An Update on Role of Ionizing Radiation to Enhance Proliferation and Differentiation of Normal Stem Cells via Activation of NRF2 Pathway: Review
Abstract
1. Introduction
2. IR Induces Activation of NRF2 Signaling Pathway via Oxidative Stress
2.1. Consequences and Antioxidant Effects of NRF2 Activation in Stem Cells
2.2. Role of Activation of NRF2 Pathway in Cell Differentiation After IR
2.2.1. NRF2 Enhances Osteogenesis
2.2.2. NRF2 Enhances Adipogenesis
Source of IR or Oxidative Stress | Dose (Dose Rate) | Time After IR | Type of Stem Cells | Type of Study | Markers | Methods | Effect (Differentiation/Proliferation) | References |
---|---|---|---|---|---|---|---|---|
Cobalt-60 | 2 and 6 Gy (0.98 Gy/min) | - | MSCs | In vitro | Cebpa, Lpl, Pparg, and NRF2 | Light microscope, RT-qPCR, and Western blotting | Adipogenesis | [78] |
X-ray tube | 10 cGy (10 cGy/min) | 3–48 h | human adipose-derived MSCs | In vitro | NOX4 oxidase, NRF2 | Flow Cytometry, fluorescence Microscopy, qRT-PCR, mass spectrometry, and DNA oxidation assay by UV spectrophotometry | Activation of DNA repair and cell proliferation | [79] |
X-rays, proton and carbon ions | LD50 (2 Gy/min) | 8–28 days | human adipose-derived MSCs | In vitro | HO-1, NQO1, and NRF2 | Clonogenic, Western blotting, and cell prolifiration | Adipogenesis, osteogenesis, and cell proliferation | [1] |
Cobalt-60 | 9 Gy (0.69 Gy/min) | 24 h | Bone marrow-MSCs | In vitro | RUNX2, PPARγ, and CRIF1 | Colony Formation, light microscope, RT-qPCR, Western blotting, and immunofluorescence | Adipogenesis and osteogenesis | [84] |
2.2.3. NRF2 Enhances Neurogenesis
3. Conclusions and Prospective View
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hammad, M.; Salma, R.; Balosso, J.; Rezvani, M.; Haghdoost, S. Role of oxidative stress signaling, Nrf2, on survival and stemness of human adipose-derived stem cells exposed to X-rays, protons and carbon ions. Antioxidants 2024, 13, 1035. [Google Scholar] [CrossRef] [PubMed]
- Waheed, T.O.; Hahn, O.; Sridharan, K.; Mörke, C.; Kamp, G.; Peters, K. Oxidative stress response in adipose tissue-derived mesenchymal stem/stromal cells. Int. J. Mol. Sci. 2022, 23, 13435. [Google Scholar] [CrossRef]
- Li, Y.; Yue, G.; Yu, S.; Liu, Z.; Cao, Y.; Wang, X. Extracellular Vesicles Derived from H2O2-Stimulated Adipose-Derived Stem Cells Alleviate Senescence in Diabetic Bone Marrow Mesenchymal Stem Cells and Restore Their Osteogenic Capacity. Drug Des. Dev. Ther. 2024, 18, 2103–2124. [Google Scholar] [CrossRef]
- Carrière, A.; Ebrahimian, T.G.; Dehez, S.; Augeé, N.; Joffre, C.; Andreé, M.; Arnal, S.; Duriez, M.; Barreau, C.; Arnaud, E. Preconditioning by mitochondrial reactive oxygen species improves the proangiogenic potential of adipose-derived cells-based therapy. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1093–1099. [Google Scholar] [CrossRef] [PubMed]
- Goudarzi, F.; Mohammadalipour, A.; Bahabadi, M.; Goodarzi, M.T.; Sarveazad, A.; Khodadadi, I. Hydrogen peroxide: A potent inducer of differentiation of human adipose-derived stem cells into chondrocytes. Free Radic. Res. 2018, 52, 763–774. [Google Scholar] [CrossRef]
- Rochette, L.; Mazini, L.; Malka, G.; Zeller, M.; Cottin, Y.; Vergely, C. The crosstalk of adipose-derived stem cells (ADSC), oxidative stress, and inflammation in protective and adaptive responses. Int. J. Mol. Sci. 2020, 21, 9262. [Google Scholar] [CrossRef]
- Ghosh, S.; Ghosh, A. Activation of DNA damage response signaling in mammalian cells by ionizing radiation. Free Radic. Res. 2021, 55, 814–827. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, B.; Li, Y.; Zhang, X.; Wang, L.; Yao, Y.; Zhu, B.; Shi, H.; Chai, X.; Hu, X. Effect of traditional Chinese medicine in osteosarcoma: Cross-interference of signaling pathways and potential therapeutic targets. Medicine 2024, 103, e36467. [Google Scholar] [CrossRef]
- Zhan, M.; Han, Z.C. Phosphatidylinositide 3-kinase AKT in radiation responses. Histol. Histopathol. 2004, 19, 915–923. [Google Scholar]
- Serrano Martinez, P.; Giuranno, L.; Vooijs, M.; Coppes, R.P. The radiation-induced regenerative response of adult tissue-specific stem cells: Models and signaling pathways. Cancers 2021, 13, 855. [Google Scholar] [CrossRef] [PubMed]
- Sekhar, K.R.; Freeman, M.L. Nrf2 promotes survival following exposure to ionizing radiation. Free Radic. Biol. Med. 2015, 88, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Chute, J.P. NRF2 mitigates radiation-induced hematopoietic death. J. Clin. Investig. 2014, 124, 960–961. [Google Scholar] [CrossRef]
- Kim, J.-H.; Thimmulappa, R.K.; Kumar, V.; Cui, W.; Kumar, S.; Kombairaju, P.; Zhang, H.; Margolick, J.; Matsui, W.; Macvittie, T. NRF2-mediated Notch pathway activation enhances hematopoietic reconstitution following myelosuppressive radiation. J. Clin. Investig. 2014, 124, 730–741. [Google Scholar] [CrossRef]
- Li, J.; Xu, C.; Liu, Q. Roles of NRF2 in DNA damage repair. Cell. Oncol. 2023, 46, 1577–1593. [Google Scholar] [CrossRef]
- Xu, N.; Lao, Y.; Zhang, Y.; Gillespie, D.A. Akt: A double-edged sword in cell proliferation and genome stability. J. Oncol. 2012, 2012, 951724. [Google Scholar] [CrossRef]
- Marwarha, G.; Ghribi, O. Nuclear Factor Kappa-light-chain-enhancer of Activated B Cells (NF-ΚB)–a Friend, a Foe, or a Bystander-in the Neurodegenerative Cascade and Pathogenesis of Alzheimer’s Disease. CNS Neurol. Disord.-Drug Targets (Former. Curr. Drug Targets-CNS Neurol. Disord.) 2017, 16, 1050–1065. [Google Scholar] [CrossRef]
- Singh, V.; Gupta, D.; Arora, R. NF-kB as a key player in regulation of cellular radiation responses and identification of radiation countermeasures. Discoveries 2015, 3, e35. [Google Scholar] [CrossRef]
- Oeckinghaus, A.; Hayden, M.S.; Ghosh, S. Crosstalk in NF-κB signaling pathways. Nat. Immunol. 2011, 12, 695–708. [Google Scholar] [CrossRef] [PubMed]
- McDonald, J.T.; Kim, K.; Norris, A.J.; Vlashi, E.; Phillips, T.M.; Lagadec, C.; Della Donna, L.; Ratikan, J.; Szelag, H.; Hlatky, L. Ionizing radiation activates the Nrf2 antioxidant response. Cancer Res. 2010, 70, 8886–8895. [Google Scholar] [CrossRef] [PubMed]
- Baeyens, A.; Abrantes, A.M.; Ahire, V.; Ainsbury, E.A.; Baatout, S.; Baselet, B.; Botelho, M.F.; Boterberg, T.; Chevalier, F.; Da Pieve, F. Basic concepts of radiation biology. In Radiobiology Textbook; Springer: Berlin/Heidelberg, Germany, 2023; pp. 25–81. [Google Scholar]
- Akbari, A.; Jelodar, G.; Nazifi, S.; Afsar, T.; Nasiri, K. Oxidative stress as the underlying biomechanism of detrimental outcomes of ionizing and non-ionizing radiation on human health: Antioxidant protective strategies. Zahedan J. Res. Med. Sci. 2019, 21, e85655. [Google Scholar] [CrossRef]
- Kuzmić, M. Role of Protein and DNA Damage in Biological Response to Radiation and Aging. Ph.D. Thesis, University of Split, School of Medicine, Split, Croatia, 2018. [Google Scholar]
- Moloudi, K.; Neshasteriz, A.; Hosseini, A.; Eyvazzadeh, N.; Shomali, M.; Eynali, S.; Mirzaei, E.; Azarnezhad, A. Synergistic effects of arsenic trioxide and radiation: Triggering the intrinsic pathway of apoptosis. Iran. Biomed. J. 2017, 21, 330. [Google Scholar] [CrossRef]
- Sangsuwan, T.; Khavari, A.P.; Blomberg, E.; Romell, T.; De Godoy, P.R.d.V.; Harms-Ringdahl, M.; Haghdoost, S. Oxidative stress levels and dna repair kinetics in senescent primary human fibroblasts exposed to chronic low dose rate of ionizing radiation. Front. Biosci.-Landmark 2023, 28, 296. [Google Scholar] [CrossRef]
- Nuszkiewicz, J.; Woźniak, A.; Szewczyk-Golec, K. Ionizing radiation as a source of oxidative stress—The protective role of melatonin and vitamin D. Int. J. Mol. Sci. 2020, 21, 5804. [Google Scholar] [CrossRef]
- Sampadi, B.; Mullenders, L.H.; Vrieling, H. Low and high doses of ionizing radiation evoke discrete global (phospho) proteome responses. DNA Repair 2022, 113, 103305. [Google Scholar] [CrossRef] [PubMed]
- Dettmering, T.; Zahnreich, S.; Colindres-Rojas, M.; Durante, M.; Taucher-Scholz, G.; Fournier, C. Increased effectiveness of carbon ions in the production of reactive oxygen species in normal human fibroblasts. J. Radiat. Res. 2015, 56, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Merchant, A.A.; Singh, A.; Matsui, W.; Biswal, S. The redox-sensitive transcription factor Nrf2 regulates murine hematopoietic stem cell survival independently of ROS levels. Blood J. Am. Soc. Hematol. 2011, 118, 6572–6579. [Google Scholar] [CrossRef]
- Konkova, M.; Abramova, M.; Kalianov, A.; Ershova, E.; Dolgikh, O.; Umriukhin, P.; Izhevskaya, V.; Kutsev, S.; Veiko, N.; Kostyuk, S. Mesenchymal stem cells early response to low-dose ionizing radiation. Front. Cell Dev. Biol. 2020, 8, 584497. [Google Scholar] [CrossRef]
- Rodrigues-Moreira, S.; Moreno, S.G.; Ghinatti, G.; Lewandowski, D.; Hoffschir, F.; Ferri, F.; Gallouet, A.-S.; Gay, D.; Motohashi, H.; Yamamoto, M. Low-dose irradiation promotes persistent oxidative stress and decreases self-renewal in hematopoietic stem cells. Cell Rep. 2017, 20, 3199–3211. [Google Scholar] [CrossRef]
- Yamamoto, M.; Kensler, T.W.; Motohashi, H. The KEAP1-NRF2 system: A thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol. Rev. 2018, 98, 1169–1203. [Google Scholar] [CrossRef]
- Murakami, S.; Motohashi, H. Roles of Nrf2 in cell proliferation and differentiation. Free Radic. Biol. Med. 2015, 88, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.; Wang, Y.; Kim, H.-S.; Lalli, M.A.; Kosik, K.S. Nrf2, a regulator of the proteasome, controls self-renewal and pluripotency in human embryonic stem cells. Stem Cells 2014, 32, 2616–2625. [Google Scholar] [CrossRef]
- Kaspar, J.W.; Niture, S.K.; Jaiswal, A.K. Nrf2: INrf2 (Keap1) signaling in oxidative stress. Free Radic. Biol. Med. 2009, 47, 1304–1309. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Muramatsu, A.; Saito, R.; Iso, T.; Shibata, T.; Kuwata, K.; Kawaguchi, S.-i.; Iwawaki, T.; Adachi, S.; Suda, H. Molecular mechanism of cellular oxidative stress sensing by Keap1. Cell Rep. 2019, 28, 746–758. [Google Scholar] [CrossRef]
- Sajadimajd, S.; Khazaei, M. Oxidative stress and cancer: The role of Nrf2. Curr. Cancer Drug Targets 2018, 18, 538–557. [Google Scholar] [CrossRef]
- Maruyama, A.; Itoh, K. Role of Keap1/Nrf2 pathway in the protection against ionizing radiation. In Fukushima Nuclear Accident: Global Implications, Long-Term Health Effects and Ecological Consequences; Nova Sciences Publishers Inc.: New York, NY, USA, 2015; pp. 115–133. [Google Scholar]
- Sun, X.; Wang, Y.; Ji, K.; Liu, Y.; Kong, Y.; Nie, S.; Li, N.; Hao, J.; Xie, Y.; Xu, C. NRF2 preserves genomic integrity by facilitating ATR activation and G2 cell cycle arrest. Nucleic Acids Res. 2020, 48, 9109–9123. [Google Scholar] [CrossRef]
- Jayakumar, S.; Pal, D.; Sandur, S.K. Nrf2 facilitates repair of radiation induced DNA damage through homologous recombination repair pathway in a ROS independent manner in cancer cells. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2015, 779, 33–45. [Google Scholar] [CrossRef]
- Zhong, C.-C.; Zhao, T.; Hogstrand, C.; Chen, F.; Song, C.-C.; Luo, Z. Copper (Cu) induced changes of lipid metabolism through oxidative stress-mediated autophagy and Nrf2/PPARγ pathways. J. Nutr. Biochem. 2022, 100, 108883. [Google Scholar] [CrossRef] [PubMed]
- Taha, R.; Blaise, G. Nrf2 activation as a future target of therapy for chronic diseases. Funct. Foods Health Dis. 2014, 4, 510–523. [Google Scholar] [CrossRef]
- Evans, J.A.; Mendonca, P.; Soliman, K.F. Involvement of Nrf2 activation and NF-kB pathway inhibition in the antioxidant and anti-inflammatory effects of hesperetin in activated BV-2 microglial cells. Brain Sci. 2023, 13, 1144. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; He, C. Nrf2-mediated anti-inflammatory polarization of macrophages as therapeutic targets for osteoarthritis. Front. Immunol. 2022, 13, 967193. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, R.; Rana, R.; Mehan, S.; Khan, Z.; Das Gupta, G.; Narula, A.S.; Samant, R. Investigating the Interplay Between the Nrf2/Keap1/HO-1/SIRT-1 Pathway and the p75NTR/PI3K/Akt/MAPK Cascade in Neurological Disorders: Mechanistic Insights and Therapeutic Innovations. Mol. Neurobiol. 2025, 62, 7597–7646. [Google Scholar] [CrossRef]
- Zoungrana, L.I.; Krause-Hauch, M.; Wang, H.; Fatmi, M.K.; Bates, L.; Li, Z.; Kulkarni, P.; Ren, D.; Li, J. The interaction of mTOR and Nrf2 in neurogenesis and its implication in neurodegenerative diseases. Cells 2022, 11, 2048. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Wang, J.; Zhu, T.; Shen, Y.; Tang, X.; Fang, L.; Xu, Y. Cross-talking between PPAR and WNT signaling and its regulation in mesenchymal stem cell differentiation. Curr. Stem Cell Res. Ther. 2016, 11, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Li, Q.; Luo, S.; Liu, Z.; Luo, D.; Zhang, B.; Zhang, D.; Rao, P.; Xiao, J. PPARγ and Wnt signaling in adipogenic and osteogenic differentiation of mesenchymal stem cells. Curr. Stem Cell Res. Ther. 2016, 11, 216–225. [Google Scholar] [CrossRef]
- Boorman, E.; Killick, R.; Aarsland, D.; Zunszain, P.; Mann, G.E. NRF2: An emerging role in neural stem cell regulation and neurogenesis. Free Radic. Biol. Med. 2022, 193, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Hannan, M.A.; Dash, R.; Sohag, A.A.M.; Haque, M.N.; Moon, I.S. Neuroprotection against oxidative stress: Phytochemicals targeting TrkB signaling and the Nrf2-ARE antioxidant system. Front. Mol. Neurosci. 2020, 13, 116. [Google Scholar] [CrossRef]
- Sheppard, A.J.; Barfield, A.M.; Barton, S.; Dong, Y. Understanding reactive oxygen species in bone regeneration: A glance at potential therapeutics and bioengineering applications. Front. Bioeng. Biotechnol. 2022, 10, 836764. [Google Scholar] [CrossRef]
- Onoki, T.; Kanczler, J.; Rawlings, A.; Smith, M.; Kim, Y.H.; Hashimoto, K.; Aizawa, T.; Oreffo, R.O. Modulation of osteoblastogenesis by NRF2: NRF2 activation suppresses osteogenic differentiation and enhances mineralization in human bone marrow-derived mesenchymal stromal cells. FASEB J. 2024, 38, e23892. [Google Scholar] [CrossRef]
- Park, C.K.; Lee, Y.; Kim, K.H.; Lee, Z.H.; Joo, M.; Kim, H.-H. Nrf2 is a novel regulator of bone acquisition. Bone 2014, 63, 36–46. [Google Scholar] [CrossRef]
- Han, J.; Yang, K.; An, J.; Jiang, N.; Fu, S.; Tang, X. The role of NRF2 in bone metabolism–Friend or foe? Front. Endocrinol. 2022, 13, 813057. [Google Scholar] [CrossRef]
- Gao, Y.; Huang, E.; Zhang, H.; Wang, J.; Wu, N.; Chen, X.; Wang, N.; Wen, S.; Nan, G.; Deng, F. Crosstalk between Wnt/β-catenin and estrogen receptor signaling synergistically promotes osteogenic differentiation of mesenchymal progenitor cells. PLoS ONE 2013, 8, e82436. [Google Scholar] [CrossRef] [PubMed]
- Rana, T.; Schultz, M.A.; Freeman, M.L.; Biswas, S. Loss of Nrf2 accelerates ionizing radiation-induced bone loss by upregulating RANKL. Free Radic. Biol. Med. 2012, 53, 2298–2307. [Google Scholar] [CrossRef]
- Barcellos-Hoff, M. Radiation-induced transforming growth factor β and subsequent extracellular matrix reorganization in murine mammary gland. Cancer Res. 1993, 53, 3880–3886. [Google Scholar]
- Cameron, B.D.; Sekhar, K.R.; Ofori, M.; Freeman, M.L. The role of Nrf2 in the response to normal tissue radiation injury. Radiat. Res. 2018, 190, 99–106. [Google Scholar] [CrossRef]
- Ambrożewicz, E.; Tokajuk, G.; Muszyńska, M.; Zaręba, I.; Skrzydlewska, E. Cross talk between redox signalling and metabolic activity of osteoblasts and fibroblasts in the presence of hydroxyapatite-based biomaterials influences bone regeneration. J. Appl. Biomed. 2019, 17, 125–135. [Google Scholar] [CrossRef]
- Bohen, S.; O’Connor, M.J.; Morgan, M. DNA Damage Response–An Emerging Target for Groundbreaking Cancer Therapies. J.-DNA Damage Response–Emerg. Target Groundbreaking Cancer Ther. 2018, 14 (Suppl. S1), 2–7. [Google Scholar]
- Oest, M.E.; Franken, V.; Kuchera, T.; Strauss, J.; Damron, T.A. Long-term loss of osteoclasts and unopposed cortical mineral apposition following limited field irradiation. J. Orthop. Res. 2015, 33, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Dominici, M.; Rasini, V.; Bussolari, R.; Chen, X.; Hofmann, T.J.; Spano, C.; Bernabei, D.; Veronesi, E.; Bertoni, F.; Paolucci, P. Restoration and reversible expansion of the osteoblastic hematopoietic stem cell niche after marrow radioablation. Blood J. Am. Soc. Hematol. 2009, 114, 2333–2343. [Google Scholar] [CrossRef]
- Xi, X.; Zhao, Y.; Liu, H.; Li, Z.; Chen, S.; Liu, D. Nrf2 activation is involved in osteogenic differentiation of periodontal ligament stem cells under cyclic mechanical stretch. Exp. Cell Res. 2021, 403, 112598. [Google Scholar] [CrossRef] [PubMed]
- Henry, E.; Souissi-Sahraoui, I.; Deynoux, M.; Lefèvre, A.; Barroca, V.; Campalans, A.; Ménard, V.; Calvo, J.; Pflumio, F.; Arcangeli, M.-L. Human hematopoietic stem/progenitor cells display ROS-dependent long-term hematopoietic defects after exposure to low dose of ionizing radiations. Haematologica 2019, 104, 105. [Google Scholar]
- Kook, S.-H.; Kim, K.-A.; Ji, H.; Lee, D.; Lee, J.-C. Irradiation inhibits the maturation and mineralization of osteoblasts via the activation of Nrf2/HO-1 pathway. Mol. Cell. Biochem. 2015, 410, 255–266. [Google Scholar] [CrossRef]
- Park, S.-S.; Kim, K.-A.; Lee, S.-Y.; Lim, S.-S.; Jeon, Y.-M.; Lee, J.-C. X-ray radiation at low doses stimulates differentiation and mineralization of mouse calvarial osteoblasts. BMB Rep. 2012, 45, 571–576. [Google Scholar] [CrossRef]
- Hayashi, N.; Monzen, S.; Ito, K.; Fujioka, T.; Nakamura, Y.; Kashiwakura, I. Effects of ionizing radiation on proliferation and differentiation of mouse induced pluripotent stem cells. J. Radiat. Res. 2012, 53, 195–201. [Google Scholar] [CrossRef]
- Yin, B.-F.; Li, Z.-L.; Yan, Z.-Q.; Guo, Z.; Liang, J.-W.; Wang, Q.; Zhao, Z.-D.; Li, P.-L.; Hao, R.-C.; Han, M.-Y. Psoralen alleviates radiation-induced bone injury by rescuing skeletal stem cell stemness through AKT-mediated upregulation of GSK-3β and NRF2. Stem Cell Res. Ther. 2022, 13, 241. [Google Scholar] [CrossRef]
- Hu, W.; Liang, J.-W.; Liao, S.; Zhao, Z.-D.; Wang, Y.-X.; Mao, X.-F.; Hao, S.-W.; Wang, Y.-F.; Zhu, H.; Guo, B. Melatonin attenuates radiation-induced cortical bone-derived stem cells injury and enhances bone repair in postradiation femoral defect model. Mil. Med. Res. 2021, 8, 61. [Google Scholar] [CrossRef]
- Moseti, D.; Regassa, A.; Kim, W.-K. Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules. Int. J. Mol. Sci. 2016, 17, 124. [Google Scholar] [CrossRef]
- Tang, Q.Q.; Lane, M.D. Adipogenesis: From stem cell to adipocyte. Annu. Rev. Biochem. 2012, 81, 715–736. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zuo, Z.; Li, L.; Ren, S.; Gao, T.; Fu, J.; Hou, Y.; Chen, Y.; Pi, J. Nrf2 in adipocytes. Arch. Pharmacal Res. 2020, 43, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.-A.; Lee, I.-K. The role of Nrf2: Adipocyte differentiation, obesity, and insulin resistance. Oxidative Med. Cell. Longev. 2013, 2013, 184598. [Google Scholar] [CrossRef]
- Lauren Tebay, B. Investigating the Role of Transcription Factors Nrf2 and Pparα in Hepatic Lipid Metabolism During Fasting. Ph.D. Thesis, University of Dundee, Dundee, Scotland, 2015. [Google Scholar]
- Pi, J.; Leung, L.; Xue, P.; Wang, W.; Hou, Y.; Liu, D.; Yehuda-Shnaidman, E.; Lee, C.; Lau, J.; Kurtz, T.W. Deficiency in the nuclear factor E2-related factor-2 transcription factor results in impaired adipogenesis and protects against diet-induced obesity. J. Biol. Chem. 2010, 285, 9292–9300. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Xue, P.; Bai, Y.; Liu, D.; Woods, C.G.; Yarborough, K.; Fu, J.; Zhang, Q.; Sun, G.; Collins, S. Nuclear factor erythroid-derived factor 2-related factor 2 regulates transcription of CCAAT/enhancer-binding protein β during adipogenesis. Free Radic. Biol. Med. 2012, 52, 462–472. [Google Scholar] [CrossRef]
- Shin, S.; Wakabayashi, N.; Misra, V.; Biswal, S.; Lee, G.H.; Agoston, E.S.; Yamamoto, M.; Kensler, T.W. NRF2 modulates aryl hydrocarbon receptor signaling: Influence on adipogenesis. Mol. Cell. Biol. 2007, 27, 7188–7197. [Google Scholar] [CrossRef]
- Gu, W.; Wu, G.; Chen, G.; Meng, X.; Xie, Z.; Cai, S. Polyphenols alleviate metabolic disorders: The role of ubiquitin-proteasome system. Front. Nutr. 2024, 11, 1445080. [Google Scholar] [CrossRef]
- Yu, F.-H.; Yin, B.-F.; Li, P.-L.; Li, X.-T.; Tian, J.-Y.; Xu, R.-X.; Tang, J.; Zhang, X.-Y.; Zhang, W.-J.; Zhu, H. The Enhancing Effects and Underlying Mechanism of Ionizing Radiation on Adipogenic Differentiation of Mesenchymal Stem Cells via Regulating Oxidative Stress Pathway. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2025, 33, 246–254. [Google Scholar]
- Sergeeva, V.; Ershova, E.; Veiko, N.; Malinovskaya, E.; Kalyanov, A.; Kameneva, L.; Stukalov, S.; Dolgikh, O.; Konkova, M.; Ermakov, A. Low-Dose Ionizing Radiation Affects Mesenchymal Stem Cells via Extracellular Oxidized Cell-Free DNA: A Possible Mediator of Bystander Effect and Adaptive Response. Oxidative Med. Cell. Longev. 2017, 2017, 9515809. [Google Scholar] [CrossRef]
- Xiao, Y.; Mo, W.; Jia, H.; Yu, D.; Qiu, Y.; Jiao, Y.; Zhu, W.; Koide, H.; Cao, J.; Zhang, S. Ionizing radiation induces cutaneous lipid remolding and skin adipocytes confer protection against radiation-induced skin injury. J. Dermatol. Sci. 2020, 97, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.-c.; Koo, B.-K.; Kim, Y.-Y.; Lee, S.-H.; Kim, N.-S.; Kim, J.-H.; Kong, Y.-Y. Essential role of CR6-interacting factor 1 (Crif1) in E74-like factor 3 (ELF3)-mediated intestinal development. J. Biol. Chem. 2009, 284, 33634–33641. [Google Scholar] [CrossRef] [PubMed]
- Oh, N.-S.; Yoon, S.-H.; Lee, W.-K.; Choi, J.-Y.; Min, D.S.; Bae, Y.-S. Phosphorylation of CKBBP2/CRIF1 by protein kinase CKII promotes cell proliferation. Gene 2007, 386, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.J.; Hong, Y.B.; Kim, H.J.; Bae, I. CR6-interacting factor 1 (CRIF1) regulates NF-E2-related factor 2 (NRF2) protein stability by proteasome-mediated degradation. J. Biol. Chem. 2010, 285, 21258–21268. [Google Scholar] [CrossRef]
- Zhang, X.; Xiang, L.; Ran, Q.; Liu, Y.; Xiang, Y.; Xiao, Y.; Chen, L.; Li, F.; Zhong, J.F.; Li, Z. Crif1 promotes adipogenic differentiation of bone marrow mesenchymal stem cells after irradiation by modulating the PKA/CREB signaling pathway. Stem Cells 2015, 33, 1915–1926. [Google Scholar] [CrossRef]
- Hsieh, J. Orchestrating transcriptional control of adult neurogenesis. Genes Dev. 2012, 26, 1010–1021. [Google Scholar] [CrossRef] [PubMed]
- Kärkkäinen, V.; Pomeshchik, Y.; Savchenko, E.; Dhungana, H.; Kurronen, A.; Lehtonen, S.; Naumenko, N.; Tavi, P.; Levonen, A.-L.; Yamamoto, M. Nrf2 regulates neurogenesis and protects neural progenitor cells against Aβ toxicity. Stem Cells 2014, 32, 1904–1916. [Google Scholar] [CrossRef]
- Robledinos-Antón, N.; Rojo, A.I.; Ferreiro, E.; Núñez, Á.; Krause, K.-H.; Jaquet, V.; Cuadrado, A. Transcription factor NRF2 controls the fate of neural stem cells in the subgranular zone of the hippocampus. Redox Biol. 2017, 13, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Bendavit, G.; Aboulkassim, T.; Hilmi, K.; Shah, S.; Batist, G. Nrf2 transcription factor can directly regulate mTOR: Linking cytoprotective gene expression to a major metabolic regulator that generates redox activity. J. Biol. Chem. 2016, 291, 25476–25488. [Google Scholar] [CrossRef]
- Huang, T.; Tong, H.; Zhou, H.; Wang, J.; Hu, L.; Wang, Y.; Huang, Z. ADSC-exosomes alleviate MTX-induced rat neuronal damage by activating Nrf2-ARE pathway. J. Mol. Neurosci. 2022, 72, 1334–1344. [Google Scholar] [CrossRef]
- Murakami, S.; Shimizu, R.; Romeo, P.H.; Yamamoto, M.; Motohashi, H. Keap1-Nrf2 system regulates cell fate determination of hematopoietic stem cells. Genes Cells 2014, 19, 239–253. [Google Scholar] [CrossRef]
- Paul, M.K.; Bisht, B.; Darmawan, D.O.; Chiou, R.; Ha, V.L.; Wallace, W.D.; Chon, A.T.; Hegab, A.E.; Grogan, T.; Elashoff, D.A. Dynamic changes in intracellular ROS levels regulate airway basal stem cell homeostasis through Nrf2-dependent Notch signaling. Cell Stem Cell 2014, 15, 199–214. [Google Scholar] [CrossRef]
- Chen, H.; Levison, S.; De Toledo, S.; Azzam, E.; Souayah, N. Effects of Ionizing Radiation on Neural Precursor Cells (IN8-1.008); Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012; Volume 78, p. IN8-1.008. [Google Scholar]
- Eom, H.S.; Park, H.R.; Jo, S.K.; Kim, Y.S.; Moon, C.; Kim, S.-H.; Jung, U. Ionizing radiation induces altered neuronal differentiation by mGluR1 through PI3K-STAT3 signaling in C17. 2 mouse neural stem-like cells. PLoS ONE 2016, 11, e0147538. [Google Scholar] [CrossRef] [PubMed]
- Ramanan, S.; Kooshki, M.; Zhao, W.; Hsu, F.-C.; Riddle, D.R.; Robbins, M.E. The PPARα agonist fenofibrate preserves hippocampal neurogenesis and inhibits microglial activation after whole-brain irradiation. Int. J. Radiat. Oncol. * Biol. * Phys. 2009, 75, 870–877. [Google Scholar] [CrossRef]
- Wei, L.-C.; Ding, Y.-X.; Liu, Y.-H.; Duan, L.; Bai, Y.; Shi, M.; Chen, L.-W. Low-dose radiation stimulates Wnt/β-catenin signaling, neural stem cell proliferation and neurogenesis of the mouse hippocampus in vitro and in vivo. Curr. Alzheimer Res. 2012, 9, 278–289. [Google Scholar] [CrossRef]
- Liao, G.; Li, R.; Chen, X.; Zhang, W.; Du, S.; Yuan, Y. Sodium valproate prevents radiation-induced injury in hippocampal neurons via activation of the Nrf2/HO-1 pathway. Neuroscience 2016, 331, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Panieri, E.; Buha, A.; Telkoparan-Akillilar, P.; Cevik, D.; Kouretas, D.; Veskoukis, A.; Skaperda, Z.; Tsatsakis, A.; Wallace, D.; Suzen, S. Potential applications of NRF2 modulators in cancer therapy. Antioxidants 2020, 9, 193. [Google Scholar] [CrossRef] [PubMed]
- Reinema, F.; Kaanders, J.; Peeters, W.; Adema, G.; Sweep, F.; Bussink, J.; Span, P. Radiotherapy induces an increase in serum antioxidant capacity reflecting tumor response. Clin. Transl. Radiat. Oncol. 2024, 45, 100726. [Google Scholar] [CrossRef] [PubMed]
Source of IR or Oxidative Stress | Dose (Dose Rate) | Time After IR | Type of Stem Cells | Type of Study | Evaluated Markers | Methods | Effect (Differentiation/Proliferation) | References |
---|---|---|---|---|---|---|---|---|
137Cs | 1.125 (not mentioned) | 48 h | HSCs | In vitro | SDF-1 (CXCL12) | Radiolabling for proliferating cells, immunohistochemistry, microscopy I mage, and qPCR | Enhanced osteogenesis | [61] |
137Cs | 6.9–7.3 (0.53 Gy/min) | 1–21 days | HSCs | In vivo | KEAP1, KI67 markers, and JAG1 | qPCR, flow cytometry and colony formation | Enhanced osteogenesis | [13] |
t-BHQ (Solarbio) | 1, 5, 10 μM | 36 h | Periodontal ligament stem cells (PDLSCs) | In vitro and in vivo | HO-1, NQO-1, and RUNX2 | PDLSC isolation, flow cytometry, qPCR, western blotting, proteomics, micro-CT, and mineralization nodules via Alizarin Red | Enhanced osteogenesis | [62] |
Cobalt-60 | 250 m Gy-2.5 Gy (100 mGy/min and 1 Gy/min, respectively) | 6–8 days (in vitro) and 12–14 days (in vivo) | HSPCs | In vitro and in vivo | Thr180/Tyr18 | Immunomagnetic, flow cytometry, and Western blotting | Proliferation | [63] |
A linear accelerator (X-ray) | <2 Gy (1.5 Gy/min) | 3–7 days | Primary osteoblasts | In vivo | ALP, collagen I, osteopontin, and osteocalcin | Alkaline Phosphatase (ALP) activity, Alizarin Red S staining, RT-PCR, and Western blotting | Enhanced osteogenesis | [65] |
X-rays | 1, 2, 4, or 7.5 Gy (3.3–3.4 Gy/min) | 6 days | Induced pluripotent stem (iPS) and HSPCs | In vitro/In vivo | Afp, Nanog, and Oct-4 | Clonogenic assay, Embryoid Body (EB) formation assay, and gene expression | Delay in differentiation | [66] |
Cobalt-60 | 2 Gy (0.98 Gy/min) | 1–7 days | Skeletal stem cells (SSCs) | In vitro/In vivo | p-Akt, NRF2, KEAP1, GSK-3β, p-GSK-3β, HMOX1, and NQO1 | Micro-CT, proliferation assay, colony formation, qPCR, and Western blotting | Regenerative, proliferation, and osteogenic differentiation | [67] |
Source of IR or Oxidative Stress | Dose (Dose Rate) | Time After IR or Oxidative Stress | Type of Stem Cells | Type of Study | Markers | Methods | Effect (Differentiation/Proliferation) | References |
---|---|---|---|---|---|---|---|---|
5-FU chemotherapy | - | 5–10 days | Primary hematopoietic cells | In vitro/In vivo | Granulocyte/erythroid markers, NRF2, and KEAP1 | Flow cytometry and qRT-PCR | KEAP1–NRF2 axis is a critical regulator of HSC fate and healthy hematopoiesis | [90] |
γ-ray (137Cs source) | 0–8 Gy (note reported) | 24–48 h | NSPs | In vitro/In vivo | Nestin. NRF2, Sox2, GFAP, NG2, and neurospheres | Neurosphere formation, immunocytochemistry, cell-cycle flow cytometry, and Western blotting | Ability to generate neurons, astrocytes, and oligodendrocytes post-irradiation | [92] |
γ-ray | 2–6 Gy (not reported) | 72 h | NSCs | In vitro/In vivo | Nestin, β-III Tubulin mGluR1, phospho-Akt, and p53 | Immunofluorescence, Western blotting, and qPCR | Radiation triggers neuronal differentiation | [93] |
γ-ray (137Cs source) | Single acute dose of 10 Gy (3.33 Gy/min) | 1 week and 2 months post-irradiation | NPCs | In vitro/In vivo | BrdU/NeuN, Ki-67, CD68, and PPARα | Immunofluorescence, immunohistochemistry, and CD68 staining | Fenofibrate preserves survival | [94] |
γ-ray (137Cs source) | 0.3–3 Gy (not reported) | 2 days-4 weeks | NSCs | In vitro/In vivo | Nestin, Wnt1, Wnt3a, Wnt5a, and β-catenin | Flow cytometry, immunohistochemistry, and RT-PCR | Enhanced cell survival, stem cell proliferation and neurogenesis | [95] |
X-ray (6-MV linear accelerator) | 6 Gy and 20 Gy (5.0 Gy/min) | 24 h | HT22 cells | In vitro/In vivo | NRF2, HO-1, NeuN, and MAP2 | Immunohistochemistry and Western blotting | Neuroprotective effects | [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moloudi, K.; Haghdoost, S. An Update on Role of Ionizing Radiation to Enhance Proliferation and Differentiation of Normal Stem Cells via Activation of NRF2 Pathway: Review. Antioxidants 2025, 14, 986. https://doi.org/10.3390/antiox14080986
Moloudi K, Haghdoost S. An Update on Role of Ionizing Radiation to Enhance Proliferation and Differentiation of Normal Stem Cells via Activation of NRF2 Pathway: Review. Antioxidants. 2025; 14(8):986. https://doi.org/10.3390/antiox14080986
Chicago/Turabian StyleMoloudi, Kave, and Siamak Haghdoost. 2025. "An Update on Role of Ionizing Radiation to Enhance Proliferation and Differentiation of Normal Stem Cells via Activation of NRF2 Pathway: Review" Antioxidants 14, no. 8: 986. https://doi.org/10.3390/antiox14080986
APA StyleMoloudi, K., & Haghdoost, S. (2025). An Update on Role of Ionizing Radiation to Enhance Proliferation and Differentiation of Normal Stem Cells via Activation of NRF2 Pathway: Review. Antioxidants, 14(8), 986. https://doi.org/10.3390/antiox14080986