Applying Smart Healthcare and ESG Concepts to Optimize Elderly Health Management
Abstract
1. Introduction
2. Literature Review
2.1. Prediction Mortality Model for Elderly Patients
2.2. Research on Big Data Applications in Healthcare Management and ESG
2.3. Health Management and Treatment Plans for Elderly Patients
2.4. The Application of Machine Learning Methods in the Medical Field and Management
3. Methodology
3.1. Dataset from MIMIC-III
3.2. Data Preprocessing and Variable Selection
3.3. Machine Learning Prediction Models and Evaluation Metrics
4. Result
4.1. Descriptive Statistical Analysis
4.2. Machine Learning Modeling for Mortality Analysis in Elderly ICU Patients
5. Discission and Conclusions
5.1. Research Findings
5.2. Research Innovation and Contribution
5.3. Management Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Model | Parameters |
Adaboost | base_estimator = DecisionTreeClassifier (max_depth = 1), n_estimators = 50, learning_rate = 1.0, algorithm = ‘SAMME.R’, random_state = 1. |
Bagging | base_estimator = None, n_estimators = 500, max_samples = 100, bootstrap = True, bootstrap_features = False, oob_score = False, warm_start = False, n_jobs = None, random_state = None, verbose = 0. |
Catboost | iterations = 1000, learning_rate = 0.03, depth = 6, loss_function = ‘Logloss’, eval_metric = ‘AUC’, verbose = 100, random_seed = 42. |
GB | n_estimators = 100, learning_rate = 1.0, max_depth = 1, loss = ‘deviance’, random_state = 0. |
SVC | C = 1.0, kernel = ‘rbf’, degree = 3, gamma = ‘auto’, coef0 = 0.0, shrinking = True, probability = False, tol = 0.001, cache_size = 200, class_weight = None, verbose = False, max_iter = −1 |
References
- Vallet, H.; Schwarz, G.L.; Flaatten, H.; de Lange, D.W.; Guidet, B.; Dechartres, A. Mortality of Older Patients Admitted to an ICU: A Systematic Review. Crit. Care Med. 2021, 49, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Brunker, L.B.; Boncyk, C.S.; Rengel, K.F.; Hughes, C.G. Elderly Patients and Management in Intensive Care Units (ICU): Clinical Challenges. Clin. Interv. Aging 2023, 18, 93–112. [Google Scholar] [CrossRef]
- Guillon, A.; Laurent, E.; Godillon, L.; Kimmoun, A.; Grammatico-Guillon, L. Long-term mortality of elderly patients after intensive care unit admission for COVID-19. Intensiv. Care Med. 2021, 47, 710–712. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Liang, R.; Liu, S.; Dong, W.; Gao, J.; Hua, T.; Xiao, W.; Li, H.; Zhu, H.; Hu, J.; et al. Nomogram predictive model for in-hospital mortality risk in elderly ICU patients with urosepsis. BMC Infect. Dis. 2024, 24, 442. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.M.A.; Taju, S.W.; Ho, Q.-T.; Nguyen, D.T.-T.; Ou, Y.-Y. GT-Finder: Classify the family of glucose transporters with pre-trained BERT language models. Comput. Biol. Med. 2021, 131, 104259. [Google Scholar] [CrossRef]
- Ji, S.; Hölttä, M.; Marttinen, P. Does the magic of BERT apply to medical code assignment? A quantitative study. Comput. Biol. Med. 2021, 139, 104998. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Guo, Y.; Das, S.; Al-Garadi, M.A.; Sarker, A. Few-shot learning for medical text: A review of advances, trends, and opportunities. J. Biomed. Inform. 2023, 144, 104458. [Google Scholar] [CrossRef]
- Wornow, M.; Xu, Y.Z.; Thapa, R.; Patel, B.; Steinberg, E.; Fleming, S.; Pfeffer, M.A.; Fries, J.; Shah, N.H. The shaky foundations of large language models and foundation models for electronic health records. npj Digit. Med. 2023, 6, 135. [Google Scholar] [CrossRef]
- de Hond, A.A.H.; Shah, V.B.; Kant, I.M.J.; Van Calster, B.; Steyerberg, E.W.; Hernandez-Boussard, T. Perspectives on validation of clinical predictive algorithms. npj Digit. Med. 2023, 6, 86. [Google Scholar] [CrossRef]
- Wang, C.; Chen, J.; Wang, Y.; Xu, W.; Xie, M.; Wu, Y.; Hu, R. Effects of family participatory dignity therapy on the psychological well-being and family function of patients with haematologic malignancies and their family caregivers: A randomised controlled trial. Int. J. Nurs. Stud. 2021, 118, 103922. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, F.G.d.M.S.; Santos, E.S.; Barreto, Í.D.d.C.; Weiss, C.; Vaez, A.C.; Oliveira, J.C.; Melo, M.S.; Silva, F.A. Mortality predictors and associated factors in patients in the intensive care unit: A cross-sectional study. Crit. Care Res. Pract. 2020, 2020, 1483827. [Google Scholar] [CrossRef]
- Davidson, S.; Villarroel, M.; Harford, M.; Finnegan, E.; Jorge, J.; Young, D.; Watkinson, P.; Tarassenko, L. Day-to-day progression of vital-sign circadian rhythms in the intensive care unit. Crit. Care 2021, 25, 156. [Google Scholar] [CrossRef]
- Johnson, A.E.W.; Pollard, T.J.; Shen, L.; Lehman, L.-W.H.; Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Celi, L.A.; Mark, R.G. MIMIC-III, a freely accessible critical care database. Sci. Data 2016, 3, 160035. [Google Scholar] [CrossRef] [PubMed]
- Malbrain, M.L.N.G.; Tantakoun, K.; Zara, A.T.; Ferko, N.C.; Kelly, T.; Dabrowski, W. Urine output is an early and strong predictor of acute kidney injury and associated mortality: A systematic literature review of 50 clinical studies. Ann. Intensiv. Care 2024, 14, 110. [Google Scholar] [CrossRef]
- Brajer, N.; Cozzi, B.; Gao, M.; Nichols, M.; Revoir, M.; Balu, S.; Futoma, J.; Bae, J.; Setji, N.; Hernandez, A.; et al. Prospective and external evaluation of a machine learning model to predict in-hospital mortality of adults at time of admission. JAMA Netw. Open 2020, 3, e1920733. [Google Scholar] [CrossRef] [PubMed]
- Woodman, R.J.; Bryant, K.; Sorich, M.J.; Pilotto, A.; Mangoni, A.A. Use of Multiprognostic Index Domain Scores, Clinical Data, and Machine Learning to Improve 12-Month Mortality Risk Prediction in Older Hospitalized Patients: Prospective Cohort Study. J. Med. Internet Res. 2021, 23, e26139. [Google Scholar] [CrossRef]
- Moore, K.; O'SHea, E.; Kenny, L.; Barton, J.; Tedesco, S.; Sica, M.; Crowe, C.; Alamäki, A.; Condell, J.; Nordström, A.; et al. Older Adults’ Experiences with Using Wearable Devices: Qualitative Systematic Review and Meta-synthesis. JMIR mHealth uHealth 2021, 9, e23832. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, W.; Ko, H.; Pan, S.; Chen, Y.; Ho, L.; Bien, M.; Wang, J.; Chan, Y.; Kou, Y.R. Post-intensive care unit respiratory failure in older patients liberated from intensive care unit and ventilator: The predictive value of the National Early Warning Score on intensive care unit discharge. Geriatr. Gerontol. Int. 2019, 19, 317–322. [Google Scholar] [CrossRef]
- Atramont, A.; Lindecker-Cournil, V.; Rudant, J.; Tajahmady, A.; Drewniak, N.; Fouard, A.; Singer, M.; Leone, M.; Legrand, M. Association of Age with Short-term and Long-term Mortality Among Patients Discharged From Intensive Care Units in France. JAMA Netw. Open 2019, 2, e193215. [Google Scholar] [CrossRef]
- Huang, C.-H.; Fang, Y.-H.; Zhang, S.; Wu, I.-C.; Chang, H.-Y.; Tsai, Y.-F.; Tseng, W.-T.; Wu, R.-C.; Liu, Y.-T.; Lien, L.-M.; et al. Develop and Validate a Prognostic Index With Laboratory Tests to Predict Mortality in Middle-Aged and Older Adults Using Machine Learning Models: A Prospective Cohort Study. J. Gerontol. Ser. A 2024, 79, glae041. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, X.; Wu, D.; Xu, Z.; Wang, H. The Role of Big Data in Aging and Older People’s Health Research: A Systematic Review and Ecological Framework. Sustainability 2021, 13, 11587. [Google Scholar] [CrossRef]
- Pashazadeh, A.; Rashedi, E. Big Data Analytics in Healthcare: A Focus on Geriatric Patients. Biomed Res. Int. 2018, 2015, 370194. [Google Scholar] [CrossRef]
- Using Big Data to Drive ESG Performance in Healthcare Sectors. In Proceedings of the ABFER 10th Annual Conference, Singapore, 22–25 May 2023.
- Akinosoglou, K.; Schinas, G.; Almyroudi, M.P.; Gogos, C.; Dimopoulos, G. The impact of age on intensive care. Ageing Res. Rev. 2023, 84, 101832. [Google Scholar] [CrossRef] [PubMed]
- Valentini, A.; Federici, M.; Cianfarani, M.A.; Tarantino, U.; Bertoli, A. Frailty and nutritional status in older people: The Mini Nutritional Assessment as a screening tool for the identification of frail subjects. Clin. Interv. Aging 2018, 13, 1237–1244. [Google Scholar] [CrossRef]
- Vallet, H.; Guidet, B.; Boumendil, A.; De Lange, D.W.; Leaver, S.; Szczeklik, W.; Jung, C.; Sviri, S.; Beil, M.; Flaatten, H. The impact of age-related syndromes on ICU process and outcomes in very old patients. Ann. Intensiv. Care 2023, 13, 68. [Google Scholar] [CrossRef]
- Sarker, M. Revolutionizing healthcare: The role of machine learning in the health sector. J. Artif. Intell. Gen. Sci. 2024, 2, 36–61. [Google Scholar] [CrossRef]
- Tetschke, F.; Schneider, U.; Schleussner, E.; Witte, O.; Hoyer, D. Assessment of fetal maturation age by heart rate variability measures using random forest methodology. Comput. Biol. Med. 2016, 70, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Pirracchio, R.; Petersen, M.L.; Carone, M.; Rigon, M.R.; Chevret, S.; van der Laan, M.J. Mortality prediction in intensive care units with the Super ICU Learner Algorithm (SICULA): A population-based study. Lancet Respir. Med. 2015, 3, 42–52. [Google Scholar] [CrossRef]
- Moghadam, M.C.; Masoumi, E.; Kendale, S.; Bagherzadeh, N. Predicting hypotension in the ICU using noninvasive physiological signals. Comput. Biol. Med. 2021, 129, 104120. [Google Scholar] [CrossRef]
- Poornima, V.; Ramya Devi, R. A Hybrid Model for Prediction of Diabetes Using Machine Learning Classification Algorithms and Random Projection. Wireless Pers. Commun. 2024, 139, 1437–1449. [Google Scholar] [CrossRef]
- Mana, S.C.; Kalaiarasi, G.; R, Y.; Helen, L.S.; Selvi, R.S. Application of Machine Learning in Healthcare: An Analysis. In Proceedings of the 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 17–19 August 2022; IEEE: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Tumpa, E.S.; Dey, K. Machine Learning in Healthcare: A Review. In Proceedings of the 6th International Conference on Trends in Electronics and Informatics (ICOEI), Coimbatore, India, 29–31 March 2018; IEEE: New York, NY, USA, 2022. [Google Scholar]
- An, Q.; Rahman, S.; Zhou, J.; Kang, J.J. A Comprehensive Review on Machine Learning in Healthcare Industry: Classification, Restrictions, Opportunities and Challenges. Sensors 2023, 23, 4178. [Google Scholar] [CrossRef]
- Guo, C.; Lu, M.; Chen, J. An evaluation of time series summary statistics as features for clinical prediction tasks. BMC Med. Inform. Decis. Mak. 2020, 20, 48. [Google Scholar] [CrossRef]
- Raghuwanshi, B.S.; Shukla, S. Classifying imbalanced data using SMOTE based class-specific kernelized ELM. Int. J. Mach. Learn. Cybern. 2021, 12, 1255–1280. [Google Scholar] [CrossRef]
- Ali, F.; Zhou, Y.; Hussain, K.; Nair, P.K.; Ragavan, N.A. Does higher education service quality effect student satisfaction, image and loyalty? A study of international students in Malaysian public universities. Qual. Assur. Educ. 2016, 24, 70–94. [Google Scholar] [CrossRef]
- Ramos-González, P.L.; Chabi-Jesus, C.; Guerra-Peraza, O.; Tassi, A.D.; Kitajima, E.W.; Harakava, R.; Salaroli, R.B.; Freitas-Astúa, J. Citrus leprosis virus N: A new dichorhavirus causing Citrus Leprosis disease. Phytopathology 2017, 107, 963–976. [Google Scholar] [CrossRef] [PubMed]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef]
- Powers, D.M.W. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness & correlation. J. Mach. Learn. Technol. 2011, 2, 37–63. [Google Scholar] [CrossRef]
- Beil, M.; Fronczek, J.; Kogan, Y.; Moreno, R.P.J.; Flaatten, H.; Guidet, B.; de Lange, D.; Leaver, S.; Nachshon, A.; van Heerden, P.V.; et al. Prognosticating the outcome of intensive care in older patients—A narrative review. Ann. Intensiv. Care 2024, 14, 97. [Google Scholar] [CrossRef]
- Bruno, R.R.; Wernly, B.; Bagshaw, S.M.; Boogaard, M.v.D.; Darvall, J.N.; De Geer, L.; Miguelena, P.R.d.G.; Heyland, D.K.; Hewitt, D.; Hope, A.A.; et al. The Clinical Frailty Scale for mortality prediction of old acutely admitted intensive care patients: A meta-analysis of individual patient-level data. Ann. Intensiv. Care 2023, 13, 37. [Google Scholar] [CrossRef]
- Yeh, Y.-C.; Kuo, Y.-T.; Kuo, K.-C.; Cheng, Y.-W.; Liu, D.-S.; Lai, F.; Kuo, L.-C.; Lee, T.-J.; Chan, W.-S.; Chiu, C.-T.; et al. Early prediction of mortality upon intensive care unit admission. BMC Med Inform. Decis. Mak. 2024, 24, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Minne, L.; Ludikhuize, J.; De Jonge, E.; De Rooij, S.; Abu-Hanna, A. Prognostic models for predicting mortality in elderly ICU patients: A systematic review. Intensiv. Care Med. 2011, 37, 1258–1268. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xie, Z.; Zhang, Y.; Huang, J.; Kuang, L.; Li, X.; Li, H.; Zou, Y.; Xiang, T.; Yin, N.; et al. Machine learning for predicting in-hospital mortality in elderly patients with heart failure combined with hypertension: A multicenter retrospective study. Cardiovasc. Diabetol. 2024, 24, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Kumamaru, H.; Hsieh, J.L.; Halpern, E.F.; Rybicki, F.J.; Brink, J.A. Predicting mortality of older patients admitted to ICU using machine learning models. J. Am. Med. Inform. Assoc. 2020, 27, 599–606. [Google Scholar] [CrossRef]
- Rahman, A.; Debnath, T.; Kundu, D.; Khan, S.I.; Aishi, A.A.; Sazzad, S.; Sayduzzaman, M.; Band, S.S. Machine learning and deep learning-based approach in smart healthcare: Recent advances, applications, challenges and opportunities. AIMS Public Health 2024, 11, 58–109. [Google Scholar] [CrossRef]
- Badawy, M.; Ramadan, N.; Hefny, H.A. Healthcare predictive analytics using machine learning and deep learning techniques: A survey. J. Electr. Syst. Inf. Technol. 2023, 10, 40. [Google Scholar] [CrossRef]
- Johnson, E.S.; Dickerson, J.F.; Vollmer, W.M.; Rowley, A.M.; Ritenbaugh, C.; Deyo, R.A.; DeBar, L. The feasibility of matching on a propensity score for acupuncture in a prospective cohort study of patients with chronic pain. BMC Med. Res. Methodol. 2017, 17, 42. [Google Scholar] [CrossRef]
- PatientView. Pharma and ESG: The Patient Perspective 2024 Survey Results, February 2025. Available online: https://www.patient-view.com/pharma-esg-patient-perspective-2024/ (accessed on 1 May 2025).
- Lo, I.L.; Lio, C.F.; Cheong, H.H.; Lei, C.I.; Cheong, T.H.; Zhong, X.; Tian, Y.; Sin, N.N. Evaluation of SARS-CoV-2 RNA shedding in clinical specimens and clinical characteristics of 10 patients with COVID-19 in Macau. Int. J. Biol. Sci. 2020, 16, 1698–1707. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lai, F.Y.; Gartner, C.; Hall, W.; Carter, S.; O'BRien, J.; Tscharke, B.J.; Been, F.; Gerber, C.; White, J.; Thai, P.; et al. Measuring spatial and temporal trends of nicotine and alcohol consumption in Australia using wastewater-based epidemiology. Addiction 2018, 113, 1127–1136. [Google Scholar] [CrossRef]
Overall | Dead at ICU | Alive at ICU | p-Value 1 | |
---|---|---|---|---|
General | 23,517 (100%) | 3327 (14%) | 20,192 (86%) | 0.21 |
Gender (Male) | 12,721 (54%) | 1751 (14%) | 10,970 (86%) | |
Gender (Female) | 10,798 (46%) | 1576 (15%) | 9222 (85%) | |
Age | <0.001 ** | |||
Age (65–74 years old) | 9820 (42%) | 1072 (11%) | 8748 (89%) | |
Age (75–84 years old) | 10,477 (45%) | 1626 (16%) | 8851 (84%) | |
Age (Over 85 years old) | 3220 (14%) | 629 (20%) | 2591 (80%) | |
Insurance | <0.05 * | |||
Medicaid | 315 (1%) | 41 (13%) | 274 (87%) | |
Private | 2233 (9%) | 299 (13%) | 1934 (87%) | |
Medicare | 20,897 (89%) | 2971 (14%) | 17,926 (86%) | |
Government | 46 (0%) | 9 (20%) | 37 (80%) | |
Self-Pay | 26 (0%) | 7 (27%) | 19 (73%) | |
Marital Status | <0.05 * | |||
Separated | 1428 (6%) | 176 (12%) | 1252 (88%) | |
Single | 3431 (15%) | 456 (13%) | 2975 (87%) | |
Married | 12,350 (53%) | 1654 (13%) | 10,696 (87%) | |
Widowed | 5236 (22%) | 731 (14%) | 4505 (86%) | |
Ethnicity | <0.05 * | |||
Asian | 521 (2%) | 91 (17%) | 430 (83%) | |
Black | 4400 (19%) | 727 (17%) | 3673 (83%) | |
White | 18,113 (77%) | 2443 (13%) | 15,670 (87%) | |
Multi Race Ethnicity | 483 (2%) | 66 (14%) | 417 (86%) |
Adaboost | Bagging | Catboost | GB | SVC | |
---|---|---|---|---|---|
3 Days | |||||
AUROC | 0.7773 | 0.7981 | 0.7022 | 0.7748 | 0.7856 |
Precision | 0.1683 | 0.1567 | 0.2706 | 0.1667 | 0.1451 |
Recall | 0.7170 | 0.7916 | 0.3175 | 0.7132 | 0.7827 |
F1 | 0.2727 | 0.2615 | 0.2920 | 0.2702 | 0.2448 |
Accuracy | 0.8323 | 0.8040 | 0.9061 | 0.8310 | 0.7882 |
30 Days | |||||
AUROC | 0.7354 | 0.7424 | 0.7185 | 0.7315 | 0.7314 |
Precision | 0.3372 | 0.3232 | 0.4014 | 0.3368 | 0.3312 |
Recall | 0.7029 | 0.7490 | 0.5834 | 0.6920 | 0.7005 |
F1 | 0.4555 | 0.4511 | 0.4751 | 0.4528 | 0.4496 |
Accuracy | 0.7584 | 0.7377 | 0.8147 | 0.7596 | 0.7534 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, F.-Y.; Lee, C.-C.; Chien, T.-N. Applying Smart Healthcare and ESG Concepts to Optimize Elderly Health Management. Sustainability 2025, 17, 6091. https://doi.org/10.3390/su17136091
Lin F-Y, Lee C-C, Chien T-N. Applying Smart Healthcare and ESG Concepts to Optimize Elderly Health Management. Sustainability. 2025; 17(13):6091. https://doi.org/10.3390/su17136091
Chicago/Turabian StyleLin, Feng-Yi, Chin-Chiu Lee, and Te-Nien Chien. 2025. "Applying Smart Healthcare and ESG Concepts to Optimize Elderly Health Management" Sustainability 17, no. 13: 6091. https://doi.org/10.3390/su17136091
APA StyleLin, F.-Y., Lee, C.-C., & Chien, T.-N. (2025). Applying Smart Healthcare and ESG Concepts to Optimize Elderly Health Management. Sustainability, 17(13), 6091. https://doi.org/10.3390/su17136091