Approach to Sustainable Economic Systems
by Ioana Birlan, Adriana AnaMaria Davidescu, Catalina-Elena Tita and Tamara Maria Nae
Mathematics 2025, 13(15), 2337; https://doi.org/10.3390/math13152337 - 22 Jul 2025
Viewed by 336
Abstract
This study aims to evaluate the sustainability performance of EU regions through a comprehensive and data-driven Environmental, Social, Governance (ESG) framework, addressing the increasing demand for regional-level analysis in sustainable finance and policy design. Leveraging Partial Least Squares (PLS) regression and cluster analysis, [...] Read more.
This study aims to evaluate the sustainability performance of EU regions through a comprehensive and data-driven Environmental, Social, Governance (ESG) framework, addressing the increasing demand for regional-level analysis in sustainable finance and policy design. Leveraging Partial Least Squares (PLS) regression and cluster analysis, we construct composite ESG indicators that adjust for economic size using GDP normalization and LOESS smoothing. Drawing on panel data from 2010 to 2023 and over 170 indicators, we model the determinants of ESG performance at both the national and regional levels across the EU-27. Time-based ESG trajectories are assessed using Compound Annual Growth Rates (CAGR), capturing resilience to shocks such as the COVID-19 pandemic and geopolitical instability. Our findings reveal clear spatial disparities in ESG performance, highlighting the structural gaps in governance, environmental quality, and social cohesion. The model captures patterns of convergence and divergence across EU regions and identifies common drivers influencing sustainability outcomes. This paper introduces an integrated framework that combines PLS regression, clustering, and time-based trend analysis to assess ESG performance at the subnational level. The originality of this study lies in its multi-layered approach, offering a replicable and scalable model for evaluating sustainability with direct implications for green finance, policy prioritization, and regional development. This study contributes to the literature by applying advanced data-driven techniques to assess ESG dynamics in complex economic systems. Full article
Show Figures

Figure 1

27 pages, 2136 KiB  
Article
The Effect of Shared and Inclusive Governance on Environmental Sustainability at U.S. Universities
by Dragana Djukic-Min, James Norcross and Elizabeth Searing
Sustainability 2025, 17(14), 6630; https://doi.org/10.3390/su17146630 - 21 Jul 2025
Viewed by 438
Abstract
As climate change consequences intensify, higher education institutions (HEIs) have an opportunity and responsibility to model sustainable operations. This study examines how embracing shared knowledge and inclusion in sustainability decision making facilitates green human resource management (GHRM) efforts to invigorate organizational environmental performance. [...] Read more.
As climate change consequences intensify, higher education institutions (HEIs) have an opportunity and responsibility to model sustainable operations. This study examines how embracing shared knowledge and inclusion in sustainability decision making facilitates green human resource management (GHRM) efforts to invigorate organizational environmental performance. The study examines the effects of shared and inclusive governance on campus sustainability via a regression model and the mediating role of employee participation via a structural equation modeling approach. The results show that shared governance and inclusive governance positively predict the commitment of HEIs to reducing greenhouse gas emissions, and campus engagement mediates these relationships, underscoring the importance of participation. These findings align with stakeholder theory in demonstrating that diverse voices in decision making can enhance commitment to organizational goals like sustainability. The findings also highlight the importance of shared and inclusive governance arrangements at college campuses not only for ethical reasons but also for achieving desired outcomes like carbon neutrality. For campus leaders striving to “green” their institutions, evaluating cross-departmental representation in governance structures and promoting inclusive cultures that make all students and staff feel welcome appear as important complements to GHRM practices. Full article
(This article belongs to the Special Issue Sustainable Management for the Future of Education Systems)
Show Figures

Figure 1

42 pages, 1835 KiB  
Article
Social Life Cycle Assessment of Multifunctional Bioenergy Systems: Social and Socioeconomic Impacts of Hydrothermal Treatment of Wet Biogenic Residues into Intermediate Bioenergy Carriers and Sustainable Solid Biofuels
by Marco Ugolini, Lucia Recchia, Ciro Avolio and Cristina Barragan Yebra
Energies 2025, 18(14), 3695; https://doi.org/10.3390/en18143695 - 12 Jul 2025
Viewed by 285
Abstract
This study presents a social life cycle assessment (S-LCA) of the F-CUBED Production System (FPS), an innovative process that converts wet biogenic residues—specifically paper biosludge, virgin olive pomace, and fruit and vegetable residues—into intermediate bioenergy carriers via hydrothermal treatment (TORWASH®), pelletization, [...] Read more.
This study presents a social life cycle assessment (S-LCA) of the F-CUBED Production System (FPS), an innovative process that converts wet biogenic residues—specifically paper biosludge, virgin olive pomace, and fruit and vegetable residues—into intermediate bioenergy carriers via hydrothermal treatment (TORWASH®), pelletization, and anaerobic digestion. The hydrothermal carbonization of these low-grade, moisture-rich biogenic residues enhances the flexibility and reliability of renewable energy systems while also offering the potential to reduce environmental burdens compared to conventional disposal methods. Through this S-LCA, the study aims to evaluate the cradle-to-gate socioeconomic impacts of the FPS in three European contexts—Sweden, Italy, and Spain—using the 2020 UNEP Guidelines and the Social Hotspots Database (SHDB) and applying quantitative modeling via SimaPro. The functional unit is defined as 1 kWh of electricity produced. The assessment combines SHDB-based modeling with primary data from stakeholder surveys conducted in the three countries. Impact categories are harmonized between SHDB and UNEP typologies, and the results are reported in medium-risk-hour equivalents (mrheq). The results show a heterogeneous social impact profile across case studies. In Sweden, the treatment of paper biosludge delivers substantial benefits with minimal risk. In Spain (orange peel), the introduction of the FPS demonstrated a strong social benefit, particularly in health and safety and labor rights, indicating high institutional performance and good integration with local industry. Conversely, in Italy (olive pomace), the FPS revealed significant social risks, especially in the biopellet production and electricity generation sectors, reflecting regional vulnerabilities in labor conditions and governance. This suggests that targeted mitigation strategies are recommended in contexts like Southern Italy. These findings highlight that the social sustainability of emerging bioenergy technologies is context-dependent and sensitive to sectoral and regional socioeconomic conditions. This S-LCA complements prior environmental assessments and emphasizes the importance of integrating social performance considerations in the deployment and scaling of innovative bioenergy systems. Full article
(This article belongs to the Special Issue Advances in Bioenergy and Waste-to-Energy Technologies)
Show Figures

Figure 1

22 pages, 263 KiB  
Article
Global Agri-Food Competitiveness: Assessing Food Security, Trade, Sustainability, and Innovation in the G20 Nations
by Sylvain Charlebois, Janet Music, Nicole Goulart Natali and Janele Vezeau
World 2025, 6(3), 99; https://doi.org/10.3390/world6030099 - 12 Jul 2025
Viewed by 422
Abstract
This study presents a comparative benchmarking analysis of G20 nations’ agri-food competitiveness across five critical pillars: food security and nutrition, trade and geopolitics, environmental sustainability, fiscal regimes, and entrepreneurship support. Using a structured benchmarking framework with 13 performance indicators sourced from internationally recognized [...] Read more.
This study presents a comparative benchmarking analysis of G20 nations’ agri-food competitiveness across five critical pillars: food security and nutrition, trade and geopolitics, environmental sustainability, fiscal regimes, and entrepreneurship support. Using a structured benchmarking framework with 13 performance indicators sourced from internationally recognized datasets, the research delivers a comprehensive evaluation of national agri-food systems. The analysis reveals significant disparities in transparency, policy coherence, and investment in innovation across member states. Countries such as the United States, Germany, and Australia emerge as leaders, driven by integrated policy frameworks, trade surpluses, and sustainable production practices. Others fall behind due to import dependence, fragmented governance, or weak innovation ecosystems. Canada performs consistently in trade metrics but is hindered by high emissions intensity, infrastructure constraints, and a lack of a cohesive national food strategy. Theoretically, this work contributes to the emerging field of agri-food system diagnostics by operationalizing a cross-pillar benchmarking methodology applicable at the national level. Practically, it offers policymakers a decision-support tool for identifying structural gaps and setting reform priorities. The framework enables governments, trade partners, and multilateral institutions to design targeted interventions aimed at boosting food system resilience, economic competitiveness, and sustainability in an era of rising geopolitical and environmental volatility. Full article
21 pages, 1316 KiB  
Review
Groundwater Markets at a Crossroads: A Review of Energy Transitions, Digital Innovations, and Policy Pathways
by Amar Razzaq, Hancheng Liu and Dan Yang
Water 2025, 17(14), 2079; https://doi.org/10.3390/w17142079 - 11 Jul 2025
Viewed by 446
Abstract
Informal groundwater markets, where farmers with wells sell surplus water to neighbors, are a widespread adaptive response to water scarcity, particularly in South Asia where they are most prevalent and well-documented. This review (1990–2025) examines the evolving patterns of these markets by synthesizing [...] Read more.
Informal groundwater markets, where farmers with wells sell surplus water to neighbors, are a widespread adaptive response to water scarcity, particularly in South Asia where they are most prevalent and well-documented. This review (1990–2025) examines the evolving patterns of these markets by synthesizing global literature and viewing them through the lens of three transformative trends: energy transition (especially solar pumps), digital innovations (e.g., blockchain and IoT), and new policy pathways. We synthesize literature to evaluate market structures, contract forms, efficiency and equity outcomes, environmental impacts, and the influence of energy policies and digital tools. The review assesses whether these informal trades fulfill their promise of enhancing water productivity and equity or if new challenges are creating pitfalls. Key objectives include documenting historical evolution, analyzing market performance, discussing externalities like aquifer depletion, examining policy interactions, reviewing digital pilots, exploring social inclusion, comparing governance frameworks, identifying research gaps linked to SDGs, and proposing a policy roadmap for harnessing benefits while ensuring sustainability. Full article
Show Figures

Figure 1

41 pages, 1749 KiB  
Article
The Integrated Energy Community Performance Index (IECPI): A Multidimensional Tool for Evaluating Energy Communities
by Georgios D. Lamprousis and Spyridon K. Golfinopoulos
Urban Sci. 2025, 9(7), 264; https://doi.org/10.3390/urbansci9070264 - 8 Jul 2025
Viewed by 406
Abstract
This paper presents the Integrated Energy Community Performance Index (IECPI), a novel multi-criteria evaluation framework designed to assess the systemic performance of energy communities (ECs) across environmental, technological, social, and economic/institutional dimensions. Although ECs are increasingly recognized as pivotal actors in the decentralized [...] Read more.
This paper presents the Integrated Energy Community Performance Index (IECPI), a novel multi-criteria evaluation framework designed to assess the systemic performance of energy communities (ECs) across environmental, technological, social, and economic/institutional dimensions. Although ECs are increasingly recognized as pivotal actors in the decentralized energy transition, the absence of integrated assessment tools continues to hinder comparability, strategic planning, and long-term monitoring. The IECPI addresses this critical gap by structuring performance evaluation around nine normalized indicators, with their respective weights empirically derived from an influence matrix calibrated using interdependencies identified in 60 documented case studies. The IECPI integrates both objective and subjective metrics, capturing measurable outcomes alongside governance structures and contextual factors. The results reveal significant disparities in the performance of energy communities, allowing for the identification of five strategic typologies: Technologically Driven, Environmentally Oriented, Socially Embedded, Balanced Performance, and Structurally Fragile. The IECPI facilitates benchmarking, targeted policymaking, and cross-case learning while aligning with international frameworks such as SDG 7, EMAS, and principles of inclusive governance. As a scalable and transferable model, it provides a robust foundation for evidence-based planning, the evaluation of community resilience, and sustainability-oriented decision-making within distributed energy systems. Full article
Show Figures

Figure 1

22 pages, 1696 KiB  
Article
Next-Generation Urbanism: ESG Strategies, Green Accounting, and the Future of Sustainable City Governance—A PRISMA-Guided Bibliometric Analysis
by George Sklavos, Georgia Zournatzidou, Konstantina Ragazou, Konstantinos Spinthiropoulos and Nikolaos Sariannidis
Urban Sci. 2025, 9(7), 261; https://doi.org/10.3390/urbansci9070261 - 4 Jul 2025
Viewed by 642
Abstract
This study provides a PRISMA-guided bibliometric analysis of scholarly research at the intersection of Environmental, Social, and Governance (ESG) efforts, green accounting, and sustainable urbanization. This study employs 130 peer-reviewed articles obtained from the Scopus database (2014–2025) and applies Biblioshiny (version 4.1) and [...] Read more.
This study provides a PRISMA-guided bibliometric analysis of scholarly research at the intersection of Environmental, Social, and Governance (ESG) efforts, green accounting, and sustainable urbanization. This study employs 130 peer-reviewed articles obtained from the Scopus database (2014–2025) and applies Biblioshiny (version 4.1) and VOSviewer (version 1.6.20) to analyze publishing trends, topic clusters, conceptual frameworks, and citation patterns. The results demonstrate a growing convergence of ESG frameworks and environmental accounting practices in urban governance discussions, driven by elevated demands for transparency, performance evaluation, and sustainable change. Green accounting is an essential instrument for executing ESG principles at the municipal level, enhancing the credibility of sustainability reporting and enabling data-driven urban decision-making. Thematic mapping and hierarchical clustering illustrate a dynamic and varied research ecosystem, defined by distinct clusters focused on ESG transparency, urban resilience, governance innovation, and green technology integration. This study contributes to the literature by clarifying the structural and conceptual evolution of this emerging field and by suggesting a research agenda to promote integrated governance models that align financial, environmental, and social goals within urban systems. Full article
Show Figures

Figure 1

19 pages, 505 KiB  
Article
ESG Performance Drives Enterprise High-Quality Development Through Financing Constraints: Based on the Background of China’s Digital Transformation
by Xiaoyan Sun, Yuanyuan Shao and Jie Han
Sustainability 2025, 17(13), 6094; https://doi.org/10.3390/su17136094 - 3 Jul 2025
Viewed by 407
Abstract
Under the current digital transformation landscape, environmental, social, and governance (ESG) performance and financing constraints exert non-negligible impacts on corporate high-quality development. Building on this foundation, the present study seeks to elucidate these critical relationships. The methodology involves constructing an evaluation system for [...] Read more.
Under the current digital transformation landscape, environmental, social, and governance (ESG) performance and financing constraints exert non-negligible impacts on corporate high-quality development. Building on this foundation, the present study seeks to elucidate these critical relationships. The methodology involves constructing an evaluation system for firms’ high-quality development, followed by revealing the impact of firms’ ESG performance on their high-quality development and the mediating effect of financing constraints in the process of digital transformation. The study finds that corporate ESG performance significantly mitigates financing constraints, and that higher ESG levels help to promote corporate high-quality development. In addition, digital transformation significantly moderates the mediating effect of financing constraints on the ESG performance and high-quality development of enterprises. The findings suggest that enterprises are actively committed to practicing ESG principles and optimize financing constraints to promote high-quality development with the help of digital transformation. Accordingly, we calls on the government to motivate enterprises to pay comprehensive attention to improving ESG and digitalization levels to promote the sustainability of the national economy. Full article
Show Figures

Figure 1

19 pages, 1002 KiB  
Article
Applying Smart Healthcare and ESG Concepts to Optimize Elderly Health Management
by Feng-Yi Lin, Chin-Chiu Lee and Te-Nien Chien
Sustainability 2025, 17(13), 6091; https://doi.org/10.3390/su17136091 - 3 Jul 2025
Viewed by 420
Abstract
As the aging population grows, ensuring effective and sustainable health management for elderly individuals has become a critical challenge. This study explores the integration of smart healthcare technologies and ESG (Environmental, Social, and Governance) principles to enhance elderly health management through data-driven strategies. [...] Read more.
As the aging population grows, ensuring effective and sustainable health management for elderly individuals has become a critical challenge. This study explores the integration of smart healthcare technologies and ESG (Environmental, Social, and Governance) principles to enhance elderly health management through data-driven strategies. Using the MIMIC-III database, this study evaluates five machine learning models (Adaboost, Bagging, Catboost, GaussianNB, and SVC) through ten-fold cross-validation to predict 3-day and 30-day mortality rates among elderly ICU patients. The Bagging model achieved the best performance with an AUROC of 0.80, demonstrating the potential of smart healthcare in mortality prediction. These technologies enhance predictive accuracy, enabling the timely identification of high-risk patients and effective intervention. Through the application of smart data integration methods, this study demonstrates how combining clinical indicators with socioeconomic factors can improve healthcare equity and efficiency. Furthermore, by aligning smart healthcare development with ESG concepts, we emphasize the importance of sustainability, social responsibility, and governance transparency in future healthcare systems. The findings offer valuable contributions toward building an interoperable and ethical health ecosystem, supporting early risk identification, improved care outcomes, and the promotion of healthy living for the elderly population. Full article
Show Figures

Figure 1

24 pages, 1083 KiB  
Review
Membrane-Based CO2 Capture Across Industrial Sectors: Process Conditions, Case Studies, and Implementation Insights
by Jin Woo Park, Soyeon Heo, Jeong-Gu Yeo, Sunghoon Lee, Jin-Kuk Kim and Jung Hyun Lee
Membranes 2025, 15(7), 200; https://doi.org/10.3390/membranes15070200 - 2 Jul 2025
Viewed by 1338
Abstract
Membrane-based CO2 capture has emerged as a promising technology for industrial decarbonization, offering advantages in energy efficiency, modularity, and environmental performance. This review presents a comprehensive assessment of membrane processes applied across major emission-intensive sectors, including power generation, cement, steelmaking, and biogas [...] Read more.
Membrane-based CO2 capture has emerged as a promising technology for industrial decarbonization, offering advantages in energy efficiency, modularity, and environmental performance. This review presents a comprehensive assessment of membrane processes applied across major emission-intensive sectors, including power generation, cement, steelmaking, and biogas upgrading. Drawing from pilot-scale demonstrations and simulation-based studies, we evaluate how flue gas characteristics, such as CO2 concentration, pressure, temperature, and impurity composition, govern membrane selection, process design, and operational feasibility. Case studies highlight the technical viability of membrane systems under a wide range of industrial conditions, from low-CO2 NGCC flue gas to high-pressure syngas and CO2-rich cement emissions. Despite these advances, this review discusses the key remaining challenges for the commercialization of membrane-based CO2 capture and includes perspectives on process design and techno-economic evaluation. The insights compiled in this review are intended to support the design of application-specific membrane systems and guide future efforts toward scalable and economically viable CO2 capture across industrial sectors. Full article
(This article belongs to the Special Issue Novel Membranes for Carbon Capture and Conversion)
Show Figures

Figure 1

Back to TopTop