Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (118)

Search Parameters:
Keywords = esterified compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8289 KB  
Article
Mining the Impact of Mechanical-Stamping Heterogeneity on the Macro- and Micro-Levels of Nongxiangxing daqu
by Muwen He, Xiu Zhang, Ran Zhang, Bo Zhang, Rongqing Zhou, Chongde Wu, Chao Wang, Yi Dong and Yao Jin
Foods 2025, 14(21), 3700; https://doi.org/10.3390/foods14213700 - 29 Oct 2025
Viewed by 191
Abstract
In the production of modern nongxiangxing daqu, mechanical stamping is utilized to compact raw materials into daqu bricks. Nevertheless, variations in stamping frequencies may modify the initial physicochemical properties of daqu, which in turn influence its physicochemical and biochemical parameters, and [...] Read more.
In the production of modern nongxiangxing daqu, mechanical stamping is utilized to compact raw materials into daqu bricks. Nevertheless, variations in stamping frequencies may modify the initial physicochemical properties of daqu, which in turn influence its physicochemical and biochemical parameters, and ultimately affect the quality of baijiu. This study systematically evaluated daqu samples prepared with different stamping frequencies (2 to 5 cycles) in terms of (1) physicochemical and biochemical parameters, (2) volatile compound profiles, (3) microbial community dynamics, and (4) interspecific interactions. The results showed that with the increase in stamping frequency, the moisture content, fermentative power, esterifying power, and liquefying power of daqu were all enhanced, with respective increases of 20.11%, 67.16%, 12.24-fold, and 36.27%. Specifically, the relative abundances of Weissella, Lactobacillus, Aspergillus, and Rasamsonia in daqu exhibited a significant increase with the elevation of pressing cycles. With the reduction in stamping frequency, the primary producers of flavor compounds shifted gradually from bacteria to fungi. These findings verify that stamping frequency exert a substantial regulatory impact on the physicochemical and biochemical parameters, microbial community dynamics, accumulation of flavor substances, and abundance of functional enzymes in daqu. Through a systematic elucidation of the mechanistic links between stamping parameters and daqu functionalities, this research offers actionable insights for optimizing industrial pressing processes and establishes a scientific basis for modern daqu production. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Graphical abstract

11 pages, 1466 KB  
Article
Purification of Rosmarinic Acid from Rosemary Extract and the Evaluation of the Antibacterial and Antioxidant Effects of Rosmarinic Acid and Its Derivatives
by Ai-Jing Chen, Jin Lv, Yu Feng, Chang-Jia Mo, Cheng-Wei Yang and He Ni
Separations 2025, 12(11), 294; https://doi.org/10.3390/separations12110294 - 26 Oct 2025
Viewed by 619
Abstract
Rosmarinic acid (RA), a natural polyphenolic hydroxyl compound found from plants, exhibits many biological activities. This study reported an efficient purification method for RA from the water-soluble rosemary extract. By employing silica gel column chromatography combined with liquid–liquid extraction, the water-soluble extract of [...] Read more.
Rosmarinic acid (RA), a natural polyphenolic hydroxyl compound found from plants, exhibits many biological activities. This study reported an efficient purification method for RA from the water-soluble rosemary extract. By employing silica gel column chromatography combined with liquid–liquid extraction, the water-soluble extract of rosemary was refined to yield RA with a purity of 92.85 ± 3.18%. To further enhance the potential of RA as a natural preservative, the prepared RA was esterified to produce methyl rosmarinate (RA-me) and propyl rosmarinate (RA-pro). The antioxidant and antibacterial activities of RA and its derivatives were subsequently evaluated. The results indicated that RA and its esterified derivatives exhibited more pronounced antibacterial efficacy against the Gram-positive bacteria than Gram-negative bacteria. Moreover, the antibacterial activity of the ester derivatives was enhanced compared to that of RA. RA and RA-me exhibited comparable antioxidant activity, which was superior to that of RA-pro. In summary, this study established an effective purification strategy for RA, laying a foundation for developing better natural, non-toxic preservatives with antibacterial activity. Full article
Show Figures

Figure 1

18 pages, 2351 KB  
Article
Enhancing Summer Tea Quality Through Integrated Shaking, Freezing, and Rolling Processing
by Changlian Wu, Huang Li, Qingxiu Lin, Zhong Wang, Chengzhe Zhou, Cheng Zhang and Yuqiong Guo
Foods 2025, 14(18), 3159; https://doi.org/10.3390/foods14183159 - 10 Sep 2025
Cited by 1 | Viewed by 700
Abstract
One of the main factors constraining the growth of the tea business is the low use rate of summer tea. To enhance the utilization rate and improve the quality of summer tea, this study innovatively integrated shaking, freezing, and rolling into the traditional [...] Read more.
One of the main factors constraining the growth of the tea business is the low use rate of summer tea. To enhance the utilization rate and improve the quality of summer tea, this study innovatively integrated shaking, freezing, and rolling into the traditional processing methods of white tea. Processing parameters were optimized through single-factor experiments combined with an L9(34) orthogonal experimental design. The quality of summer teas was systematically evaluated using sensory analysis, gas chromatography–mass spectrometry, and high-performance liquid chromatography. This study found that the optimal processing for summer tea was as follows: fresh leaves, room-temperature cold-air withering for 6.5 h, shaking at 10 rpm for 10 min, −20 °C freezing for 5 h, 25% strength rolling for 9 min, and drying at 75 °C for 2 h. The relative content of esterified catechins in summer tea produced by the optimal processing method was reduced by 14.62% compared with the control group. There were alterations in the content of amino acid components, with fresh and sweet amino acids increasing by 4.96% and 2.95%, respectively, and bitter amino acids reducing by 2.15%. Furthermore, γ-aminobutyric acid and L-theanine contents increased by 0.51% and 5.77%, respectively. Five characteristic volatile compounds were identified, namely, methyl salicylate, phenethyl formate, linalool, dimethyl sulfide, and isobutyraldehyde. The volatile profile was dominated by floral and fruity notes, except for dimethyl sulfide, which exhibited a distinct cooked corn-like aroma characteristic. This process was shown to improve the quality of summer tea. The results of this study provide a metabolite-level grounds for improving the quality of summer tea. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

18 pages, 10021 KB  
Communication
External Glands of Nepenthes Traps: Structure and Potential Function
by Bartosz J. Płachno, Małgorzata Kapusta, Marcin Feldo, Piotr Stolarczyk, Karol Małota and Krzysztof Banaś
Int. J. Mol. Sci. 2025, 26(16), 7788; https://doi.org/10.3390/ijms26167788 - 12 Aug 2025
Cited by 1 | Viewed by 1527
Abstract
Nepenthes L. species (tropical pitcher plants) are a classic example of carnivorous plants. The Nepenthes traps are highly specialized pitchers with a zoned structure. On the outer surface of the pitcher, there are nectaries and various types of trichomes, including glandular trichomes. The [...] Read more.
Nepenthes L. species (tropical pitcher plants) are a classic example of carnivorous plants. The Nepenthes traps are highly specialized pitchers with a zoned structure. On the outer surface of the pitcher, there are nectaries and various types of trichomes, including glandular trichomes. The main aim of our study was to examine these glandular trichome structures and check the distribution of the homogalacturonans (HGs) and hemicelluloses in the cell wall of trichome cells. The structure of Nepenthes bicalcarata Hook. f. and Nepenthes albomarginata T.Lobb ex Lindl. trichomes was analyzed using light and electron microscopy. The antibodies were used against the wall components [anti-pectic homogalacturonans (HGs): JIM5 (low methylesterified HGs), LM19 (low methylesterified HGs), CCRC-M38 (a fully de-esterified HGs), JIM7 (highly esterified HGs), LM20 (esterified HGs), LM5 (galactan) and anti-hemicelluloses: LM25 (xyloglucan), LM15 (galactoxyloglucan), CCRC-M138 (xylan), and LM10 antibody (xylan)]. The localization of the examined compounds was determined using immunohistochemistry techniques. The presence of endodermal and transfer cells supports the idea that peltate trichomes actively transport solutes. Also, the presence of pectic homogalacturonans and hydrophilic hemicelluloses indicates that water or aqueous solutions are transported through the trichomes’ cell walls. Our study supports the idea that these trichomes may act as hydathodes or hydropotes. Full article
Show Figures

Figure 1

13 pages, 3191 KB  
Article
Assessment of Fatty Acid Concentrations Among Blood Matrices
by Ysphaneendra Mallimoggala, Monalisa Biswas, Leslie Edward S. Lewis, Vijetha Shenoy Belle, Arjun Asok and Varashree Bolar Suryakanth
Metabolites 2025, 15(7), 482; https://doi.org/10.3390/metabo15070482 - 17 Jul 2025
Cited by 1 | Viewed by 674
Abstract
Background/Objectives: Fatty acids, the building blocks of lipids, contribute to numerous crucial life processes and are implicated in numerous disease pathologies. Circulating fatty acids can be extracted/trans-esterified to their respective methyl ester forms and quantified from a variety of biological samples. This [...] Read more.
Background/Objectives: Fatty acids, the building blocks of lipids, contribute to numerous crucial life processes and are implicated in numerous disease pathologies. Circulating fatty acids can be extracted/trans-esterified to their respective methyl ester forms and quantified from a variety of biological samples. This study aims to identify quantifiable fatty acids (through alkali trans-esterification) in human circulation, assess the correlation of the detectable fatty acid methyl esters (FAMEs) compounds between whole blood, serum and plasma matrices and propose the most ideal matrix for quantification of FAMEs. Methods: This anonymised study was carried out in a tertiary hospital after obtaining ethical approval and involved analysis of residual fasting whole blood, serum and plasma samples obtained from 20 apparently healthy subjects attending the routine health check services at the study centre. Fatty acids were converted to its methyl ester form by methanolic KOH trans-esterification and subjected to GCMS analysis. Paired t test, Pearsons’s correlation, linear regression and Bland Altman test were employed to assess the agreeability between matrices. Results: 9 out of 37 FAME compounds were detected in all three matrices. Strong correlations and statistically significant regression equations were obtained for the 9 compounds between plasma and serum matrices. Undecanoate, pentadecanoate, linolenate, and palmitate levels were lowest in plasma, while stearate, heptadecanoate levels were highest in whole blood. Myristate was highest in serum, dodecanoate was highest in plasma while docosahexanoate was found to be comparable in all three matrices. Methyl ester forms of dodeconate, myristate, pentadecanoate, palmitate, heptadecanoate, stearate, and linolenate were observed in higher concentrations in plasma when compared to serum. Conclusions: The current study shows similar & correlating FAME concentrations between serum and plasma matrix; however, whole blood FAME concentrations appear significantly different. Plasma serves as the most ideal matrix for detection and quantification of circulating fatty acids. Full article
Show Figures

Figure 1

19 pages, 754 KB  
Article
Impact of Dietary Enrichment with Omega-3 Polyunsaturated Fatty Acids from Extruded Linseed and Padina pavonica Algae Extract on Growth Performance and Metabolic Status in Fattening Rabbits
by Alda Quattrone, Doriana Beqiraj, Nour Elhouda Fehri, Rafik Belabbas, Daniele Vigo, Laura Menchetti, Olimpia Barbato, Sebastiana Failla, Massimo Faustini, Shereen Salama Ghoneim, Bayrem Jemmali, Simona Mattioli, Michela Contò, Albana Munga, Alessandro Dal Bosco, Imène Ben Salem, Enkeleda Ozuni, Mehmet Erman Or, Egon Andoni, Fabio Gualazzi, Marta Castrica, Gabriele Brecchia and Giulio Curoneadd Show full author list remove Hide full author list
Animals 2025, 15(14), 2085; https://doi.org/10.3390/ani15142085 - 15 Jul 2025
Viewed by 722
Abstract
This study evaluated the effects of dietary supplementation with omega-3 polyunsaturated fatty acids from extruded linseed, alone and combined with Padina pavonica algae extract, on growth performance and metabolic status in fattening rabbits. Sixty New Zealand White rabbits were assigned to three groups, [...] Read more.
This study evaluated the effects of dietary supplementation with omega-3 polyunsaturated fatty acids from extruded linseed, alone and combined with Padina pavonica algae extract, on growth performance and metabolic status in fattening rabbits. Sixty New Zealand White rabbits were assigned to three groups, as follows: control (CNT), L (5% linseed), and LPP (3.5% linseed + 0.2% algae extract) from weaning (37 days) to slaughter (85 days). Productive performance was assessed through body weight (BW), average daily gain (ADG), feed conversion ratio (FCR), and feed intake (FI). Blood was sampled at weaning, 60 days, and slaughter and analyzed for insulin, leptin, cortisol, thyroid hormones (T3, T4), glucose, and non-esterified fatty acids (NEFAs). The L group showed significantly higher ADG (41.0 ± 1 g/d) and improved FCR (4.1 ± 0.2) compared to LPP (ADG: 37 ± 1 g/d, FCR: 4.6 ± 0.2; p = 0.001). No differences were observed in final BW or FI among groups (p < 0.001). Insulin peaked at 60 days across all groups (p < 0.001), with the LPP group showing the lowest levels (9.8 ± 0.9 µUI/mL; p = 0.043). T3 and T4 increased significantly with age (p < 0.001), and the T3/T4 ratio varied by diet and time (p = 0.005). Cortisol rose only at slaughter (p < 0.001) and negatively correlated with insulin and thyroid hormones. The results suggest that omega-3-rich nutraceuticals can enhance growth performance without disrupting metabolic balance and may modulate specific hormonal responses due to their bioactive compounds. Full article
Show Figures

Figure 1

12 pages, 1360 KB  
Article
Pharmacological Effect of Water-Extractable (Poly)Phenolic Polysaccharide–Protein Complexes from Prunus spinosa L. Wild Fruits
by Šutovská Martina, Miroslava Molitorisová, Jozef Mažerik, Iveta Uhliariková and Peter Capek
Int. J. Mol. Sci. 2025, 26(13), 5993; https://doi.org/10.3390/ijms26135993 - 22 Jun 2025
Viewed by 648
Abstract
Wild fruits are distributed worldwide, but are consumed mainly in developing countries, where they are an important part of the diet. Still, in many other countries, they are consumed only locally. Blackthorn (Prunus spinosa L.) is an underutilized species rich in fibres [...] Read more.
Wild fruits are distributed worldwide, but are consumed mainly in developing countries, where they are an important part of the diet. Still, in many other countries, they are consumed only locally. Blackthorn (Prunus spinosa L.) is an underutilized species rich in fibres and phenolic compounds, making it suitable as a potential functional food for supporting human health. Cold (Cw) and hot (Hw) water-extracted (poly)phenolic polysaccharide–protein complexes, differing in carbohydrate, phenolic and protein contents, were isolated from blackthorn fruits and characterized. The complexes exhibited molecular weights of 235,200 g/mol (Cw) and 218,400 g/mol (Hw), and were rich in pectic polymers containing galacturonic acid, arabinose, galactose and rhamnose, indicating a dominance of homogalacturonan (HG) [→4)-α-D-GalA(1→4)-α-D-GalA(1→]n and a low content of RGI [→2)-α-L-Rha(1→4)-α-D-GalA(1→2)-α-L-Rha(1→]n sequences associated with arabinan or arabinogalactan. Minor content of glucan, probably starch-derived, was also solubilized. Pectic polysaccharides were highly esterified and partly acetylated. Pharmacological testing was performed in male Dunkin–Hartley guinea pigs, a model with human-like airway reflexes. Both complexes affected airway defense mechanisms. Particularly, Hw significantly suppressed citric acid-induced cough, similar to codeine, and reduced bronchoconstriction comparably to salbutamol in a dose-dependent manner. These findings support further exploration of Hw as a natural antitussive and bronchodilatory agent. Full article
Show Figures

Figure 1

20 pages, 1713 KB  
Review
Rosmarinic Acid as Bioactive Compound: Molecular and Physiological Aspects of Biosynthesis with Future Perspectives
by Dragana Jakovljević, Marzena Warchoł and Edyta Skrzypek
Cells 2025, 14(11), 850; https://doi.org/10.3390/cells14110850 - 5 Jun 2025
Cited by 5 | Viewed by 1760
Abstract
The ester of caffeic acid with α-hydroxydihydrocaffeic acid, named rosmarinic acid (α-o-caffeoyl-3,4-dihydroxyphenyllactic acid; RA) can occur as oligomeric molecules, or in free, esterified, and glycosidic forms. Although it is commonly found among the members of the plants from the Lamiaceae (mints) and Boraginaceae [...] Read more.
The ester of caffeic acid with α-hydroxydihydrocaffeic acid, named rosmarinic acid (α-o-caffeoyl-3,4-dihydroxyphenyllactic acid; RA) can occur as oligomeric molecules, or in free, esterified, and glycosidic forms. Although it is commonly found among the members of the plants from the Lamiaceae (mints) and Boraginaceae (borages) families, only certain plant species produce a comparatively high concentration of RA. This valuable bioactive compound exhibits anti-cancer, anti-angiogenic, antioxidant, anti-inflammatory, antiviral, and antimicrobial properties, among others. As it is difficult to obtain high quantities of RA from natural sources, and since chemical manufacturing is costly and challenging, various biotechnological methods have recently been investigated to boost RA production. Plant cell tissue culture has been used to promote RA production in various plant species, particularly medicinal ones, with elicitation being the most commonly used technique. This review explores the main steps involved in RA biosynthesis in plants, including the molecular mechanisms and physiological alterations underlying its function, along with the primary mechanisms of RA accumulation in response to elicitation. Recent progress in synthetic biology-based RA synthesis, as well as metabolic engineering techniques to enhance the industrial production of this valuable bioactive constituent, are also discussed. Full article
(This article belongs to the Special Issue Antioxidants in Redox Homeostasis of Plant Development)
Show Figures

Figure 1

17 pages, 1089 KB  
Article
Development of Value-Added Chicken Burgers by Adding Pumpkin Peel Powder as a Sustainable Ingredient
by Nicola Pinna, Federica Ianni, Michela Codini, Beniamino Terzo Cenci-Goga, Marco Misuraca, Egidia Costanzi, Lina Cossignani and Francesca Blasi
Antioxidants 2025, 14(6), 648; https://doi.org/10.3390/antiox14060648 - 28 May 2025
Viewed by 721
Abstract
Worldwide, there is a growing need to valorize agri-food waste containing bioactive compounds to fit into the circular economy action plan approved in Europe. In this paper, the carotenoids of peel powder of pumpkins (PPP) of five varieties (Hokkaido, Lunga di Napoli, Mantovana, [...] Read more.
Worldwide, there is a growing need to valorize agri-food waste containing bioactive compounds to fit into the circular economy action plan approved in Europe. In this paper, the carotenoids of peel powder of pumpkins (PPP) of five varieties (Hokkaido, Lunga di Napoli, Mantovana, Moscata di Provenza, and Violina rugosa) were characterized by spectrophotometric (antioxidant activity) and chromatographic analyses. PPP from the Hokkaido variety showed high levels of carotenoids (2993.90 μg β-carotene equivalents/g). They were mainly composed of mono- (9065.35 μg zeaxanthin dipalmitate equivalents/g) and di-esterified (1832.74 μg zeaxanthin dipalmitate equivalents/g) xanthophylls. It also showed high antioxidant activity (ABTS 2036.02 μg Trolox equivalents/g). Therefore, it was used as a functional plant ingredient (4%) to prepare chicken burgers (100, 70, and 50% chicken meat). Physical-chemical, microbiological, color, and sensorial analyses of fortified chicken burgers were carried out. The product with 70% chicken meat and 4% PPP obtained the highest overall acceptability score (5.95 ± 0.25). The results confirm that the addition of PPP could represent a valid approach to increasing the health properties and acceptability of burgers, even if a larger assessor size is necessary. Full article
(This article belongs to the Special Issue Antioxidants from Sustainable Food Sources)
Show Figures

Graphical abstract

16 pages, 4821 KB  
Article
Red Wine Grape Pomace Restores Gut Barrier Function and Improves Survival in Diet-Induced Ischemic Heart Disease
by Katherine Rivera, Leticia González, Laura Parra, Juan E. Oyarzún, Alina Concepción-Alvarez, Adriano Costa de Camargo, Raquel Bridi, Attilio Rigotti and Marcelo E. Andia
Antioxidants 2025, 14(5), 574; https://doi.org/10.3390/antiox14050574 - 10 May 2025
Cited by 1 | Viewed by 1285
Abstract
Red wine grape pomace (RWGP), a winemaking by-product rich in phenolics, flavonoids, and dietary fiber, has shown promise in mitigating cardiovascular disease (CVD), however, its mechanisms of action remain incompletely understood. This study comprehensively profiled the phenolic composition of RWGP—including free, esterified, etherified, [...] Read more.
Red wine grape pomace (RWGP), a winemaking by-product rich in phenolics, flavonoids, and dietary fiber, has shown promise in mitigating cardiovascular disease (CVD), however, its mechanisms of action remain incompletely understood. This study comprehensively profiled the phenolic composition of RWGP—including free, esterified, etherified, and insoluble-bound fractions—and evaluated the effects of RWGP dietary supplementation on gut barrier integrity, inflammation, oxidative stress, and survival in SR-B1−/−ApoE-R61h/h mice, a model of diet-induced lethal ischemic heart disease. RWGP supplementation significantly improved survival rates and restored gut barrier function, as evidenced by lower plasma FITC-dextran and LPS levels, increased circulating ZO-1 levels, and reduced histopathological colon damage. In addition, RWGP reduced pro-inflammatory cytokines (IL-1β) and showed a trend toward attenuating systemic oxidative stress (TBARS). Analysis of phenolic compounds indicated a significant presence of insoluble-bound phenolics. Nevertheless, the beneficial effects observed are likely attributable to the synergistic actions of RWGP’s complex phytochemical and fiber composition. These results highlight RWGP’s potential as a sustainable, gut-targeted functional food ingredient for CVD prevention and management. Full article
Show Figures

Figure 1

21 pages, 3914 KB  
Article
Effect of Ultra-High Pressure on the Extraction of the Free, Esterified, and Bound Phenolics from Dendrobium fimbriatum Hook: Chemical Constituents and Antioxidant Ability
by Qinge Su, Junbo Hu, Huimin Cui, Fangyuan Zheng, Yaping Liu, Zhengxuan Wang and Guiguang Cheng
Molecules 2025, 30(8), 1836; https://doi.org/10.3390/molecules30081836 - 19 Apr 2025
Viewed by 762
Abstract
This study explores the antioxidant activity and antioxidant mechanism of phenolic compounds (including free (FP), esterified (EP), and bound phenolic (BP)) from Dendrobium fimbriatum Hook (DFH) stems, before and after ultra-high pressure (UHP) treatment. A total of 374 compounds were identified, with 149 [...] Read more.
This study explores the antioxidant activity and antioxidant mechanism of phenolic compounds (including free (FP), esterified (EP), and bound phenolic (BP)) from Dendrobium fimbriatum Hook (DFH) stems, before and after ultra-high pressure (UHP) treatment. A total of 374 compounds were identified, with 149 showing significant differences in DFH phenolic extracts before and after UHP treatment. UHP treatment significantly increased the total phenolic content (TPC) and total flavonoid content (TFC) and enhanced antioxidant activity in vitro. Particularly, the UEP-DFH, IC50 values in ABTS and DPPH were reduced by 49.6% and 64.1%, respectively. In H2O2-treated HepG2 cells, the extracts demonstrated significant cytoprotective effects, including increased cell viability, ROS reduction, and enhanced GSH levels by 17.8% (UFP-DFH) and 12.5% (UEP-DFH). The activities of GS, GCL, GR, GSH-Px, SOD, CAT, NQO1, and HO-1 were also elevated in UHP-treated extracts. DAPI staining indicated that the extracts promoted nuclear Nrf2 expression, particularly UFP-DFH and UEP-DFH. Molecular docking indicated that vanillic acid could competitively bind to the Keap1-Kelch domain, facilitating activation of the antioxidant pathway. Overall, UHP treatment enhanced both extraction efficiency and antioxidant activity, making it a promising method for improving the bioactivity of DFH in the food and functional food industries. Full article
Show Figures

Figure 1

17 pages, 3095 KB  
Article
Improving the Sensory Quality of Black Tea by Blending Varieties During Processing
by Wenxue Chen, Jiezhong Zan, Linfeng Yan, Haibo Yuan, Peiqiang Wang, Yongwen Jiang and Hongkai Zhu
Foods 2025, 14(6), 941; https://doi.org/10.3390/foods14060941 - 10 Mar 2025
Cited by 4 | Viewed by 2366
Abstract
Tea blending technology is based on finished tea. Blending fresh leaves during processing has not been proposed and investigated anywhere. This study investigates the impact of blending fresh leaves from different varieties on the flavor quality of black tea. The main taste components, [...] Read more.
Tea blending technology is based on finished tea. Blending fresh leaves during processing has not been proposed and investigated anywhere. This study investigates the impact of blending fresh leaves from different varieties on the flavor quality of black tea. The main taste components, including catechins, theaflavins, and free amino acids, were analyzed using HPLC, while the volatile components were analyzed using GC-MS. The results show that adding fresh Jinguanyin or Jinxuan leaves to Fudingdabai can regulate the ratio of esterified to non-esterified catechins, increase the content of theaflavins and amino acids, and positively impact the strength and freshness of the black tea. The sensory evaluation results show that the taste scores of FJG (black tea made from the blend of fresh Fudingdabai and Jinguanyin tea leaves) (92.14 ± 0.41 b) and FJX (black tea made from the blend of fresh Fudingdabai and Jinxuan tea leaves) (93.80 ± 0.19 a) are significantly higher than those of Fudingdabai (90.05 ± 0.31 d), Jinguanyin (86.10 ± 0.45 e), and Jinxuan (91.03 ± 0.26 c). Furthermore, adding fresh Jinguanyin or Jinxuan leaves to Fudingdabai can also enhance the floral compounds in the black tea, specifically phenylacetaldehyde, linalool, benzyl alcohol, and oxidized linalool (linalool-type pyran), which make important contributions to the floral aroma of the black tea. Conclusions: Blending fresh leaves for processing can enhance the sensory quality of black tea. This work proposes new insights and methods to enhance black tea sensory quality via the blending of fresh tea leaves with different varieties during processing. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

17 pages, 4405 KB  
Article
Chemical Characterization of Bioactive Compounds in Extracts and Fractions from Litopenaeus vannamei Muscle
by Sandra Carolina De La Reé-Rodríguez, María Jesús González, Ingrid Fernández, José Luis Garrido, Erika Silva-Campa, Norma Violeta Parra-Vergara, Carmen María López-Saiz and Isabel Medina
Mar. Drugs 2025, 23(2), 59; https://doi.org/10.3390/md23020059 - 27 Jan 2025
Viewed by 1803
Abstract
Marine organisms are a vital source of biologically active compounds. Organic extracts from the muscle of the Pacific white shrimp (L. vannamei) have shown antiproliferative effects on tumor cells, including breast adenocarcinoma. This study aimed to analyze these extracts’ composition and [...] Read more.
Marine organisms are a vital source of biologically active compounds. Organic extracts from the muscle of the Pacific white shrimp (L. vannamei) have shown antiproliferative effects on tumor cells, including breast adenocarcinoma. This study aimed to analyze these extracts’ composition and confirm their specificity for breast adenocarcinoma cells without harming normal cells. An organic chloroform extract from L. vannamei muscle was divided using a solvent partition procedure with methanol and hexane. The methanolic partition was fractionated through an open preparative liquid chromatography column to isolate compounds with biological activity, that were later tested on MDA-MB-231 (breast adenocarcinoma), and recently tested on MCF10-A (non-cancerous breast epithelial cells). Cells incubated with these fractions were assessed for viability and morphological changes using fluorescence confocal microscopy. Fractions F#13 and F#14 reduced MDA-MB-231 cancer cell viability at 100 µg/mL without affecting non-cancerous MCF-10A cells, inducing apoptosis-related changes in cancer cells. These fractions contained EPA and DHA free fatty acids, specifically F#13 contained free and esterified astaxanthin as well. The high levels of free linoleic acid 18:2 ω-6, EPA, and DHA (in a 2:1 ratio, EPA:DHA), along with free and esterified astaxanthin in F#13, significantly reduced breast adenocarcinoma cell viability, nearly to that achieved by cisplatin, a chemotherapy drug. Full article
Show Figures

Figure 1

19 pages, 8889 KB  
Communication
Cell Wall Microdomains Analysis in the Quadrifids of Utricularia dichotoma
by Bartosz J. Płachno, Małgorzata Kapusta, Marcin Feldo and Piotr Świątek
Int. J. Mol. Sci. 2025, 26(2), 832; https://doi.org/10.3390/ijms26020832 - 20 Jan 2025
Cited by 1 | Viewed by 1440
Abstract
Carnivorous plants have fascinated botanists and ecologists with their various unusual adaptations in organ structure, physiology, and complex interactions with other organisms since the time of Charles Darwin. Species of the genus Utricularia (bladderworts, family Lentibulariaceae) are carnivorous plants that prey mainly on [...] Read more.
Carnivorous plants have fascinated botanists and ecologists with their various unusual adaptations in organ structure, physiology, and complex interactions with other organisms since the time of Charles Darwin. Species of the genus Utricularia (bladderworts, family Lentibulariaceae) are carnivorous plants that prey mainly on invertebrates using traps (bladders) of leaf origin. In the traps, there are glandular trichomes called quadrifids, which produce digestive enzymes and absorb the products of prey digestion. These quadrifids are unique due to their highly complex glandular cell structure; hence, they are an excellent model for studying the cell wall and its specialization. The main aim of the study was to investigate the presence and distribution of homogalacturonans (HGs) and hemicelluloses in the cell walls of trichome cells and especially in cell wall ingrowths in the quadrifid cells. The following antibodies were used against the wall components: anti-HGs (homogalacturonans) —JIM5 (low methylesterified HGs), JIM7 (highly esterified HGs), LM19 (low methylesterified HGs), CCRC-M38 (a fully de-esterified HG), LM5 (galactan); anti-hemicelluloses—LM25 (galactoxyloglucan; XXLLG, XXLG, XXXG modules of xyloglucans), LM15 (xyloglucan), CCRC-M138 (xylan), LM11 (heteroxylan); and anti-mannans: LM20 (heteromannan) and LM22 (heteromannan). The localization of the examined compounds was determined using immunohistochemistry techniques and immunogold labeling. In quadrifid cells, we found differences in the presence of the epitope detected by the LM5 antibody in the cell walls. In addition, cell wall ingrowths represented distinct microdomains of the cell wall in terms of the occurrence of wall components (they were methylesterified and demethylesterified homogalacturonan-poor). Hemicelluloses (galactoxyloglucan and xyloglucan) and arabinogalactans co-occur in cell wall ingrowths. Also, a part of the cell wall of the pedestal cell, which forms a Casparian strip, represented a distinct microdomain. We did not detect epitopes recognized by LM11, LM20 and LM22 antibodies. Our research shows that several cell wall microdomains occur in the cell walls of quadrifid cells. They differ depending on the presence and distribution of low methylesterified HGs, highly esterified HGs, fully de-esterified HGs, galactan (the epitope detected by the LM5 antibody), xyloglucan, galactoxyloglucan, and xylan (the epitope detected by the CCRC-M138 antibody). Full article
(This article belongs to the Special Issue Modern Plant Cell Biotechnology: From Genes to Structure, 2nd Edition)
Show Figures

Figure 1

15 pages, 5819 KB  
Article
Resveratrol Alleviates NEFA-Induced Oxidative Damage in Bovine Mammary Epithelial Cells by Restoring Mitochondrial Function
by Longwei Sun, Junpeng Huang, Xiangyang Dou, Zhenyu Dong, Yuan Li, Shujing Tan, Ran Yu, Chengmin Li and Weiguo Zhao
Animals 2025, 15(2), 118; https://doi.org/10.3390/ani15020118 - 7 Jan 2025
Viewed by 1497
Abstract
In periparturient dairy cows, high non-esterified fatty acids (NEFAs) caused by a severe negative energy balance induce oxidative stress and metabolic dysfunction, which pose a severe challenge to the dairy industry. Resveratrol (RES) is a polyphenolic compound with antioxidant, anti-inflammatory and multiple other [...] Read more.
In periparturient dairy cows, high non-esterified fatty acids (NEFAs) caused by a severe negative energy balance induce oxidative stress and metabolic dysfunction, which pose a severe challenge to the dairy industry. Resveratrol (RES) is a polyphenolic compound with antioxidant, anti-inflammatory and multiple other physiological effects. However, its effect on oxidative damage triggered by NEFAs in bovine mammary epithelial cells is rarely reported. This study aimed to investigate the antioxidant effects and underlying molecular mechanisms of RES in NEFA-challenged BMECs. The results showed that RES ameliorated NEFA-induced oxidative damage by upregulating antioxidant enzyme expression and reducing malondialdehyde (MDA) and reactive oxygen species (ROS). Furthermore, exogenous NEFAs resulted in a decrease in mitochondrial membrane potential (MMP), cellular adenosine triphosphate (ATP) production, energy metabolism (NAD+/NADH ratio), abnormal mitochondrial structure and an increase in apoptosis levels. RES treatment restored mitochondrial function in NEFA-stressed BMECs, as evidenced by the increase in MMP, ATP generation and NAD+/NADH ratio accompanying the decline in mitochondrial structural abnormalities and cell apoptosis. In addition, in vivo studies in a mouse model of oxidative damage induced by high-fat diet (HFD) demonstrated that RES alleviated oxidative damage (decreased MDA content) and mitochondrial dysfunction (decreased expression of Drp1 and Fis1 and increased levels of Mfn2, Cyt C mRNA and ATP production) in mammary gland tissue. Overall, these findings suggested that RES could alleviate NEFA-induced oxidative damage in BMECs by modulating mitochondrial function, thereby contributing to the prevention and treatment of oxidative damage in perinatal dairy cows with a negative energy balance. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

Back to TopTop