Enhancing Summer Tea Quality Through Integrated Shaking, Freezing, and Rolling Processing
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Processing and Sample Preparation
2.3. Sensory Evaluation
2.4. Determination of Macro-Compositions of Tea
2.5. Determination of Volatile Components of Tea
2.6. Statistical Analysis
3. Results and Discussion
3.1. Results of the Study of Optimal Machining Process Parameters
3.1.1. Influence of Different Shaking Speeds on the Quality of Summer Tea
3.1.2. Influence of Different Freezing Times on the Quality of Summer Tea
3.1.3. The Influence of Different Rolling Times on the Quality of Summer Tea
3.1.4. Orthogonal Experiment on the Optimal Processing Technology of Summer Tea
3.2. Results of the Optimal Machining Process Study
3.2.1. Quantitative Descriptive Analysis
3.2.2. Influence of Processing Technology on Catechin in Summer Tea
3.2.3. Influence of Processing on Total Tea Polyphenol, Amino Acid, Phenol–Ammonia Ratio, Soluble Sugar, and Caffeine Contents in Summer Tea
3.2.4. Influence of Processing on the Amino Acid Composition of Summer Tea
3.2.5. Influence of Processing Technology on the Volatile Compounds in Summer Tea
3.2.6. Main Aroma Compounds of Summer Tea Made by Different Processing Techniques
3.2.7. Analysis of the Main Volatile Compounds of Summer Tea in Different Processing Techniques
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Xiong, T.; Chen, J.; Ye, F.; Cao, J.; Chen, Y.; Zhao, Z.; Luo, T. Understanding the Origin and Evolution of Tea (Camellia sinensis [L.]): Genomic Advances in Tea. J. Mol. Evol. 2023, 91, 156–168. [Google Scholar] [CrossRef] [PubMed]
- Aloo, O.S.; Kim, D.; Vijayalakshmi, S.; Aloo, D.O.; Ochola, C.O.; Oh, D. Polyphenol constituents and impacts of fermented teas (Camellia sinensis) in human wellness. Food Biosci. 2024, 60, 104389. [Google Scholar] [CrossRef]
- Yi, W.M.; Yun, Z.; Ming, Y.C.; Fei, L.; Yi, W.; Li, G.; Rong, T. Analysis of Quality in Shoumei White Tea from Different Tea Plant Varieties. Sci. Technol. Food Ind. 2024, 45, 283–294. [Google Scholar]
- An, T.; Wang, Z.; Li, G.; Fan, S.; Huang, W.; Duan, D.; Zhao, C.; Tian, X.; Dong, C. Monitoring the major taste components during black tea fermentation using multielement fusion information in decision level. Food Chem. X 2023, 18, 100718. [Google Scholar] [CrossRef]
- Cai, M.; Huang, L.; Dong, S.; Diao, N.; Ye, W.; Peng, Z.; Fang, X. Enhancing the Flavor Profile of Summer Green Tea via Fermentation with Aspergillus niger RAF106. Foods 2023, 12, 3420. [Google Scholar] [CrossRef]
- Xia, C.Y.; Liu, Y.B.; Mou, Q. Current Status and Outlook of Summer and Autumn Tea Processing. J. Guizhou Tea 2023, 3, 6–13. [Google Scholar]
- Tang, J.; Hu, J.; Zhou, X.; Wang, Q.; Jiang, Y.; Yuan, H.; Wang, Y.; Yang, Y. Influence of Different Shaping Techniques on the Aroma Quality and Volatile Metabolites of Green Tea Revealed by Gas Chromatography Electronic Nose and Gas Chromatography–Tandem Mass Spectrometry. Foods 2025, 14, 816. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Deng, G.; Fan, Y.; Wang, W.; Yu, T.; Wei, Y.; Gao, J.; Ning, J.; Wang, Y. The processing of shaking and standing improves the taste quality of summer black tea. Food Res. Int. 2025, 201, 115545. [Google Scholar] [CrossRef]
- Song, Z.; Xiang, L.; Chen, J.; Wang, X.; Lin, C. Effect of Shaking Process during Withering on the Flavor Quality of Mingguan Floral-Fruity Black Tea. Acta Tea Sin. 2025, 66, 12–21. [Google Scholar]
- Wang, J.; Ouyang, W.; Zhu, X.; Jiang, Y.; Yu, Y.; Chen, M.; Yuan, H.; Hua, J. Effect of shaking on the improvement of aroma quality and transformation of volatile metabolites in black tea. Food Chem. X 2023, 20, 101007. [Google Scholar] [CrossRef]
- Lin, J.; Tu, Z.; Zhu, H.; Chen, L.; Wang, Y.; Yang, Y.; Lv, H.; Zhu, Y.; Yu, L.; Ye, Y. Effects of Shaking and Withering Processes on the Aroma Qualities of Black Tea. Horticulturae 2022, 8, 549. [Google Scholar] [CrossRef]
- Chung, H.; Youn, K. Effect of freezing treatment in tea preparation using Camellia sinensis leaves. J. Food Sci. Technol. 2020, 57, 4193–4200. [Google Scholar] [CrossRef]
- Xia, Y.M.; Wang, J.J.; Yuan, H.B. Comparison on the Quality of Black Tea Prepared by Different Freezing and Shaking Processes. Mod. Food Sci. Technol. 2023, 39, 280–289. [Google Scholar]
- Wen, M.; Hu, W.; Li, L.; Long, P.; Han, Z.; Ke, J.; Deng, Z.; Zhu, M.; Zhang, L. Developed metabolomics approach reveals the non-volatile color-contributing metabolites during Keemun congou black tea processing. Food Chem. 2025, 463, 141222. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Pathak, S.; Tang, H.; Zhang, D.; Chen, Y.; Ntezimana, B.; Ni, D.; Yu, Z. Non-Targeted Metabolomics Reveals the Effects of Different Rolling Methods on Black Tea Quality. Foods 2024, 13, 325. [Google Scholar] [CrossRef]
- Zhanyi, N.; Xing, Y.; Weimin, L.; Jirong, Z. The Application of Freezing Technology in the Processing of Black Tea. Hubei Agric. Sci. 2018, 9, 019. [Google Scholar]
- Hong, X.; Wang, C.; Jiang, R.; Hu, T.; Zheng, X.; Huang, J.; Liu, Z.; Li, Q. Characterization of the Key Aroma Compounds in Different Aroma Types of Chinese Yellow Tea. Foods 2023, 12, 27. [Google Scholar] [CrossRef]
- Huang, F.; Chen, W.; Chen, R.; Liang, Y. Changes of Soluble Sugar Content During the Greening Process of Oolong Tea. China Tea 2002, 24, 13–15. [Google Scholar]
- Hao, Z.; Feng, J.; Chen, Q.; Lin, H.; Zhou, X.; Zhuang, J.; Wang, J.; Tan, Y.; Sun, Z.; Wang, Y.; et al. Comparative volatiles profiling in milk-flavored white tea and traditional white tea Shoumei via HS-SPME-GC-TOFMS and OAV analyses. Food Chem. X 2023, 18, 100710. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Hua, J.; Jiang, Y.; Yang, Y.; Wang, J.; Yuan, H. Influence of fixation methods on the chestnut-like aroma of green tea and dynamics of key aroma substances. Food Res. Int. 2020, 136, 109479. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, Q.; Wen, S.; Sun, L.; Chen, R.; Zhang, Z.; Cao, J.; Lai, Z.; Li, Z.; Lai, X.; et al. Metabolomics reveals the effects of different storage times on the acidity quality and metabolites of large-leaf black tea. Food Chem. 2023, 426, 136601. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, J.; Xu, N.; Yu, Y.; Brake, J.; Xu, R.; Wu, X. Dynamic evolution and correlation between microorganisms and metabolites during manufacturing process and storage of Pu-erh tea. Lwt 2022, 158, 113128. [Google Scholar] [CrossRef]
- Biying, S.; Chengzhe, Z.; Caiyun, T.; Kai, X.U.; Jingjing, W.; Aodi, H.; Chen, Z.; Linjie, H.; Zhongxiong, L.; Yuqiong, G. Differences in Flavor Quality between White Peony Tea with Different Storage Times. Food Sci. 2023, 44, 313–325. [Google Scholar]
- Tu, Z.; Li, S.; Xu, A.; Yu, Q.; Cao, Y.; Tao, M.; Wang, S.; Liu, Z. Improvement of Summer Green Tea Quality Through an Integrated Shaking and Piling Process. Foods 2025, 14, 1284. [Google Scholar] [CrossRef]
- Tu, Z.; Li, S.; Tao, M.; He, W.; Shu, Z.; Wang, S.; Liu, Z. Effect of shaking and piling processing on improving the aroma quality of green tea. Food Res. Int. 2025, 201, 115624. [Google Scholar] [CrossRef]
- Zeng, L.; Zhou, X.; Su, X.; Yang, Z. Chinese oolong tea: An aromatic beverage produced under multiple stresses. Trends Food Sci. Technol. 2020, 106, 242–253. [Google Scholar] [CrossRef]
- Hao, Z.; Wang, J.; Zhuang, J.; Feng, X.; Lv, H.; Feng, J.; Ye, S.; Tian, W.; Pan, G.; Chen, P.; et al. Another inner truth of shaking: Water migration and transformation-advanced physicochemical alterations in tea leaves. Food Chem. 2025, 467, 142338. [Google Scholar] [CrossRef]
- Niu, X.J.; Huang, H.T.; Li, H.L.; Cun, A. Effects of Different Freezing Stress Times on the Enzymatic Activities and Nutritional Compositions in New Tea Shoots. China Tea 2023, 45, 37–42. [Google Scholar]
- Wang, Q.; Shi, D.; Hu, J.; Tang, J.; Zhou, X.; Wang, L.; Xie, J.; Jiang, Y.; Yuan, H.; Yang, Y. Unraveling the dynamic changes of volatile compounds during the rolling process of Congou black tea via GC-E-nose and GC–MS. Front. Sustain. Food Syst. 2024, 8, 1436542. [Google Scholar] [CrossRef]
- Jia, J.; Zhang, C.; Yuan, B.; Chen, Z.; Chen, J. Development and process parameter optimization with an integrated test bench for rolling and forming strips of oolong tea. J. Food Process Eng. 2021, 44, e13901. [Google Scholar] [CrossRef]
- Dong, C.; Qu, F.F.; Ai, Z.Y.; Zheng, S.B.; Ran, M.Q.; Li, X.L.; Ni, D.J. Effect of Rolling Time on Quality of Green Tea E-Cha No.10. Hubei Agric. Sci. 2018, 57, 83–87. [Google Scholar]
- Zhang, Y.; Ji, W.B.; Xu, Y.; Yin, J. Review on Taste Characteristic of Catechins and Its Sensory Analysis Method. J. Tea Sci. 2017, 37, 1–9. [Google Scholar]
- Lu, X.; Lin, Y.; Tuo, Y.; Liu, L.; Du, X.; Zhu, Q.; Hu, Y.; Shi, Y.; Wu, L.; Lin, J. Optimizing Processing Techniques of Oolong Tea Balancing between High Retention of Catechins and Sensory Quality. Foods 2023, 12, 4334. [Google Scholar] [CrossRef]
- Wu, Y.; Kuan, Y.; Sheu, F. Revealing the roles of solar withering and shaking processes on oolong tea manufacturing from transcriptome and volatile profile analysis. Food Res. Int. 2025, 201, 115586. [Google Scholar] [CrossRef]
- Ma, C.; Ma, B.; Wang, J.; Wang, Z.; Chen, X.; Zhou, B.; Li, X. Geographical origin identification of Chinese white teas, and their differences in tastes, chemical compositions and antioxidant activities among three production regions. Food Chem. X 2022, 16, 100504. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Cao, Q.; Granato, D.; Xu, Y.; Ho, C. Association between chemistry and taste of tea: A review. Trends Food Sci. Technol. 2020, 101, 139–149. [Google Scholar] [CrossRef]
- Cheng, S.; Fu, X.; Liao, Y.; Xu, X.; Zeng, L.; Tang, J.; Li, J.; Lai, J.; Yang, Z. Differential accumulation of specialized metabolite l-L-theanine in green and albino-induced yellow tea (Camellia sinensis) leaves. Food Chem. 2019, 276, 93–100. [Google Scholar] [CrossRef]
- Wang, J.; Qu, L.; Yu, Z.; Jiang, Y.; Yu, C.; Zhu, X.; Lin, Q.; Niu, L.; Yu, Y.; Lin, Q.; et al. Targeted quantitative metabolomic and flavor objective quantification technique reveal the impact mechanism of shaking on black tea quality and non-volatile metabolites. Food Chem. 2024, 458, 140226. [Google Scholar] [CrossRef]
- Wang, R. Analysis of Quality in Shoumei White Tea from Different Tea Plant Varieties; Hunan Agricultural University: Changsha, China, 2022. [Google Scholar]
- Wang, Q.; Xie, J.; Wang, L.; Jiang, Y.; Deng, Y.; Zhu, J.; Yuan, H.; Yang, Y. Comprehensive investigation on the dynamic changes of volatile metabolites in fresh scent green tea during processing by GC-E-Nose, GC–MS, and GC × GC-TOFMS. Food Res. Int. 2024, 187, 114330. [Google Scholar] [CrossRef]
- Ronggang, J.; Yan, H.; Youlan, J.; Huang, F.F.; Liu, Z.H.; Huang, J.A.; Li, Q. Analysis of Characteristic Aroma Components of Different Grades of Yellow Tea. Food Sci. 2021, 42, 89–98. [Google Scholar]
- Ronggang, J.; Yan, H.; Youlan, J.; Yongdi, L.I.; Jian’An, H.; Qin, L.I. Study of Aroma Compounds and Their Source in Fu Brick Tea. J. Food Sci. Biotechnol. 2021, 40, 101–111. [Google Scholar]
- Zhang, B.; Ivanova-Petropulos, V.; Duan, C.; Yan, G. Distinctive chemical and aromatic composition of red wines produced by Saccharomyces cerevisiae co-fermentation with indigenous and commercial non-Saccharomyces strains. Food Biosci. 2021, 41, 100925. [Google Scholar] [CrossRef]
- Zhu, J.; Niu, Y.; Xiao, Z. Characterization of the key aroma compounds in Laoshan green teas by application of odour activity value (OAV), gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and comprehensive two-dimensional gas chromatography mass spectrometry (GC × GC-qMS). Food Chem. 2021, 339, 128136. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, M.; Dong, Z.; Zhu, Y.; Shi, J.; Ma, W.; Lin, Z.; Lv, H. Volatile components and key odorants of Chinese yellow tea (Camellia sinensis). Lwt 2021, 146, 111512. [Google Scholar] [CrossRef]
- Lourencetti, N.M.S.; Wolf, I.R.; Lacerda, M.P.F.; Valente, G.T.; Zanelli, C.F.; Santoni, M.M.; Mendes-Giannini, M.J.S.; Enguita, F.J.; Fusco-Almeida, A.M. Transcriptional profile of a bioethanol production contaminant Candida tropicalis. AMB Express 2018, 8, 166. [Google Scholar] [CrossRef]
- Xiao, Y.; Tan, H.; Huang, H.; Yu, J.; Zeng, L.; Liao, Y.; Wu, P.; Yang, Z. Light synergistically promotes the tea green leafhopper infestation-induced accumulation of linalool oxides and their glucosides in tea (Camellia sinensis). Food Chem. 2022, 394, 133460. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, J.; Chen, J.; Wang, F.; Yin, J.; Zeng, L.; Shi, J.; Xu, Y. Effect of baking on the flavor stability of green tea beverages. Food Chem. 2020, 331, 127258. [Google Scholar] [CrossRef]
- Zeng, L.; Jin, S.; Xu, Y.Q.; Granato, D.; Fu, Y.Q.; Sun, W.J.; Yin, J.F.; Xu, Y.Q. Exogenous stimulation-induced biosynthesis of volatile compounds: Aroma formation of oolong tea at postharvest stage. Crit. Rev. Food Sci. Nutr. 2024, 64, 76–86. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, S.; Yu, Q.; Shan, X.; Chen, L.; Deng, Y.; Hua, J.; Zhu, J.; Zhou, Q.; Jiang, Y.; et al. The influence of rolling pressure on the changes in non-volatile compounds and sensory quality of congou black tea: The combination of metabolomics, E-tongue, and chromatic differences analyses. Food Chem. 2023, 20, 100989. [Google Scholar] [CrossRef]
No. | A: Rotation Speed (r/min) | B: Freezing Time (h) | C: Rolling Time (min) | D (Blank Column) | Sensory Evaluation (Point) |
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 76.45 |
2 | 1 | 2 | 2 | 2 | 83.46 |
3 | 1 | 3 | 3 | 3 | 84.65 |
4 | 2 | 1 | 2 | 3 | 84.32 |
5 | 2 | 2 | 3 | 1 | 89.65 |
6 | 2 | 3 | 1 | 2 | 87.82 |
7 | 3 | 1 | 3 | 2 | 75.64 |
8 | 3 | 2 | 1 | 3 | 78.32 |
9 | 3 | 3 | 2 | 1 | 82.42 |
K1 | 244.56 | 236.41 | 242.59 | 248.52 | |
K2 | 261.79 | 251.43 | 250.20 | 246.92 | |
K3 | 236.38 | 254.89 | 249.94 | 247.29 | |
R | 8.47 | 6.16 | 2.54 | 0.53 | |
Prioritize Factors | 1 | 2 | 3 | 4 | |
Optimal Solution | A2B3C2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Li, H.; Lin, Q.; Wang, Z.; Zhou, C.; Zhang, C.; Guo, Y. Enhancing Summer Tea Quality Through Integrated Shaking, Freezing, and Rolling Processing. Foods 2025, 14, 3159. https://doi.org/10.3390/foods14183159
Wu C, Li H, Lin Q, Wang Z, Zhou C, Zhang C, Guo Y. Enhancing Summer Tea Quality Through Integrated Shaking, Freezing, and Rolling Processing. Foods. 2025; 14(18):3159. https://doi.org/10.3390/foods14183159
Chicago/Turabian StyleWu, Changlian, Huang Li, Qingxiu Lin, Zhong Wang, Chengzhe Zhou, Cheng Zhang, and Yuqiong Guo. 2025. "Enhancing Summer Tea Quality Through Integrated Shaking, Freezing, and Rolling Processing" Foods 14, no. 18: 3159. https://doi.org/10.3390/foods14183159
APA StyleWu, C., Li, H., Lin, Q., Wang, Z., Zhou, C., Zhang, C., & Guo, Y. (2025). Enhancing Summer Tea Quality Through Integrated Shaking, Freezing, and Rolling Processing. Foods, 14(18), 3159. https://doi.org/10.3390/foods14183159