Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (502)

Search Parameters:
Keywords = epithelial mesenchymal transformation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4116 KiB  
Article
A Bifunctional Anti-PD-1/TGF-β Fusion Antibody Restores Antitumour Immunity and Remodels the Tumour Microenvironment
by Lidi Nan, Yuting Qin, Xiao Huang, Mingzhu Pan, Xiaomu Wang, Yanqing Lv, Annette Sorensen, Xiaoqiang Kang, Hong Ling and Juan Zhang
Int. J. Mol. Sci. 2025, 26(15), 7567; https://doi.org/10.3390/ijms26157567 (registering DOI) - 5 Aug 2025
Abstract
Although PD-1/PD-L1 inhibitors have transformed cancer immunotherapy, a substantial proportion of patients derive no clinical benefit due to resistance driven by the tumour microenvironment (TME). Transforming growth factor-β (TGF-β) is a key immunosuppressive cytokine implicated in this resistance. Several bifunctional antibodies that co-target [...] Read more.
Although PD-1/PD-L1 inhibitors have transformed cancer immunotherapy, a substantial proportion of patients derive no clinical benefit due to resistance driven by the tumour microenvironment (TME). Transforming growth factor-β (TGF-β) is a key immunosuppressive cytokine implicated in this resistance. Several bifunctional antibodies that co-target PD-1 and TGF-β signalling have entered clinical trials and shown encouraging efficacy, but the mechanistic basis of their synergy is not fully understood. Here, we engineered 015s, a bifunctional fusion antibody that simultaneously targets murine PD-1 and TGF-β and evaluated its antitumour efficacy and mechanistic impact in pre-clinical models. Antibody 015s exhibited high affinity, dual target binding, and the effective inhibition of PD-1 and TGF-β signalling. In vivo, 015s significantly suppressed tumour growth compared with anti-mPD-1 or TGF-β receptor II (TGF-βRII) monotherapy. When combined with the CD24-targeted ADC, 015s produced even greater antitumour activity and achieved complete tumour regression. Mechanistic studies demonstrated that 015s significantly reduced tumour cell migration and invasion, reversed epithelial–mesenchymal transition (EMT), decreased microvascular density, and attenuated collagen deposition within the TME. Antibody 015s also decreased bioactive TGF-β1 and increased intratumoural IFN-γ, creating a more immunostimulatory milieu. These findings support further development of PD-1/TGF-β bifunctional antibodies for cancers with high TGF-β activity or limited response to immune checkpoint blockade. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Graphical abstract

25 pages, 681 KiB  
Review
Insights into the Molecular Mechanisms and Signaling Pathways of Epithelial to Mesenchymal Transition (EMT) in the Pathophysiology of Endometriosis
by Hossein Hosseinirad, Jae-Wook Jeong and Breton F. Barrier
Int. J. Mol. Sci. 2025, 26(15), 7460; https://doi.org/10.3390/ijms26157460 (registering DOI) - 1 Aug 2025
Viewed by 222
Abstract
Endometriosis is a disease characterized by the presence of endometrial glands and stroma outside of the uterine corpus, often clinically presenting with pain and/or infertility. Ectopic lesions exhibit features characteristic of epithelial-to-mesenchymal transition (EMT), a process in which epithelial cells lose polarity and [...] Read more.
Endometriosis is a disease characterized by the presence of endometrial glands and stroma outside of the uterine corpus, often clinically presenting with pain and/or infertility. Ectopic lesions exhibit features characteristic of epithelial-to-mesenchymal transition (EMT), a process in which epithelial cells lose polarity and acquire mesenchymal traits, including migratory and invasive capabilities. During the process of EMT, epithelial traits are downregulated, while mesenchymal traits are acquired, with cells developing migratory ability, increasing proliferation, and resistance to apoptosis. EMT is promoted by exposure to hypoxia and stimulation by transforming growth factor-β (TGF-β), platelet-derived growth factor (PDGF), and estradiol. Signaling pathways that promote EMT are activated in most ectopic lesions and involve transcription factors such as Snail, Slug, ZEB-1/2, and TWIST-1/2. EMT-specific molecules present in the serum of women with endometriosis appear to have diagnostic potential. Strategies targeting EMT in animal models of endometriosis have demonstrated regression of ectopic lesions, opening the door for novel therapeutic approaches. This review summarizes the current understanding of the role of EMT in endometriosis and highlights potential targets for EMT-related diagnosis and therapeutic interventions. Full article
(This article belongs to the Special Issue Endometriosis: Focusing on Molecular and Cellular Research)
Show Figures

Figure 1

25 pages, 1749 KiB  
Review
TGF-β Signaling in Cancer: Mechanisms of Progression and Therapeutic Targets
by Elżbieta Cecerska-Heryć, Adrianna Jerzyk, Małgorzata Goszka, Aleksandra Polikowska, Julita Rachwalska, Natalia Serwin, Bartosz Wojciuk and Barbara Dołęgowska
Int. J. Mol. Sci. 2025, 26(15), 7326; https://doi.org/10.3390/ijms26157326 - 29 Jul 2025
Viewed by 426
Abstract
Transforming growth factor-β (TGF-β) is a key protein family member that includes activins, inhibins, and bone morphogenetic proteins (BMPs). It is essential in numerous biological processes, such as chemotaxis, apoptosis, differentiation, growth, and cell migration. TGF-β receptors initiate signaling through two primary pathways: [...] Read more.
Transforming growth factor-β (TGF-β) is a key protein family member that includes activins, inhibins, and bone morphogenetic proteins (BMPs). It is essential in numerous biological processes, such as chemotaxis, apoptosis, differentiation, growth, and cell migration. TGF-β receptors initiate signaling through two primary pathways: the canonical pathway involving Smad proteins and non-canonical pathways that utilize alternative signaling mechanisms. When TGF-β signaling is disrupted, it has been shown to contribute to the development of various diseases, including cancer. Initially, TGF-β effectively inhibits the cell cycle and promotes apoptosis. However, its role can transition to facilitating tumor growth and metastasis as the disease progresses. Moreover, TGF-β drives cancer progression through epithelial–mesenchymal transition (EMT), modulation of factor expression, and evasion of immune responses. This complexity establishes the need for further research, particularly into pharmacological agents targeting TGF-β, which are emerging as promising therapeutic options. Current clinical and preclinical studies are making significant strides toward mitigating the adverse effects of TGF-β. This underscores the critical importance of understanding its underlying mechanisms to enhance treatment effectiveness and improve survival rates for cancer patients. Full article
(This article belongs to the Special Issue Advancements in Cancer Biomarkers)
Show Figures

Graphical abstract

16 pages, 8040 KiB  
Article
Low BOK Expression Promotes Epithelial–Mesenchymal Transition and Migration via the Wnt Signaling Pathway in Breast Cancer Cells
by Ling Liu, Tiantian He, Zhen Zhang, Wenjie Dai, Liyang Ding, Hong Yang, Bo Xu, Yitong Shang, Yu Deng, Xufeng Fu and Xing Du
Int. J. Mol. Sci. 2025, 26(15), 7252; https://doi.org/10.3390/ijms26157252 - 27 Jul 2025
Viewed by 278
Abstract
The B-cell lymphoma 2 (Bcl-2)-related ovarian killer (BOK), a member of the Bcl-2 protein family, shares a similar domain structure and amino acid sequence homology with the pro-apoptotic family members BAX and BAK. Although BOK is involved in the development of various types [...] Read more.
The B-cell lymphoma 2 (Bcl-2)-related ovarian killer (BOK), a member of the Bcl-2 protein family, shares a similar domain structure and amino acid sequence homology with the pro-apoptotic family members BAX and BAK. Although BOK is involved in the development of various types of cancer, its mechanism of action in breast cancer remains unclear. This study found that BOK was involved in the process of MG132, inhibiting the migration and epithelial–mesenchymal transition (EMT) of breast cancer cells induced by transforming growth factor-β. Furthermore, interfering BOK reversed the inhibition of breast cancer cell migration and the EMT process by MG132. Additional studies revealed that BOK silencing promoted the expression of EMT-related markers in breast cancer cells, while BOK overexpression inhibited EMT and migration. Using RNA-seq sequencing and Western blotting, we confirmed that the Wnt signaling pathway is involved in BOK regulating the EMT process in breast cancer cells. Therefore, we conclude that low BOK expression promotes breast cancer EMT and migration by activating the Wnt signaling pathway. This study enhances our understanding of breast cancer pathogenesis and suggests that BOK may serve as a potential prognostic marker and therapeutic target for breast cancer. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 2600 KiB  
Article
Nintedanib Induces Mesenchymal-to-Epithelial Transition and Reduces Subretinal Fibrosis Through Metabolic Reprogramming
by David Hughes, Jüergen Prestle, Nina Zippel, Sarah McFetridge, Manon Szczepan, Heike Neubauer, Heping Xu and Mei Chen
Int. J. Mol. Sci. 2025, 26(15), 7131; https://doi.org/10.3390/ijms26157131 - 24 Jul 2025
Viewed by 337
Abstract
This study aimed to investigate the tyrosine kinase inhibitor Nintedanib and its potential role in reversing epithelial–mesenchymal transition (EMT) induced by transforming growth factor beta 2 (TGF-β2) in retinal pigment epithelial (RPE) cells, along with its therapeutic potential using a mouse model of [...] Read more.
This study aimed to investigate the tyrosine kinase inhibitor Nintedanib and its potential role in reversing epithelial–mesenchymal transition (EMT) induced by transforming growth factor beta 2 (TGF-β2) in retinal pigment epithelial (RPE) cells, along with its therapeutic potential using a mouse model of subretinal fibrosis. We hypothesized that the blockade of angiogenesis promoting and fibrosis inducing signaling using the receptor tyrosine kinase inhibitor Nintedanib (OfevTM) can prevent or reverse EMT both in vitro and in our in vivo model of subretinal fibrosis. Primary human retinal pigment epithelial cells (phRPE) and adult retinal pigment epithelial cell line (ARPE-19) cells were treated with TGF-β210 ng/mL for two days followed by four days of Nintedanib (1 µM) incubation. Epithelial and mesenchymal phenotypes were assessed by morphological examination, quantitative real-time polymerase chain reaction(qPCR) (ZO-1, Acta2, FN, and Vim), and immunocytochemistry (ZO-1, vimentin, fibronectin, and αSMA). Metabolites were measured using luciferase-based assays. Extracellular acidification and oxygen consumption rates were measured using the Seahorse XF system. Metabolic-related genes (GLUT1, HK2, PFKFB3, CS, LDHA, LDHB) were evaluated by qPCR. A model of subretinal fibrosis using the two-stage laser-induced method in C57BL/6J mice assessed Nintedanib’s therapeutic potential. Fibro-vascular lesions were examined 10 days later via fluorescence angiography and immunohistochemistry. Both primary and ARPE-19 RPE stimulated with TGF-β2 upregulated expression of fibronectin, αSMA, and vimentin, and downregulation of ZO-1, consistent with morphological changes (i.e., elongation). Glucose consumption, lactate production, and glycolytic reserve were significantly increased in TGF-β2-treated cells, with upregulation of glycolysis-related genes (GLUT1, HK2, PFKFB3, CS). Nintedanib treatment reversed TGF-β2-induced EMT signatures, down-regulated glycolytic-related genes, and normalized glycolysis. Nintedanib intravitreal injection significantly reduced collagen-1+ fibrotic lesion size and Isolectin B4+ neovascularization and reduced vascular leakage in the two-stage laser-induced model of subretinal fibrosis. Nintedanib can induce Mesenchymal-to-Epithelial Transition (MET) in RPE cells and reduce subretinal fibrosis through metabolic reprogramming. Nintedanib can therefore potentially be repurposed to treat retinal fibrosis. Full article
Show Figures

Figure 1

17 pages, 659 KiB  
Review
Insights into the Molecular Mechanisms and Novel Therapeutic Strategies of Stenosis Fibrosis in Crohn’s Disease
by Yuan Zhou, Huiping Chen, Qinbo Wang, Guozeng Ye, Yingjuan Ou, Lihong Huang, Xia Wu and Jiaxi Fei
Biomedicines 2025, 13(7), 1777; https://doi.org/10.3390/biomedicines13071777 - 21 Jul 2025
Viewed by 414
Abstract
Crohn’s disease (CD), characterized by chronic gastrointestinal inflammation, is complicated by intestinal stenosis resulting from dysregulated fibrogenesis and is marked by excessive extracellular matrix (ECM) deposition, fibroblast activation, and luminal obstruction. While biologics control inflammation, their failure to halt fibrosis underscores a critical [...] Read more.
Crohn’s disease (CD), characterized by chronic gastrointestinal inflammation, is complicated by intestinal stenosis resulting from dysregulated fibrogenesis and is marked by excessive extracellular matrix (ECM) deposition, fibroblast activation, and luminal obstruction. While biologics control inflammation, their failure to halt fibrosis underscores a critical therapeutic void. Emerging evidence highlights the multifactorial nature of stenosis-associated fibrosis, driven by profibrotic mediators and dysregulated crosstalk among immune, epithelial, and mesenchymal cells. Key pathways, including transforming growth factor (TGF-β), drosophila mothers against decapentaplegic protein (Smad) signaling, Wnt/β-catenin activation, epithelial–mesenchymal transition (EMT), and matrix metalloproteinase (MMP) and tissue inhibitors of metalloproteinase (TIMP)-mediated ECM remodeling, orchestrate fibrotic progression. Despite the current pharmacological, endoscopic, and surgical interventions for fibrostenotic CD, their palliative nature and inability to reverse fibrosis highlight an unmet need for disease-modifying therapies. This review synthesizes mechanistic insights, critiques therapeutic limitations with original perspectives, and proposes a translational roadmap prioritizing biomarker-driven stratification, combinatorial biologics, and mechanistically targeted antifibrotics. Full article
Show Figures

Figure 1

15 pages, 2606 KiB  
Article
A Collagen Membrane Pretreated with Citrate Promotes Collagen Mineralization and Bone Regeneration
by Qi Zhang, Yewen Zhong, Xinlin He and Sui Mai
J. Funct. Biomater. 2025, 16(7), 261; https://doi.org/10.3390/jfb16070261 - 15 Jul 2025
Viewed by 592
Abstract
Purpose: Collagen membranes with biomimetic mineralization are emerging as promising materials for bone regeneration, owing to their high biocompatibility. In this study, we developed a biogenic collagen membrane by combining citrate (C) pretreatment and carboxymethyl chitosan (CMC)-mediated mineralization and further evaluated its bone [...] Read more.
Purpose: Collagen membranes with biomimetic mineralization are emerging as promising materials for bone regeneration, owing to their high biocompatibility. In this study, we developed a biogenic collagen membrane by combining citrate (C) pretreatment and carboxymethyl chitosan (CMC)-mediated mineralization and further evaluated its bone healing potential. Methods: C-CMC collagen membranes were prepared by lyophilization. The mineral composition and content were tested through X-ray diffraction (XRD), Fourier transform infrared (FTIR), and thermogravimetric analysis (TGA). The micromorphology was observed using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and scanning probe microscopy (SPM). Physical and mechanical properties, including the swelling rate, porosity, hydrophilicity, tensile strength, Young’s modulus, degradation, and barrier function, were also evaluated. Bone mesenchymal stem cells (BMSCs) were cultured in vitro to observe their behavior. An in vivo critical-size rat calvarial defect model was used to validate the effects of the membrane on bone regeneration. Results: The C-CMC collagen membrane was successfully synthesized as a collagen–hydroxyapatite complex with intrafibrillar mineralization, exhibiting improved mechanical properties and an optimal swelling rate, porosity, hydrophilicity, and degradation rate. Additionally, the C-CMC collagen membrane promoted BMSC proliferation, adhesion, and osteogenesis while preventing epithelial cell infiltration. In vivo experiments indicated that C-CMC collagen membranes significantly stimulated bone regeneration without causing systemic toxicity. Conclusions: Our findings suggest that the C-CMC collagen membrane possesses satisfactory physical and mechanical properties, along with good biocompatibility and efficacy in bone defect regeneration, making it a potential candidate for a bioactive guided bone regeneration membrane in clinical applications. Full article
Show Figures

Figure 1

18 pages, 13532 KiB  
Article
Histogenesis of the Uterine Horn in the Domestic Cat (Felis silvestris catus): LM, TEM, and SEM Study
by Ewelina Prozorowska-Basińska, Marlena Ratajczak and Hanna Jackowiak
Animals 2025, 15(14), 2067; https://doi.org/10.3390/ani15142067 - 13 Jul 2025
Viewed by 220
Abstract
This study employs light microscopy, scanning electron microscopy, and transmission electron microscopy to describe the morphological changes occurring during the development of the domestic cat’s uterine horns, originating from the uterine segments of paramesonephric ducts (uPD). Comprehensive observations conducted on 60 specimens aged [...] Read more.
This study employs light microscopy, scanning electron microscopy, and transmission electron microscopy to describe the morphological changes occurring during the development of the domestic cat’s uterine horns, originating from the uterine segments of paramesonephric ducts (uPD). Comprehensive observations conducted on 60 specimens aged 28–63 days post-conception (p.c.) revealed that the formation of the endometrium and myometrium in the uterine horns begins around day 33 p.c., initiated by mesenchymal differentiation. During endometrial development, fibroblasts align first in perpendicular and then in oblique columns. The subdivision of the lamina propria into basal and functional layers becomes evident shortly before birth, with the functional layer remaining flat until the end of the prenatal period. The endometrial epithelium transforms from a simple columnar to a pseudostratified structure, undulating by day 63 p.c. Myometrial formation commences with the differentiation of myoblasts, which are arranged in a circular pattern. By the end of gestation, these myoblasts differentiate into smooth muscle cells, organizing into distinct inner circular and outer longitudinal sublayers. Although the fundamental layered architecture of the uterine wall is established before birth, its full maturation—including gland formation, epithelial transformation, and further development of the myometrium—continues postnatally. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

13 pages, 4295 KiB  
Article
Chelerythrine Inhibits TGF-β-Induced Epithelial–Mesenchymal Transition in A549 Cells via RRM2
by Jinlong Liu, Mengran Xu, Liu Han, Yuxuan Rao, Haoming Han, Haoran Zheng, Jinying Wu and Xin Sun
Pharmaceuticals 2025, 18(7), 1036; https://doi.org/10.3390/ph18071036 - 12 Jul 2025
Viewed by 375
Abstract
Background: The mechanisms underlying the metastasis of non-small-cell lung cancer (NSCLC) have long been a focal point of medical research. The anti-tumor effects of chelerythrine (CHE) have been confirmed; however, its ability to inhibit tumor metastasis and the underlying mechanisms remain unknown. The [...] Read more.
Background: The mechanisms underlying the metastasis of non-small-cell lung cancer (NSCLC) have long been a focal point of medical research. The anti-tumor effects of chelerythrine (CHE) have been confirmed; however, its ability to inhibit tumor metastasis and the underlying mechanisms remain unknown. The aim of this study was to investigate the inhibitory effects and molecular mechanisms of CHE on transforming growth factor-beta (TGF-β)-induced epithelial–mesenchymal transition (EMT). Methods: Wound healing and Transwell assays were employed to evaluate TGF-β-induced migration in A549 cells and the inhibitory effects of CHE. Ribonucleotide reductase subunit M2 (RRM2) expression levels were detected via Western blot and immunofluorescence staining. Western blot and RT-qPCR were used to examine the expression levels of EMT-related markers. Animal experiments were conducted to analyze the role of RRM2 in the CHE inhibition of TGF-β-induced lung cancer metastasis. Results: This study found that TGF-β treatment enhanced the metastasis of A549 cells, while CHE inhibited the expression of TGF-β-induced EMT-related transcription factors by RRM2, thereby suppressing tumor cell migration (p < 0.05). Furthermore, the oral administration of CHE inhibited the metastasis of A549 cells to the lungs from the tail vein in mice, consistent with in vitro findings. Despite the high doses of CHE used, there was no evidence of toxicity. Conclusions: Our data reveal the mechanism of the anti-metastatic effects of CHE on TGF-β-induced EMT and indicate that CHE can be used as an effective anti-tumor treatment. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

17 pages, 12539 KiB  
Article
TGF-β Promotes Endothelial-to-Mesenchymal Transition and Alters Corneal Endothelial Cell Migration in Fuchs Endothelial Corneal Dystrophy
by Judy Yan, Brooke Lim, Narisa Dhupar, Kathrine Bhargava, Lina Chen, Greg Moloney and Stephan Ong Tone
Int. J. Mol. Sci. 2025, 26(14), 6685; https://doi.org/10.3390/ijms26146685 - 11 Jul 2025
Viewed by 289
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a progressive corneal disease characterized by corneal endothelial cell (CEC) loss and guttae formation. Elevated levels of Transforming Growth Factor-Beta 1 and 2 (TGF-β1/-β2) have been reported in the aqueous humor (AH) of FECD patients and have [...] Read more.
Fuchs endothelial corneal dystrophy (FECD) is a progressive corneal disease characterized by corneal endothelial cell (CEC) loss and guttae formation. Elevated levels of Transforming Growth Factor-Beta 1 and 2 (TGF-β1/-β2) have been reported in the aqueous humor (AH) of FECD patients and have been implicated with abnormal extracellular matrix (ECM) production, endothelial-to-mesenchymal transition (EndoMT), the unfolded protein response, and cell death. However, how TGF-β signaling affects cell migration in FECD remains to be elucidated. In this study, we found that TGF-β2 levels were significantly elevated in the AH of FECD patients compared to controls. We performed bulk RNA sequencing on FECD CECs treated with TGF-β1 or TGF-β2 and identified the epithelial-to-mesenchymal (EMT) pathway as one of the top dysregulated pathways. We found that TGF-β1 and TGF-β2 increased EMT markers, filamentous-actin (F-actin) expression and produced more EMT-like phenotype in FECD and control CECs. We also observed that TGF-β1 and TGF-β2 significantly increased FECD CEC migration speed as detected by scratch assay and individual cell tracking and promoted individual cellular migration behavior. This study provides novel insight into FECD pathogenesis and how increased TGF-β signaling promotes EndoMT and alters cellular migration in FECD CECs. Full article
(This article belongs to the Special Issue Functional Roles of Epithelial and Endothelial Cells)
Show Figures

Figure 1

16 pages, 1003 KiB  
Article
MMP-2—Potential Predictor of Epithelial–Mesenchymal Transition in Squamous Cell Carcinogenesis
by Doinița Temelie-Olinici, Bild Walther, Laura Gheucă-Solovăstru, Mihaela Perțea, Daniela-Anicuța Leca, Bogdan-Vasile Grecu, Ioana-Alina Halip, Mădălina Mocanu, Ioana-Adriana Popescu, Adriana-Ionela Pătrașcu and Dan Vâță
Life 2025, 15(7), 1060; https://doi.org/10.3390/life15071060 - 2 Jul 2025
Viewed by 394
Abstract
Epithelial–mesenchymal transition (EMT) is one of the key steps in cutaneous carcinogenesis. At the molecular level, this cellular dedifferentiation is modulated by the interaction of signalling pathways that favour basement membrane degradation under the influence of proinflammatory cytokines and matrix metalloproteinases (MMPs). Given [...] Read more.
Epithelial–mesenchymal transition (EMT) is one of the key steps in cutaneous carcinogenesis. At the molecular level, this cellular dedifferentiation is modulated by the interaction of signalling pathways that favour basement membrane degradation under the influence of proinflammatory cytokines and matrix metalloproteinases (MMPs). Given the intricate role of these endopeptidases in modulating extracellular matrix turnover, the present study aimed primarily to identify the MMP-2 expression profile during the early stages of cutaneous malignant transformation. Forty-eight lesions with malignant transformation potential were excised in healthy tissue. Following the histopathological diagnosis of keratoacanthoma, Bowen’s disease and actinic keratosis, the biological preparations were deparaffinised and homogenised in order to perform the FRET technique using the “MMP-2 Assay Kit Fluorometric”. The results of the previous part of this research indicate that MMP-2 expression is more intense in lesions of actinic keratosis compared to normal tissues and to keratoacanthoma or Bowen’s disease lesions, inversely proportional to the histopathological degree of dysplasia. Monitoring metalloproteinase activity in dysplastic epithelium may improve the detection of malignant transformation and guide treatment decisions. Full article
Show Figures

Figure 1

18 pages, 1987 KiB  
Article
AI-HOPE-TGFbeta: A Conversational AI Agent for Integrative Clinical and Genomic Analysis of TGF-β Pathway Alterations in Colorectal Cancer to Advance Precision Medicine
by Ei-Wen Yang, Brigette Waldrup and Enrique Velazquez-Villarreal
AI 2025, 6(7), 137; https://doi.org/10.3390/ai6070137 - 24 Jun 2025
Cited by 2 | Viewed by 654
Abstract
Introduction: Early-onset colorectal cancer (EOCRC) is rising rapidly, particularly among the Hispanic/Latino (H/L) populations, who face disproportionately poor outcomes. The transforming growth factor-beta (TGF-β) signaling pathway plays a critical role in colorectal cancer (CRC) progression by mediating epithelial-to-mesenchymal transition (EMT), immune evasion, and [...] Read more.
Introduction: Early-onset colorectal cancer (EOCRC) is rising rapidly, particularly among the Hispanic/Latino (H/L) populations, who face disproportionately poor outcomes. The transforming growth factor-beta (TGF-β) signaling pathway plays a critical role in colorectal cancer (CRC) progression by mediating epithelial-to-mesenchymal transition (EMT), immune evasion, and metastasis. However, integrative analyses linking TGF-β alterations to clinical features remain limited—particularly for diverse populations—hindering translational research and the development of precision therapies. To address this gap, we developed AI-HOPE-TGFbeta (Artificial Intelligence agent for High-Optimization and Precision Medicine focused on TGF-β), the first conversational artificial intelligence (AI) agent designed to explore TGF-β dysregulation in CRC by integrating harmonized clinical and genomic data via natural language queries. Methods: AI-HOPE-TGFbeta utilizes a large language model (LLM), Large Language Model Meta AI 3 (LLaMA 3), a natural language-to-code interpreter, and a bioinformatics backend to automate statistical workflows. Tailored for TGF-β pathway analysis, the platform enables real-time cohort stratification and hypothesis testing using harmonized datasets from the cBio Cancer Genomics Portal (cBioPortal). It supports mutation frequency comparisons, odds ratio testing, Kaplan–Meier survival analysis, and subgroup evaluations across race/ethnicity, microsatellite instability (MSI) status, tumor stage, treatment exposure, and age. The platform was validated by replicating findings on the SMAD4, TGFBR2, and BMPR1A mutations in EOCRC. Exploratory queries were conducted to examine novel associations with clinical outcomes in H/L populations. Results: AI-HOPE-TGFbeta successfully recapitulated established associations, including worse survival in SMAD4-mutant EOCRC patients treated with FOLFOX (fluorouracil, leucovorin and oxaliplatin) (p = 0.0001) and better outcomes in early-stage TGFBR2-mutated CRC patients (p = 0.00001). It revealed potential population-specific enrichment of BMPR1A mutations in H/L patients (OR = 2.63; p = 0.052) and uncovered MSI-specific survival benefits among SMAD4-mutated patients (p = 0.00001). Exploratory analysis showed better outcomes in SMAD2-mutant primary tumors vs. metastatic cases (p = 0.0010) and confirmed the feasibility of disaggregated ethnicity-based queries for TGFBR1 mutations, despite small sample sizes. These findings underscore the platform’s capacity to detect both known and emerging clinical–genomic patterns in CRC. Conclusions: AI-HOPE-TGFbeta introduces a new paradigm in cancer bioinformatics by enabling natural language-driven, real-time integration of genomic and clinical data specific to TGF-β pathway alterations in CRC. The platform democratizes complex analyses, supports disparity-focused investigation, and reveals clinically actionable insights in underserved populations, such as H/L EOCRC patients. As a first-of-its-kind system studying TGF-β, AI-HOPE-TGFbeta holds strong promise for advancing equitable precision oncology and accelerating translational discovery in the CRC TGF-β pathway. Full article
(This article belongs to the Section Medical & Healthcare AI)
Show Figures

Figure 1

18 pages, 1199 KiB  
Review
Molecular Basis of Chronic Intestinal Wall Fibrosis in Inflammatory Bowel Diseases
by Patrycja Sputa-Grzegrzolka, Anna Socha-Banasiak, Piotr Dziegiel and Bartosz Kempisty
Int. J. Mol. Sci. 2025, 26(12), 5754; https://doi.org/10.3390/ijms26125754 - 16 Jun 2025
Viewed by 524
Abstract
Inflammatory bowel diseases (IBDs), including Crohn’s disease (CD), ulcerative colitis (UC), and IBD-unclassified (IBD-U), are chronic inflammatory disorders of the gastrointestinal tract. Chronic inflammation in the course of IBD is an important initiating factor of fibrosis of the intestinal wall. Intestinal fibrosis is [...] Read more.
Inflammatory bowel diseases (IBDs), including Crohn’s disease (CD), ulcerative colitis (UC), and IBD-unclassified (IBD-U), are chronic inflammatory disorders of the gastrointestinal tract. Chronic inflammation in the course of IBD is an important initiating factor of fibrosis of the intestinal wall. Intestinal fibrosis is one of the most common and important complications of IBD and, due to the irreversibility of the process and the need for surgical treatment, currently poses a major clinical challenge. In this review, we presented in detail the process of intestinal wall fibrosis at the molecular, immunological, and clinical levels. We characterized the mediators, including transforming growth factor β (TGF-β), tumor necrosis factor-α (TNF-α), and others participating in this process. We also described the type 2 epithelial–mesenchymal transition (EMT) process closely associated with chronic inflammation, leading to excessive development of connective tissue in the intestinal wall in the course of IBD. Full article
Show Figures

Figure 1

29 pages, 2018 KiB  
Review
Neutrophil Spatiotemporal Regulatory Networks: Dual Roles in Tumor Growth Regulation and Metastasis
by Pengcheng Li, Feimu Fan, Bixiang Zhang, Chaoyi Yuan and Huifang Liang
Biomedicines 2025, 13(6), 1473; https://doi.org/10.3390/biomedicines13061473 - 14 Jun 2025
Viewed by 904
Abstract
Neutrophils, accounting for 50–70% of circulating leukocytes, exhibit remarkable plasticity in tumor biology. Depending on tumor type and microenvironmental cues, they can exert either anti-tumor or pro-tumor effects. During tumor initiation, neutrophils exposed to chronic inflammation secrete cytokines and oncogenic microRNAs that promote [...] Read more.
Neutrophils, accounting for 50–70% of circulating leukocytes, exhibit remarkable plasticity in tumor biology. Depending on tumor type and microenvironmental cues, they can exert either anti-tumor or pro-tumor effects. During tumor initiation, neutrophils exposed to chronic inflammation secrete cytokines and oncogenic microRNAs that promote genomic instability and malignant transformation. In tumor progression, neutrophils adopt context-dependent phenotypes and execute diverse functions, including polarization into anti-tumor (N1) or pro-tumor (N2) subsets; secretion of inflammatory and angiogenic mediators; formation of neutrophil extracellular traps (NETs); production of reactive oxygen and nitrogen species (e.g., H2O2 and nitric oxide); and modulation of immune cell infiltration and function within the tumor microenvironment. During metastasis, neutrophils facilitate cancer dissemination through three principal mechanisms: (1) promoting epithelial–mesenchymal transition (EMT) via inflammatory signaling, adhesion molecule interactions, and lipid metabolic support; (2) establishing pre-metastatic niches by remodeling distant organ stroma through NETs and matrix metalloproteinases; and (3) reactivating dormant tumor cells in response to chronic inflammation, viral infection, or stress hormones. Collectively, neutrophils function as central regulators across all stages of tumor evolution, influencing cancer growth, immune evasion, and metastatic progression. This review aims to provide a comprehensive synthesis of neutrophil-mediated mechanisms in the tumor microenvironment and highlight emerging strategies for neutrophil-targeted cancer therapy. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

16 pages, 2139 KiB  
Article
Adenosine A2B Receptor Antagonism Interferes with TGF-β Cellular Signaling Through SMAD2/-3 and p65-Nf-κB in Podocytes and Protects from Phenotypical Transformation in Experimental Diabetic Glomerulopathy
by Ignacio Arias, Claudia Jara, Pablo Mendoza-Soto, Yessica Nahuelpán, Claudio Cappelli, Carlos Oyarzún, Diego Carrillo-Beltrán, Claudia Quezada-Monrás, Angelo Torres-Arévalo and Rody San Martín
Cells 2025, 14(12), 890; https://doi.org/10.3390/cells14120890 - 12 Jun 2025
Viewed by 692
Abstract
Studies have emphasized alleviating fibrogenesis through interference with adenosine signaling in experimental diabetic nephropathy. We found that the in vivo antagonism of the adenosine A2B receptor (A2BAR) using MRS1754 in diabetic rats impedes the diabetes-induced glomerular expression of the mesenchymal-like [...] Read more.
Studies have emphasized alleviating fibrogenesis through interference with adenosine signaling in experimental diabetic nephropathy. We found that the in vivo antagonism of the adenosine A2B receptor (A2BAR) using MRS1754 in diabetic rats impedes the diabetes-induced glomerular expression of the mesenchymal-like transformation markers Snail and α-SMA, while the loss of the epithelial podocyte-specific proteins nephrin and ZO-1 was prevented. Furthermore, the production of MCP-1, CCL3, TGF-β, and the transcript levels of inflammatory mediators was reduced by A2BAR antagonism. Using human podocytes in vitro, we demonstrated that A2BAR antagonism affected the TGF-β-induced activation of SMAD2/-3, as evidenced by the attenuated phosphorylation of SMAD2/-3 and decreased SMAD3 occupancy at target gene promoters following the MRS1754 treatment. Moreover, the non-canonical activation of p65-NF-κB, the primary inflammatory signaling pathway downstream of TGF-β, and the expression of Snail were also reduced by MRS1754. We conclude that an A2BAR blockade interferes with the pathogenic TGF-β signaling cascade responsible for the phenotypical transformation of podocytes, thereby alleviating diabetic glomerulopathy. Full article
(This article belongs to the Section Cellular Pathology)
Show Figures

Graphical abstract

Back to TopTop